Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Deep Image Prior“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Deep Image Prior" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Deep Image Prior"
Ulyanov, Dmitry, Andrea Vedaldi und Victor Lempitsky. „Deep Image Prior“. International Journal of Computer Vision 128, Nr. 7 (04.03.2020): 1867–88. http://dx.doi.org/10.1007/s11263-020-01303-4.
Der volle Inhalt der QuelleShin, Chang Jong, Tae Bok Lee und Yong Seok Heo. „Dual Image Deblurring Using Deep Image Prior“. Electronics 10, Nr. 17 (24.08.2021): 2045. http://dx.doi.org/10.3390/electronics10172045.
Der volle Inhalt der QuelleCannas, Edoardo Daniele, Sara Mandelli, Paolo Bestagini, Stefano Tubaro und Edward J. Delp. „Deep Image Prior Amplitude SAR Image Anonymization“. Remote Sensing 15, Nr. 15 (27.07.2023): 3750. http://dx.doi.org/10.3390/rs15153750.
Der volle Inhalt der QuelleShi, Yu, Cien Fan, Lian Zou, Caixia Sun und Yifeng Liu. „Unsupervised Adversarial Defense through Tandem Deep Image Priors“. Electronics 9, Nr. 11 (19.11.2020): 1957. http://dx.doi.org/10.3390/electronics9111957.
Der volle Inhalt der QuelleGong, Kuang, Ciprian Catana, Jinyi Qi und Quanzheng Li. „PET Image Reconstruction Using Deep Image Prior“. IEEE Transactions on Medical Imaging 38, Nr. 7 (Juli 2019): 1655–65. http://dx.doi.org/10.1109/tmi.2018.2888491.
Der volle Inhalt der QuelleHan, Sujy, Tae Bok Lee und Yong Seok Heo. „Deep Image Prior for Super Resolution of Noisy Image“. Electronics 10, Nr. 16 (20.08.2021): 2014. http://dx.doi.org/10.3390/electronics10162014.
Der volle Inhalt der QuelleXie, Zhonghua, Lingjun Liu, Zhongliang Luo und Jianfeng Huang. „Image Denoising Using Nonlocal Regularized Deep Image Prior“. Symmetry 13, Nr. 11 (07.11.2021): 2114. http://dx.doi.org/10.3390/sym13112114.
Der volle Inhalt der QuelleChen, Yingxia, Yuqi Li, Tingting Wang, Yan Chen und Faming Fang. „DPDU-Net: Double Prior Deep Unrolling Network for Pansharpening“. Remote Sensing 16, Nr. 12 (13.06.2024): 2141. http://dx.doi.org/10.3390/rs16122141.
Der volle Inhalt der QuelleYou, Shaopei, Jianlou Xu, Yajing Fan, Yuying Guo und Xiaodong Wang. „Combining Deep Image Prior and Second-Order Generalized Total Variance for Image Inpainting“. Mathematics 11, Nr. 14 (21.07.2023): 3201. http://dx.doi.org/10.3390/math11143201.
Der volle Inhalt der QuelleFan, Wenshi, Hancheng Yu, Tianming Chen und Sheng Ji. „OCT Image Restoration Using Non-Local Deep Image Prior“. Electronics 9, Nr. 5 (11.05.2020): 784. http://dx.doi.org/10.3390/electronics9050784.
Der volle Inhalt der QuelleDissertationen zum Thema "Deep Image Prior"
Liu, Yang. „Application of prior information to discriminative feature learning“. Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/285558.
Der volle Inhalt der QuelleMerasli, Alexandre. „Reconstruction d’images TEP par des méthodes d’optimisation hybrides utilisant un réseau de neurones non supervisé et de l'information anatomique“. Electronic Thesis or Diss., Nantes Université, 2024. http://www.theses.fr/2024NANU1003.
Der volle Inhalt der QuellePET is a functional imaging modality used in oncology to obtain a quantitative image of the distribution of a radiotracer injected into a patient. The raw PET data are characterized by a high level of noise and modest spatial resolution, compared to anatomical imaging modalities such as MRI or CT. In addition, standard methods for image reconstruction from the PET raw data introduce a positive bias in low activity regions, especially when dealing with low statistics acquisitions (highly noisy data). In this work, a new reconstruction algorithm, called DNA, has been developed. Using the ADMM algorithm, DNA combines the recently proposed Deep Image Prior (DIP) method to limit noise propagation and improve spatial resolution by using anatomical information, and a bias reduction method developed for low statistics PET imaging. However, the use of DIP and ADMM algorithms requires the tuning of many hyperparameters, which are often selected manually. A study has been carried out to tune some of them automatically, using methods that could benefit other algorithms. Finally, the use of anatomical information, especially with DIP, allows an improvement of the PET image quality, but can generate artifacts when information from one modality does not spatially match with the other. This is particularly the case when tumors have different anatomical and functional contours. Two methods have been developed to remove these artifacts while trying to preserve the useful information provided by the anatomical modality
Deng, Mo Ph D. Massachusetts Institute of Technology. „Deep learning with physical and power-spectral priors for robust image inversion“. Thesis, Massachusetts Institute of Technology, 2020. https://hdl.handle.net/1721.1/127013.
Der volle Inhalt der QuelleCataloged from the official PDF of thesis.
Includes bibliographical references (pages 169-182).
Computational imaging is the class of imaging systems that utilizes inverse algorithms to recover unknown objects of interest from physical measurements. Deep learning has been used in computational imaging, typically in the supervised mode and in an End-to-End fashion. However, treating the machine learning algorithm as a mere black-box is not the most efficient, as the measurement formation process (a.k.a. the forward operator), which depends on the optical apparatus, is known to us. Therefore, it is inefficient to let the neural network to explain, at least partly, the system physics. Also, some prior knowledge of the class of objects of interest can be leveraged to make the training more efficient. The main theme of this thesis is to design more efficient deep learning algorithms with the help of physical and power-spectral priors.
We first propose the learning to synthesize by DNN (LS-DNN) scheme, where we propose a dual-channel DNN architecture, each designated to low and high frequency band, respectively, to split, process, and subsequently, learns to recombine low and high frequencies for better inverse conversion. Results show that the LS-DNN scheme largely improves reconstruction quality in many applications, especially in the most severely ill-posed case. In this application, we have implicitly incorporated the system physics through data pre-processing; and the power-spectral prior through the design of the band-splitting configuration. We then propose to use the Phase Extraction Neural Networks (PhENN) trained with perceptual loss, that is based on extracted feature maps from pre-trained classification neural networks, to tackle the problem of low-light phase retrieval under low-light conditions.
This essentially transfer the knowledge, or features relevant to classifications, and thus corresponding to human perceptual quality, to the image-transformation network (such as PhENN). We find that the commonly defined perceptual loss need to be refined for the low-light applications, to avoid the strengthened "grid-like" artifacts and achieve superior reconstruction quality. Moreover, we investigate empirically the interplay between the physical and con-tent prior in using deep learning for computational imaging. More specifically, we investigate the effect of training examples to the learning of the underlying physical map and find that using training datasets with higher Shannon entropy is more beneficial to guide the training to correspond better to the system physics and thus the trained mode generalizes better to test examples disjoint from the training set.
Conversely, if more restricted examples are used as training examples, the training can be guided to undesirably "remember" to produce the ones similar as those in training, making the cross-domain generalization problematic. Next, we also propose to use deep learning to greatly accelerate the optical diffraction tomography algorithm. Unlike previous algorithms that involve iterative optimization algorithms, we present significant progresses towards 3D refractive index (RI) maps from a single-shot angle-multiplexing interferogram. Last but not least, we propose to use cascaded neural networks to incorporate the system physics directly into the machine learning algorithms, while leaving the trainable architectures to learn to function as the ideal Proximal mapping associated with the efficient regularization of the data. We show that this unrolled scheme significantly outperforms the End-to-End scheme, in low-light imaging applications.
by Mo Deng.
Ph. D.
Ph.D. Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science
Ganaye, Pierre-Antoine. „A priori et apprentissage profond pour la segmentation en imagerie cérébrale“. Thesis, Lyon, 2019. http://www.theses.fr/2019LYSEI100.
Der volle Inhalt der QuelleMedical imaging is a vast field guided by advances in instrumentation, acquisition techniques and image processing. Advances in these major disciplines all contribute to the improvement of the understanding of both physiological and pathological phenomena. In parallel, access to broader imaging databases, combined with the development of computing power, has fostered the development of machine learning methodologies for automatic image processing, including approaches based on deep neural networks. Among the applications where deep neural networks provide solutions, we find image segmentation, which consists in locating and delimiting in an image regions with specific properties that will be associated with the same structure. Despite many recent studies in deep learning based segmentation, learning the parameters of a neural network is still guided by quantitative performance measures that do not include high-level knowledge of anatomy. The objective of this thesis is to develop methods to integrate a priori into deep neural networks, targeting the segmentation of brain structures in MRI imaging. Our first contribution proposes a strategy for integrating the spatial position of the patch to be classified, to improve the discriminating power of the segmentation model. This first work considerably corrects segmentation errors that are far away from the anatomical reality, also improving the overall quality of the results. Our second contribution focuses on a methodology to constrain adjacency relationships between anatomical structures, directly while learning network parameters, in order to reinforce the realism of the produced segmentations. Our experiments conclude that the proposed constraint corrects non-admitted adjacencies, thus improving the anatomical consistency of the segmentations produced by the neural network
Zheng-YiLi und 李政毅. „Structural RPN: Integrating Prior Parametric Model to Deep CNN for Medical Image Applications“. Thesis, 2019. http://ndltd.ncl.edu.tw/handle/326476.
Der volle Inhalt der QuellePandey, Gaurav. „Deep Learning with Minimal Supervision“. Thesis, 2017. http://etd.iisc.ac.in/handle/2005/4315.
Der volle Inhalt der QuelleBuchteile zum Thema "Deep Image Prior"
Wang, Hongyan, Xin Wang und Zhixun Su. „Single Image Dehazing with Deep-Image-Prior Networks“. In Lecture Notes in Computer Science, 78–90. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-46311-2_7.
Der volle Inhalt der QuelleDittmer, Sören, Tobias Kluth, Daniel Otero Baguer und Peter Maass. „A Deep Prior Approach to Magnetic Particle Imaging“. In Machine Learning for Medical Image Reconstruction, 113–22. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-61598-7_11.
Der volle Inhalt der QuelleLaves, Max-Heinrich, Malte Tölle und Tobias Ortmaier. „Uncertainty Estimation in Medical Image Denoising with Bayesian Deep Image Prior“. In Uncertainty for Safe Utilization of Machine Learning in Medical Imaging, and Graphs in Biomedical Image Analysis, 81–96. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-60365-6_9.
Der volle Inhalt der QuelleSudarshan, Viswanath P., K. Pavan Kumar Reddy, Mohana Singh, Jayavardhana Gubbi und Arpan Pal. „Uncertainty-Informed Bayesian PET Image Reconstruction Using a Deep Image Prior“. In Machine Learning for Medical Image Reconstruction, 145–55. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-17247-2_15.
Der volle Inhalt der QuelleFerreira, Leonardo A., Roberto G. Beraldo, Ricardo Suyama, Fernando S. Moura und André K. Takahata. „2D Electrical Impedance Tomography Brain Image Reconstruction Using Deep Image Prior“. In IFMBE Proceedings, 272–82. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-49404-8_27.
Der volle Inhalt der QuelleBenfenati, Alessandro, Ambra Catozzi, Giorgia Franchini und Federica Porta. „Piece-wise Constant Image Segmentation with a Deep Image Prior Approach“. In Lecture Notes in Computer Science, 352–62. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-31975-4_27.
Der volle Inhalt der QuelleAgazzotti, Gaetano, Fabien Pierre und Frédéric Sur. „Deep Image Prior Regularized by Coupled Total Variation for Image Colorization“. In Lecture Notes in Computer Science, 301–13. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-31975-4_23.
Der volle Inhalt der QuelleMeyer, Lina, Lena-Marie Woelk, Christine E. Gee, Christian Lohr, Sukanya A. Kannabiran, Björn-Philipp Diercks und René Werner. „Deep Image Prior for Spatio-temporal Fluorescence Microscopy Images DECO-DIP“. In Bildverarbeitung für die Medizin 2024, 322–27. Wiesbaden: Springer Fachmedien Wiesbaden, 2024. http://dx.doi.org/10.1007/978-3-658-44037-4_82.
Der volle Inhalt der QuelleChen, Yun-Chun, Chen Gao, Esther Robb und Jia-Bin Huang. „NAS-DIP: Learning Deep Image Prior with Neural Architecture Search“. In Computer Vision – ECCV 2020, 442–59. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-58523-5_26.
Der volle Inhalt der QuellePan, Xingang, Xiaohang Zhan, Bo Dai, Dahua Lin, Chen Change Loy und Ping Luo. „Exploiting Deep Generative Prior for Versatile Image Restoration and Manipulation“. In Computer Vision – ECCV 2020, 262–77. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-58536-5_16.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Deep Image Prior"
Shabtay, Nimrod, Eli Schwartz und Raja Giryes. „Deep Phase Coded Image Prior“. In 2024 IEEE International Conference on Computational Photography (ICCP), 1–12. IEEE, 2024. http://dx.doi.org/10.1109/iccp61108.2024.10645026.
Der volle Inhalt der QuelleYuan, Weimin, Yinuo Wang, Ning Li, Cai Meng und Xiangzhi Bai. „Mixed Degradation Image Restoration via Deep Image Prior Empowered by Deep Denoising Engine“. In 2024 International Joint Conference on Neural Networks (IJCNN), 1–8. IEEE, 2024. http://dx.doi.org/10.1109/ijcnn60899.2024.10650215.
Der volle Inhalt der QuelleZhang, Yifan, Chaoqun Dong und Shaohui Mei. „Cycle-Consistent Sparse Unmixing Network Based on Deep Image Prior“. In IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium, 9231–34. IEEE, 2024. http://dx.doi.org/10.1109/igarss53475.2024.10641125.
Der volle Inhalt der QuelleSultan, Muhammad Ahmad, Chong Chen, Yingmin Liu, Xuan Lei und Rizwan Ahmad. „Deep Image Prior with Structured Sparsity (Discus) for Dynamic MRI Reconstruction“. In 2024 IEEE International Symposium on Biomedical Imaging (ISBI), 1–5. IEEE, 2024. http://dx.doi.org/10.1109/isbi56570.2024.10635579.
Der volle Inhalt der QuelleSfountouris, Loukas, und Athanasios A. Rontogiannis. „Hyperspectral Image Denoising by Jointly Using Variational Bayes Matrix Factorization and Deep Image Prior“. In IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium, 7626–30. IEEE, 2024. http://dx.doi.org/10.1109/igarss53475.2024.10642320.
Der volle Inhalt der QuelleLempitsky, Victor, Andrea Vedaldi und Dmitry Ulyanov. „Deep Image Prior“. In 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2018. http://dx.doi.org/10.1109/cvpr.2018.00984.
Der volle Inhalt der QuelleBalušík, Peter. „Image demosaicing using Deep Image Prior“. In STUDENT EEICT 2023. Brno: Brno University of Technology, Faculty of Electrical Engineering and Communication, 2023. http://dx.doi.org/10.13164/eeict.2023.17.
Der volle Inhalt der QuelleLi, Taihui, Hengkang Wang, Zhong Zhuang und Ju Sun. „Deep Random Projector: Accelerated Deep Image Prior“. In 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2023. http://dx.doi.org/10.1109/cvpr52729.2023.01743.
Der volle Inhalt der QuelleLi, Jikai, Ruiki Kobayashi, Shogo Muramatsu und Gwanggil Jeon. „Image Restoration with Structured Deep Image Prior“. In 2021 36th International Technical Conference on Circuits/Systems, Computers and Communications (ITC-CSCC). IEEE, 2021. http://dx.doi.org/10.1109/itc-cscc52171.2021.9524738.
Der volle Inhalt der QuelleShi, Yinxia, Desheng Wen und Tuochi Jiang. „Deep image prior for polarization image demosaicking“. In 2023 4th International Conference on Big Data & Artificial Intelligence & Software Engineering (ICBASE). IEEE, 2023. http://dx.doi.org/10.1109/icbase59196.2023.10303066.
Der volle Inhalt der Quelle