Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Deep Fingerprinting“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Deep Fingerprinting" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Deep Fingerprinting"
Guo, Maohua, Jinlong Fei und Yitong Meng. „Deep Nearest Neighbor Website Fingerprinting Attack Technology“. Security and Communication Networks 2021 (14.07.2021): 1–14. http://dx.doi.org/10.1155/2021/5399816.
Der volle Inhalt der QuelleSong, Pingfan, Yonina C. Eldar, Gal Mazor und Miguel R. D. Rodrigues. „HYDRA: Hybrid deep magnetic resonance fingerprinting“. Medical Physics 46, Nr. 11 (10.09.2019): 4951–69. http://dx.doi.org/10.1002/mp.13727.
Der volle Inhalt der QuelleCohen, Ouri, Bo Zhu und Matthew S. Rosen. „MR fingerprinting Deep RecOnstruction NEtwork (DRONE)“. Magnetic Resonance in Medicine 80, Nr. 3 (06.04.2018): 885–94. http://dx.doi.org/10.1002/mrm.27198.
Der volle Inhalt der QuelleOh, Se Eun, Saikrishna Sunkam und Nicholas Hopper. „p1-FP: Extraction, Classification, and Prediction of Website Fingerprints with Deep Learning“. Proceedings on Privacy Enhancing Technologies 2019, Nr. 3 (01.07.2019): 191–209. http://dx.doi.org/10.2478/popets-2019-0043.
Der volle Inhalt der QuelleOh, Se Eun, Nate Mathews, Mohammad Saidur Rahman, Matthew Wright und Nicholas Hopper. „GANDaLF: GAN for Data-Limited Fingerprinting“. Proceedings on Privacy Enhancing Technologies 2021, Nr. 2 (29.01.2021): 305–22. http://dx.doi.org/10.2478/popets-2021-0029.
Der volle Inhalt der QuelleZhang, Qiang, Pan Su, Zhensen Chen, Ying Liao, Shuo Chen, Rui Guo, Haikun Qi et al. „Deep learning–based MR fingerprinting ASL ReconStruction (DeepMARS)“. Magnetic Resonance in Medicine 84, Nr. 2 (04.02.2020): 1024–34. http://dx.doi.org/10.1002/mrm.28166.
Der volle Inhalt der QuelleZhao, Jingjing, Qingyue Hu, Gaoyang Liu, Xiaoqiang Ma, Fei Chen und Mohammad Mehedi Hassan. „AFA: Adversarial fingerprinting authentication for deep neural networks“. Computer Communications 150 (Januar 2020): 488–97. http://dx.doi.org/10.1016/j.comcom.2019.12.016.
Der volle Inhalt der QuelleLee, Woongsup, Seon Yeob Baek und Seong Hwan Kim. „Deep-Learning-Aided RF Fingerprinting for NFC Security“. IEEE Communications Magazine 59, Nr. 5 (Mai 2021): 96–101. http://dx.doi.org/10.1109/mcom.001.2000912.
Der volle Inhalt der QuelleLi, Tao, Hai Wang, Yuan Shao und Qiang Niu. „Channel state information–based multi-level fingerprinting for indoor localization with deep learning“. International Journal of Distributed Sensor Networks 14, Nr. 10 (Oktober 2018): 155014771880671. http://dx.doi.org/10.1177/1550147718806719.
Der volle Inhalt der QuelleFang, Zhenghan, Yong Chen, Sheng‐Che Hung, Xiaoxia Zhang, Weili Lin und Dinggang Shen. „Submillimeter MR fingerprinting using deep learning–based tissue quantification“. Magnetic Resonance in Medicine 84, Nr. 2 (19.12.2019): 579–91. http://dx.doi.org/10.1002/mrm.28136.
Der volle Inhalt der QuelleDissertationen zum Thema "Deep Fingerprinting"
Magnusson, Jonathan. „Evaluation of a Proposed Traffic-Splitting Defence for Tor : Using Directional Time and Simulation Against TrafficSliver“. Thesis, Karlstads universitet, Institutionen för matematik och datavetenskap (from 2013), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-84762.
Der volle Inhalt der QuelleTor är ett personlig-integritetsverktyg baserat på onion routing som låter sina användare anonymnt besöka hemsidor på internet. Även om trafiken är enkrypterad i flera lager, kan trafikanalys användas för att utvinna information från metadata som exempelvis: tid, storlek och riktning av trafik. En Website Fingerprinting (WF)-attack karaktäriseras av att övervaka trafik nära användaren för att sedan avgöra vilken hemsida som besökts utifrån mönster. TrafficSliver är ett föreslaget försvar mot WF-attacker genom att dela upp trafiken på flera vägar genom nätverket. Detta gör att en attackerare antas endast kunna se en delmängd av användarens totala trafik. Den första utvärderingen av TrafficSliver mot Deep Fingerprinting (DF), spjutspetsen inom WF-attacker, visade lovande resultat för försvaret genom att reducera träffsäkerheten av DF från över 98% till mindre än 7% utan att lägga till artificiella fördröjningar eller falsk trafik. I denna uppsats strävar vi att fortsätta utvärderingen av TrafficSliver mot DF utöver vad som redan har gjorts av De la Cadena et al. med en rikare datarepresentation och en undersökning huruvida det går att använda simulerad data för att träna attacker mot försvaret. Genom att introducera riktad tid och öka mängden data för att träna attacken, ökades träffsäkerheten av DF mot TrafficSliver på tre distinkta dataset. Mot det dataset som samlades in av TrafficSliver var träffsäkerheten inledelsevis 7.1% och sedan förbättrad med hjälp av riktad tid och större mängder av simulerad träningsdata till 49.9%. Dessa resultat bekräftades även för två ytterligare dataset med TrafficSliver, där träffsäkerheten blev förbättrad från 5.4% till 44.9% och från 9.8% till 37.7%.
Williams, Thomas. „Investigating the circulation of Southern Ocean deep water masses over the last 1.5 million years by geochemical fingerprinting of marine sediments“. Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/274006.
Der volle Inhalt der QuelleWilliams, Timothy Roy. „Reeves' muntjac : a molecular genetic study of an invading species“. Thesis, University of Kent, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.283343.
Der volle Inhalt der QuelleTAREKEGN, GETANEH BERIE, und Getaneh Berie Tarekegn. „DFOPS: Fingerprinting Outdoor Positioning Scheme in Hybrid Networks: A Deep Learning Approach“. Thesis, 2019. http://ndltd.ncl.edu.tw/handle/9jzm29.
Der volle Inhalt der Quelle國立臺北科技大學
電資國際專班
107
Recently, Location Based Services (LBSs) are becoming a key technology for enhancing the applicability of Internet-of-Things (IoT) to offer seamless, intelligent and adaptive services in academia and industry to create smart world due to the growth of multiple built-in sensors on mobile devices and wireless technology. Satellite-based positioning (e.g., GPS) do not work well for urban and suburban outdoor positioning for the success of IoT deployment because of Line of Sight (LoS) problems and it requiring much power. Besides, most satellite-based positioning systems are not cost-effective. Hence accurate and efficient positioning services is a major challenge in urban and suburban environments. In this paper, we propose an accurate, cost-efficient and robust Fingerprinting Outdoor Positioning Scheme(DFOPS) in a scalable environment using hybrid Support Vector Machine (SVM) and Long Short-Term Memory (LSTM) algorithms. DFOPS contains Wi-Fi and Orthogonal Frequency Division Multiplexing (OFDM) signal values from each reachable Wi-Fi Access Points (APs) and three temporary deployed Unmanned Arial Vehicles Base Stations (UAV-BSs), respectively, to construct a radio-map. Due to signal unreachable and shadowing effects, the signal values are missed. Accordingly, we fill the missing values of the radio-map using mean of RSS values at each reference point. Since we collect multiple RSS measurements at each reference points over time with different mobile devices to mitigate signal variations during constructing a radio-map. We apply Linear Discriminant Analysis (LDA) to remove outliers, extract unique features from raw data, reduce Wi-Fi and OFDM features, speed up learning processes, and optimize the proposed algorithm performances. The proposed hybrid SVM+LSTM model (i.e., DFOPS) is the sequential combination of classification and regression model, which is SVM with Radial Basis Function (RBF) kernel as classifier and LSTM as regression model. In this model, to limit the search space and improve the positioning performance, we primarily apply SVM classifier as a coarse positioning that predicts the class of a mobile user inferred from the class-based signal distribution. Secondly, by adding the SVM predicted class of the mobile user as one feature to the signal reading of the target IoT device, we use an input to the LSTM model. Then, the LSTM model is used to figure out the current positioning (latitude, longitude) of the mobile user. The proposed system is evaluated on experimental datasets in real environment in three different scenarios. To assess the trustworthiness of the SVM classifier, we compare with k-Nearest Neighbor(k-NN), Random Forest, and Multilayer Perceptron (MLP) algorithms in all our proposed scenarios. The experimental result shows that SVM has better positioning performance in all scenarios than the others. The proposed DFOPS model achieved positioning errors less than 1.5 m are 87.46%, 92.74% and 99.23% for Scenario-I (original collected Wi-Fi and OFDM signal), Scenario-II (reduced the Scenario-I signal features using PCA) and Scenario-III (reduced the Scenario-I signal features using LDA), respectively. The model achieved no more than 1.29 m position estimation errors. This shows that the proposed model achieves a promising and reasonable positioning services of the IoT devices in wireless environment.
Yang, Jia-Hong, und 楊佳虹. „A Robust Music Auto-Tagging Technique Using Audio Fingerprinting and Deep Convolutional Neural Networks“. Thesis, 2018. http://ndltd.ncl.edu.tw/handle/vagbse.
Der volle Inhalt der Quelle國立中興大學
資訊科學與工程學系
106
Music tags are a set of descriptive keywords that convey high-level information about a music clip, such as emotions(sadness, happiness), genres(jazz, classical), and instruments(guitar, vocal). Since tags provide high-level information from the listener’s perspectives, they can be used for music discovery and recommendation. However, in music information retrieval (MIR), researchers need to have expertise based on acoustics or engineering design in order to analyze and organize music informations, classify them according to music forms, and then provide music information retrieval. In recent years, people have been paying more attention to the feature learning and deep architecture, thus reducing the required of the engineering works and the need for prior knowledge. The use of deep convolutional neural networks has been successfully explored in the image, text and speech field. However, previous methods for music auto-tagging can’t accurately discriminate the type of music for the distortion and noise audio, it will have the bad results in the auto-tagging. Therefore, we will propose a robust method to implement auto-music tagging. First, convert the music into a spectrogram, and find out the important information from the spectrogram, that is, the audio fingerprint. Then use it as the input of convolutional neural networks to learn the features, in this way to get a good music search result. Experimental results demonstrate the robustness of the proposed method.
Bücher zum Thema "Deep Fingerprinting"
Brinkman, Todd J. Assessing population trends of deer in southeast Alaska using a DNA-based approach: A general guide, version 1.0. Juneau, AK: Alaska Dept. of Fish and Game, Division of Wildlife Conservation, 2010.
Den vollen Inhalt der Quelle findenBrinkman, Todd J. Using DNA to test the utility of pellet-group counts as indices of deer density. Juneau, AK: Alaska Dept. of Fish and Game, Division of Wildlife Conservation, 2010.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Deep Fingerprinting"
Billah Karbab, ElMouatez, Mourad Debbabi, Abdelouahid Derhab und Djedjiga Mouheb. „Portable Supervised Malware Fingerprinting Using Deep Learning“. In Android Malware Detection using Machine Learning, 143–64. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-74664-3_7.
Der volle Inhalt der QuelleAbid, Mahdi, und Grégoire Lefebvre. „Deep Neural Networks for Indoor Geomagnetic Field Fingerprinting with Regression Approach“. In Proceedings of the International Neural Networks Society, 178–89. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-80568-5_15.
Der volle Inhalt der QuelleWang, Jiankun, Zenghua Zhao, Jiayang Cui, Yu Wang, YiYao Shi und Bin Wu. „Low-Cost Wi-Fi Fingerprinting Indoor Localization via Generative Deep Learning“. In Wireless Algorithms, Systems, and Applications, 53–64. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-85928-2_5.
Der volle Inhalt der Quellevan Schooten, Kipp. „Towards Chemical Fingerprinting of Deep-Level Defect Sites in CdS Nanocrystals by Optically Detected Spin Coherence“. In Optically Active Charge Traps and Chemical Defects in Semiconducting Nanocrystals Probed by Pulsed Optically Detected Magnetic Resonance, 75–88. Heidelberg: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-00590-4_4.
Der volle Inhalt der QuelleFang, Zhenghan, Yong Chen, Mingxia Liu, Yiqiang Zhan, Weili Lin und Dinggang Shen. „Deep Learning for Fast and Spatially-Constrained Tissue Quantification from Highly-Undersampled Data in Magnetic Resonance Fingerprinting (MRF)“. In Machine Learning in Medical Imaging, 398–405. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-00919-9_46.
Der volle Inhalt der QuelleFang, Zhenghan, Yong Chen, Mingxia Liu, Yiqiang Zhan, Weili Lin und Dinggang Shen. „Correction to: Deep Learning for Fast and Spatially-Constrained Tissue Quantification from Highly-Undersampled Data in Magnetic Resonance Fingerprinting (MRF)“. In Machine Learning in Medical Imaging, C1. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-00919-9_47.
Der volle Inhalt der QuelleDada, Michael O., und Bamidele O. Awojoyogbe. „A Computational MRI Based on Bloch’s NMR Flow Equation, MRI Fingerprinting and Python Deep Learning for Classifying Adult Brain Tumors“. In Biological and Medical Physics, Biomedical Engineering, 179–217. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-76728-0_5.
Der volle Inhalt der QuelleBhuyan, Manasjyoti, und Kandarpa Kumar Sarma. „Fingerprinting Based Localization with Channel State Information Features and Spatio-Temporal Deep Learning in Long Term Evolution Femtocell Network: An Experimental Approach“. In Sustainable Communication Networks and Application, 156–63. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-34515-0_16.
Der volle Inhalt der QuelleBuckley, Michael, Richard G. Cooke, María Fernanda Martínez, Fernando Bustamante, Máximo Jiménez, Alexandra Lara und Juan Guillermo Martín. „Archaeological Collagen Fingerprinting in the Neotropics; Protein Survival in 6000 Year Old Dwarf Deer Remains from Pedro González Island, Pearl Islands, Panama“. In Zooarchaeology in the Neotropics, 157–75. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-57328-1_10.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Deep Fingerprinting"
Sirinam, Payap, Mohsen Imani, Marc Juarez und Matthew Wright. „Deep Fingerprinting“. In CCS '18: 2018 ACM SIGSAC Conference on Computer and Communications Security. New York, NY, USA: ACM, 2018. http://dx.doi.org/10.1145/3243734.3243768.
Der volle Inhalt der QuelleNicolussi, Alessandro, Simon Tanner und Roger Wattenhofer. „Aircraft Fingerprinting Using Deep Learning“. In 2020 28th European Signal Processing Conference (EUSIPCO). IEEE, 2021. http://dx.doi.org/10.23919/eusipco47968.2020.9287691.
Der volle Inhalt der QuelleJafari, Hossein, Oluwaseyi Omotere, Damilola Adesina, Hsiang-Huang Wu und Lijun Qian. „IoT Devices Fingerprinting Using Deep Learning“. In MILCOM 2018 - IEEE Military Communications Conference. IEEE, 2018. http://dx.doi.org/10.1109/milcom.2018.8599826.
Der volle Inhalt der QuelleRimmer, Vera, Davy Preuveneers, Marc Juarez, Tom Van Goethem und Wouter Joosen. „Automated Website Fingerprinting through Deep Learning“. In Network and Distributed System Security Symposium. Reston, VA: Internet Society, 2018. http://dx.doi.org/10.14722/ndss.2018.23105.
Der volle Inhalt der QuelleXu, Tongyang, und Izzat Darwazeh. „Faster URLLC: Deep Learning Waveform Fingerprinting“. In 2021 IEEE International Conference on Communications Workshops (ICC Workshops). IEEE, 2021. http://dx.doi.org/10.1109/iccworkshops50388.2021.9473878.
Der volle Inhalt der QuelleHe, Zecheng, Tianwei Zhang und Ruby Lee. „Sensitive-Sample Fingerprinting of Deep Neural Networks“. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2019. http://dx.doi.org/10.1109/cvpr.2019.00486.
Der volle Inhalt der QuelleSeto, Mae L., und Parmeet Singh. „Visual fingerprinting for lobsters using deep learning“. In 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC). IEEE, 2019. http://dx.doi.org/10.1109/smc.2019.8914029.
Der volle Inhalt der QuelleCui, Weiqi, Tao Chen und Eric Chan-Tin. „More Realistic Website Fingerprinting Using Deep Learning“. In 2020 IEEE 40th International Conference on Distributed Computing Systems (ICDCS). IEEE, 2020. http://dx.doi.org/10.1109/icdcs47774.2020.00058.
Der volle Inhalt der QuelleWang, Si, und Chip-Hong Chang. „Fingerprinting Deep Neural Networks - a DeepFool Approach“. In 2021 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE, 2021. http://dx.doi.org/10.1109/iscas51556.2021.9401119.
Der volle Inhalt der QuelleSeok, Keun Young, und Jung Hoon Lee. „Deep Learning Based Fingerprinting Scheme for Wireless Positioning“. In 2020 International Conference on Artificial Intelligence in Information and Communication (ICAIIC). IEEE, 2020. http://dx.doi.org/10.1109/icaiic48513.2020.9065054.
Der volle Inhalt der Quelle