Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Decorrelation noise“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Decorrelation noise" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Decorrelation noise"
Palmer, Alan R., Dan Jiang und David McAlpine. „Desynchronizing Responses to Correlated Noise: A Mechanism for Binaural Masking Level Differences at the Inferior Colliculus“. Journal of Neurophysiology 81, Nr. 2 (01.02.1999): 722–34. http://dx.doi.org/10.1152/jn.1999.81.2.722.
Der volle Inhalt der QuelleTuzlukov, V. P. „Two approaches to multiuser detection over fading channels“. Doklady BGUIR 19, Nr. 1 (23.02.2021): 11–20. http://dx.doi.org/10.35596/1729-7648-2021-19-1-11-20.
Der volle Inhalt der QuelleJiang, Guoqing, Chao Sun und Lei Xie. „Diagonal Denoising for Spatially Correlated Noise Based on Diagonalization Decorrelation in Underwater Radiated Noise Measurement“. Journal of Marine Science and Engineering 10, Nr. 4 (05.04.2022): 502. http://dx.doi.org/10.3390/jmse10040502.
Der volle Inhalt der QuelleArienzo, Alberto, Fabrizio Argenti, Luciano Alparone und Monica Gherardelli. „Accurate Despeckling and Estimation of Polarimetric Features by Means of a Spatial Decorrelation of the Noise in Complex PolSAR Data“. Remote Sensing 12, Nr. 2 (20.01.2020): 331. http://dx.doi.org/10.3390/rs12020331.
Der volle Inhalt der QuelleChen, Yaogang, Qian Sun und Jun Hu. „Quantitatively Estimating of InSAR Decorrelation Based on Landsat-Derived NDVI“. Remote Sensing 13, Nr. 13 (22.06.2021): 2440. http://dx.doi.org/10.3390/rs13132440.
Der volle Inhalt der QuelleSathesh, Sathesh, und Dr J. Samuel Manoharan. „De-correlation stretch filtering approach for effective Poisson reduction in galaxy Images“. INTERNATIONAL JOURNAL OF COMPUTERS & TECHNOLOGY 11, Nr. 9 (05.12.2013): 2987–93. http://dx.doi.org/10.24297/ijct.v11i9.3408.
Der volle Inhalt der QuelleJung, H. Y., D. Y. Kim und C. K. Un. „Frame decorrelation for noise-robust speech recognition“. Electronics Letters 32, Nr. 13 (1996): 1163. http://dx.doi.org/10.1049/el:19960808.
Der volle Inhalt der QuellePradhan, Somanath, Xiaojun Qiu und Jinchen Ji. „A Four-Stage Method for Active Control with Online Feedback Path Modelling Using Control Signal“. Applied Sciences 9, Nr. 15 (25.07.2019): 2973. http://dx.doi.org/10.3390/app9152973.
Der volle Inhalt der QuelleWang, Xinmei, Leimin Wang, Longsheng Wei und Feng Liu. „Estimation of Object Motion State Based on Adaptive Decorrelation Kalman Filtering“. Journal of Advanced Computational Intelligence and Intelligent Informatics 23, Nr. 4 (20.07.2019): 749–57. http://dx.doi.org/10.20965/jaciii.2019.p0749.
Der volle Inhalt der QuelleAghanim, N., M. Ashdown, J. Aumont, C. Baccigalupi, M. Ballardini, A. J. Banday, R. B. Barreiro et al. „Planck intermediate results“. Astronomy & Astrophysics 599 (28.02.2017): A51. http://dx.doi.org/10.1051/0004-6361/201629164.
Der volle Inhalt der QuelleDissertationen zum Thema "Decorrelation noise"
Tu, Yifeng. „Multiple Reference Active Noise Control“. Thesis, Virginia Tech, 1997. http://hdl.handle.net/10919/36790.
Der volle Inhalt der QuelleMaster of Science
Giarra, Matthew Nicholson. „The Signal in the Noise: Understanding and Mitigating Decorrelation in Particle Image Velocimetry“. Diss., Virginia Tech, 2017. http://hdl.handle.net/10919/84520.
Der volle Inhalt der QuellePh. D.
Oksar, Yesim. „Target Tracking With Correlated Measurement Noise“. Master's thesis, METU, 2007. http://etd.lib.metu.edu.tr/upload/12608198/index.pdf.
Der volle Inhalt der QuellePiniard, Matthieu. „Contrôle en ligne du procédé Laser Beam Melting : apports de l'holographie numérique à deux longueurs d'onde“. Electronic Thesis or Diss., Sorbonne université, 2021. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2021SORUS571.pdf.
Der volle Inhalt der QuelleThis manuscript describes the development of a system to measure the 3D shapeLaser Beam Melting (LBM) process melt pool. Noting the lack of means adapted to the fullfield,real-time, in situ topography monitoring of the melt pool and the adjacent zone, it is shown that a system based on digital holography at two wave lengths presents all the assets to achieve this objective. A bench based on the principle of space-chromatic multiplexing of off-axis digital holograms at two wavelengths was then designed. A photometric study allowed to quantify the contributions of the various radiations involved and to evaluate the level of the noise sources. In particular, an analytical model describing the contribution of the phase noise induced by the decorrelation of speckle due to the topography of the inspected surface was developed. A realistic simulation of the experimental conditions allowed to validate the model. Numerical and experimental studies allowed to choose the adequate pair of wavelengths to realize the measurement. Finally, the holographic system has been implemented on a simplified LBM bench and the relevance of our concept is demonstrated. To process the holograms, a method of compensation of the spatial frequencies of the carrier waves has been proposed and validated. The first experimental results have been obtained with the measurement of static track, in translation and melt pool in the in situ condition. These results open perspectives for the improvement of the bench and for quantitative studies of the melt
Lee, Wei-Chen, und 李維真. „Reliability of noise-decorrelation method in inverse problems“. Thesis, 2015. http://ndltd.ncl.edu.tw/handle/20304027195665368675.
Der volle Inhalt der Quelle國立交通大學
物理研究所
103
Nowadays, massive amounts of measured data are available for analysis in various fields. However, the underlying mechanism yielding these data are often hard to extract. Therefore, it has become an important issue how to inversely deduce the mechanism of these data. Calculations by typical fitting methods will be rather complicated in high-dimensional systems. Recently some new ideas have been proposed to tackle this tricky problem. In this work, we use a newly developed method to resolve these inverse problems in different dynamical systems. Besides, we analyze the validity and precision of that theory and try to generalize this method. Finally, we try to apply this method to biological systems, e.g., how does a biological receptor extract the extracellular concentration of a signal molecule.
Buchteile zum Thema "Decorrelation noise"
Bendoumia, Rédha, Mohamed Djendi und Abderrazek Guessoum. „Two-Channel Acoustic Noise Reduction by New Backward Normalized Decorrelation Algorithm“. In Advanced Control Engineering Methods in Electrical Engineering Systems, 464–78. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-97816-1_35.
Der volle Inhalt der QuelleSaylani, Hicham, Shahram Hosseini und Yannick Deville. „Blind Separation of Noisy Mixtures of Non-stationary Sources Using Spectral Decorrelation“. In Independent Component Analysis and Signal Separation, 322–29. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-00599-2_41.
Der volle Inhalt der QuelleKorte, Johannes, Till Schubert, Jan Martin Brockmann und Wolf-Dieter Schuh. „On the Estimation of Time Varying AR Processes“. In International Association of Geodesy Symposia. Berlin, Heidelberg: Springer Berlin Heidelberg, 2023. http://dx.doi.org/10.1007/1345_2023_188.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Decorrelation noise"
Meteyer, Erwan, Charles Pezerat und Pascal Picart. „On the anisotropy of decorrelation noise in digital holographic interferometry“. In Digital Holography and Three-Dimensional Imaging. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/dh.2022.tu4a.8.
Der volle Inhalt der QuelleMatsumoto, Mitsuharu. „Adaptive ε-filter based on signal-noise decorrelation“. In 2009 International Symposium on Intelligent Signal Processing and Communications Systems (ISPACS 2009). IEEE, 2009. http://dx.doi.org/10.1109/ispacs.2009.5383766.
Der volle Inhalt der QuelleTorres, Francesc, Lin Wu, Nuria Duffo, Ignasi Corbella und Manuel Martin-Neira. „Spatial decorrelation of radiometric noise in SMOS measurements“. In IGARSS 2012 - 2012 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2012. http://dx.doi.org/10.1109/igarss.2012.6350802.
Der volle Inhalt der QuelleZheng, Yujie, Howard Zebker und Roger Michaelides. „A Physics-Based Decorrelation Phase Covariance Model for Effective Decorrelation Noise Reduction in Interferogram Stacks“. In IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2020. http://dx.doi.org/10.1109/igarss39084.2020.9323237.
Der volle Inhalt der QuelleMeteyer, Erwan, Charles Pezerat und Pascal Picart. „Speckle phase noise versus out-of-focus in digital holographic interferometry“. In Digital Holography and Three-Dimensional Imaging. Washington, D.C.: Optica Publishing Group, 2023. http://dx.doi.org/10.1364/dh.2023.htu3c.1.
Der volle Inhalt der QuellePires, Leo S., Robert P. Dougherty und Samir N. Y. Gerges. „Predicting Turbulent Decorrelation in Acoustic Phased Array in a Turbulent Medium“. In SAE Brasil International Noise and Vibration Colloquium 2014. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2014. http://dx.doi.org/10.4271/2014-36-0765.
Der volle Inhalt der QuelleStojanović, Nebojša, Stefano Calabrò, Lin Youxi, Tom Jonas Wettlin, Talha Rahman und Maxim Kuschnerov. „Improving FFE Performance by an Error Decorrelation Algorithm“. In Optical Fiber Communication Conference. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/ofc.2024.w2a.1.
Der volle Inhalt der QuelleMast, T. D., und Swetha Subramanian. „Analytic and numerical modeling of ultrasonic B-scan and echo decorrelation imaging“. In 159th Meeting Acoustical Society of America/NOISE-CON 2010. ASA, 2010. http://dx.doi.org/10.1121/1.3483555.
Der volle Inhalt der QuellePiniard, Matthieu, Pascal Picart, Béatrice Sorrente und Gilles Hug. „Decorrelation-induced speckle phase noise in twowavelength digital holographic profilometry“. In Digital Holography and Three-Dimensional Imaging. Washington, D.C.: OSA, 2019. http://dx.doi.org/10.1364/dh.2019.tu4b.2.
Der volle Inhalt der QuelleOno, Nobutaka, Nobutaka Ito und Shigeki Sagayama. „Five classes of crystal arrays for blind decorrelation of diffuse noise“. In 2008 IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM). IEEE, 2008. http://dx.doi.org/10.1109/sam.2008.4606844.
Der volle Inhalt der Quelle