Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Décomposition en trains de tenseurs.

Dissertationen zum Thema „Décomposition en trains de tenseurs“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-23 Dissertationen für die Forschung zum Thema "Décomposition en trains de tenseurs" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Dissertationen für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Badreddine, Siwar. „Symétries et structures de rang faible des matrices et tenseurs pour des problèmes en chimie quantique“. Electronic Thesis or Diss., Sorbonne université, 2024. http://www.theses.fr/2024SORUS029.

Der volle Inhalt der Quelle
Annotation:
Cette thèse présente de nouveaux algorithmes numériques et effectue une étude approfondie de certaines méthodes numériques existantes pour relever les défis de haute dimension résultant de la résolution de l'équation de Schrödinger électronique en chimie quantique. En se concentrant sur deux problèmes spécifiques, notre approche implique l'identification et l'exploitation des symétries et des structures de rang faible au sein de matrices et de tenseurs. Le premier problème abordé dans cette thèse concerne l'évaluation numérique efficace de la composante à longue portée du potentiel de Coulomb à séparation de portée et des intégrales à deux électrons à longue portée, un tenseur du quatrième ordre qui intervient dans de nombreuses méthodes de chimie quantique. Nous présentons deux nouvelles méthodes d'approximation. Cela est réalisé en s'appuyant sur l'interpolation Chebyshev, des règles de quadrature Gaussienne combinées à des approximations de rang faible ainsi que des méthodes rapides multipolaires (FMM). Ce travail offre une explication détaillée de ces approches et algorithmes introduits, accompagnée d'une comparaison approfondie entre les méthodes nouvellement proposées. Le deuxième problème abordé concerne l'exploitation des symétries et des structures de rang faible pour dériver des représentations efficaces en train de tenseurs des opérateurs impliqués dans l'algorithme DMRG. Cet algorithme est une méthode d'optimisation itérative précise utilisée pour résoudre numériquement l'équation de Schrödinger indépendante du temps. Ce travail vise à comprendre et interpréter les résultats obtenus par les communautés de physique et de chimie, et cherche à offrir des perspectives théoriques nouvelles qui, selon nos connaissances, n'ont pas reçu une attention significative auparavant. Nous menons une étude approfondie et fournissons des démonstrations, si nécessaire, pour explorer l'existence d'une représentation particulière en train de tenseurs, creuse par blocs, de l'opérateur Hamiltonien et de sa fonction d'onde associée. Cela est réalisé tout en maintenant les lois de conservation physiques, manifestées sous forme de symétries de groupe dans les tenseurs, telles que la conservation du nombre de particules. La troisième partie de ce travail est dédiée à la réalisation d'une bibliothèque prototype en Julia, pour l'implémentation de DMRG qui est conçue pour le modèle d'opérateur Hamiltonien de la chimie quantique. Nous exploitons ici la représentation en train de tenseurs, creuse par blocs, de l'opérateur et de la fonction d'onde (fonction propre). Avec ces structures, notre objectif est d'accélérer les étapes les plus coûteuses de la DMRG, y compris les contractions de tenseurs, les opérations matrice-vecteur, et la compression de matrices par décomposition en valeurs singulières tronquée. De plus, nous fournissons des résultats issus de diverses simulations moléculaires, tout en comparant les performances de notre bibliothèque avec la bibliothèque ITensors de pointe, où nous démontrons avoir atteint une performance similaire
This thesis presents novel numerical algorithms and conducts a comprehensive study of some existing numerical methods to address high-dimensional challenges arising from the resolution of the electronic Schrödinger equation in quantum chemistry. Focusing on two specific problems, our approach involves the identification and exploitation of symmetries and low-rank structures within matrices and tensors, aiming to mitigate the curse of dimensionality. The first problem considered in this thesis is the efficient numerical evaluation of the long-range component of the range-separated Coulomb potential and the long-range two-electron integrals 4th-order tensor which occurs in many quantum chemistry methods. We present two novel approximation methods. This is achieved by relying on tensorized Chebyshev interpolation, Gaussian quadrature rules combined with low-rank approximations as well as Fast Multipole Methods (FMM). This work offers a detailed explanation of these introduced approaches and algorithms, accompanied by a thorough comparison between the newly proposed methods. The second problem of interest is the exploitation of symmetries and low-rank structures to derive efficient tensor train representations of operators involved in the Density Matrix Renormalization Group (DMRG) algorithm. This algorithm, referred to as the Quantum Chemical DMRG (QC-DMRG) when applied in the field of quantum chemistry, is an accurate iterative optimization method employed to numerically solve the time-independent Schrödinger equation. This work aims to understand and interpret the results obtained from the physics and chemistry communities and seeks to offer novel theoretical insights that, to the best of our knowledge, have not received significant attention before. We conduct a comprehensive study and provide demonstrations, when necessary, to explore the existence of a particular block-sparse tensor train representation of the Hamiltonian operator and its associated eigenfunction. This is achieved while maintaining physical conservation laws, manifested as group symmetries in tensors, such as the conservation of the particle number. The third part of this work is dedicated to the realization of a proof-of-concept Quantum Chemical DMRG (QC-DMRG) Julia library, designed for the quantum chemical Hamiltonian operator model. We exploit here the block-sparse tensor train representation of both the operator and the eigenfunction. With these structures, our goal is to speed up the most time-consuming steps in QC-DMRG, including tensor contractions, matrix-vector operations, and matrix compression through truncated Singular Value Decompositions (SVD). Furthermore, we provide empirical results from various molecular simulations, while comparing the performance of our library with the state-of-the-art ITensors library where we show that we attain a similar performance
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Olivier, Clément. „Décompositions tensorielles et factorisations de calculs intensifs appliquées à l'identification de modèles de comportement non linéaire“. Thesis, Paris Sciences et Lettres (ComUE), 2017. http://www.theses.fr/2017PSLEM040/document.

Der volle Inhalt der Quelle
Annotation:
Cette thèse développe une méthodologie originale et non intrusive de construction de modèles de substitution applicable à des modèles physiques multiparamétriques.La méthodologie proposée permet d’approcher en temps réel, sur l’ensemble du domaine paramétrique, de multiples quantités d’intérêt hétérogènes issues de modèles physiques.Les modèles de substitution sont basés sur des représentations en train de tenseurs obtenues lors d'une phase hors ligne de calculs intensifs.L'idée essentielle de la phase d'apprentissage est de construire simultanément les approximations en se basant sur un nombre limité de résolutions du modèle physique lancées à la volée.L'exploration parcimonieuse du domaine paramétrique couplée au format compact de train de tenseurs permet de surmonter le fléau de la dimension.L'approche est particulièrement adaptée pour traiter des modèles présentant un nombre élevé de paramètres définis sur des domaines étendus.Les résultats numériques sur des lois élasto-viscoplastiques non linéaires montrent que des modèles de substitution compacts en mémoire qui approchent précisément les différentes variables mécaniques dépendantes du temps peuvent être obtenus à des coûts modérés.L'utilisation de tels modèles exploitables en temps réel permet la conception d'outils d'aide à la décision destinés aux experts métiers dans le cadre d'études paramétriques et visent à améliorer la procédure de calibration des lois matériaux
This thesis presents a novel non-intrusive methodology to construct surrogate models of parametric physical models.The proposed methodology enables to approximate in real-time, over the entire parameter space, multiple heterogeneous quantities of interest derived from physical models.The surrogate models are based on tensor train representations built during an intensive offline computational stage.The fundamental idea of the learning stage is to construct simultaneously all tensor approximations based on a reduced number of solutions of the physical model obtained on the fly.The parsimonious exploration of the parameter space coupled with the compact tensor train representation allows to alleviate the curse of dimensionality.The approach accommodates particularly well to models involving many parameters defined over large domains.The numerical results on nonlinear elasto-viscoplastic laws show that compact surrogate models in terms of memory storage that accurately predict multiple time dependent mechanical variables can be obtained at a low computational cost.The real-time response provided by the surrogate model for any parameter value allows the implementation of decision-making tools that are particularly interesting for experts in the context of parametric studies and aim at improving the procedure of calibration of material laws
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Brachat, Jérôme. „Schémas de Hilbert et décomposition de tenseurs“. Nice, 2011. http://www.theses.fr/2011NICE4033.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Brachat, Jerome. „Schémas de Hilbert et décompositions de tenseurs“. Phd thesis, Université de Nice Sophia-Antipolis, 2011. http://tel.archives-ouvertes.fr/tel-00620047.

Der volle Inhalt der Quelle
Annotation:
Cette thèse est constituée de deux parties. La première regroupe les chapitres 2 et 3 et traite du schéma de Hilbert. Ces chapitres correspondent respectivement à des travaux en collaboration avec M.E. Alonso et B. Mourrain : [3] et avec P. Lella, B. Mourrain et M. Roggero : [10]. Nous nous intéresserons aux équations qui le définissent comme sous-schéma fermé de la grassmannienne et plus précisément à leur degré. Nous fournirons ainsi de nouvelles équations globales, plus simples que celles qui existent déjà. Le chapitre 2 se concentre sur le cas des polynômes de Hilbert constants égaux à μ. Après avoir rappelé les définitions et propriétés élémen- μ taires du foncteur de Hilbert associé à μ, noté HilbPn , nous montrerons que celui-ci est représentable. Nous adopterons pour cela une approche locale et construirons un recouvrement ouvert de sous-foncteurs représen- tables, dont les équations correspondent aux relations de commutation qui caractérisent les bases de bord. Son représentant s'appelle le schéma de Hilbert associé à μ, noté Hilbμ(Pn). Nous fournirons ensuite, grâce aux théorèmes de Persistance et de Régularité de Gotzmann, une description globale de ce schéma. Nous donne- rons un système d'équations homogènes de degré 2 en les coordonnées de Plücker qui caractérise Hilbμ(Pn) comme sous-schéma fermé de la Grassmannienne. Nous conclurons ce chapitre par une étude du plan tangent au schéma de hilbert en exploitant l'approche locale et les relations de commutation précédemment introduites. Le chapitre 3 traite le cas général du schéma de Hilbert associé à un polynôme P de degré d ≥ 0, noté HilbP (Pn). Nous généraliserons le chapitre précédent en fournissant des équations globales homogènes de degré d + 2 en les coordonnées de Plücker. La deuxième partie de cette thèse concerne la décomposition de tenseurs, chapitre 4. Nous commencerons par étudier le cas symétrique, qui correspond à l'article [9] en collaboration avec P. Comon, B. Mourrain et E. Tsi- garidas. Nous étendrons pour cela l'algorithme de Sylvester proposé pour le cas binaire. Nous utiliserons une approche duale et fournirons des conditions nécessaires et suffisantes pour l'existence d'une décomposition de rang donné, en utilisant les opérateurs de Hankel. Nous en déduirons un algorithme pour le cas symétrique. Nous aborderons aussi la question de l'unicité de la décomposition minimale. Enfin, nous conclurons en étu- diant le cas des tenseurs généraux qui correspond à un article en collaboration avec A. Bernardi, P. Comon et B. Mourrain : [6]. Nous montrerons en particulier comment le formalisme introduit pour le cas symétrique peut s'adapter pour résoudre le problème.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Harmouch, Jouhayna. „Décomposition de petit rang, problèmes de complétion et applications : décomposition de matrices de Hankel et des tenseurs de rang faible“. Thesis, Université Côte d'Azur (ComUE), 2018. http://www.theses.fr/2018AZUR4236/document.

Der volle Inhalt der Quelle
Annotation:
On étudie la décomposition de matrice de Hankel comme une somme des matrices de Hankel de rang faible en corrélation avec la décomposition de son symbole σ comme une somme des séries exponentielles polynomiales. On présente un nouvel algorithme qui calcule la décomposition d’un opérateur de Hankel de petit rang et sa décomposition de son symbole en exploitant les propriétés de l’algèbre quotient de Gorenstein . La base de est calculée à partir la décomposition en valeurs singuliers d’une sous-matrice de matrice de Hankel . Les fréquences et les poids se déduisent des vecteurs propres généralisés des sous matrices de Hankel déplacés de . On présente une formule pour calculer les poids en fonction des vecteurs propres généralisés au lieu de résoudre un système de Vandermonde. Cette nouvelle méthode est une généralisation de Pencil méthode déjà utilisée pour résoudre un problème de décomposition de type de Prony. On analyse son comportement numérique en présence des moments contaminés et on décrit une technique de redimensionnement qui améliore la qualité numérique des fréquences d’une grande amplitude. On présente une nouvelle technique de Newton qui converge localement vers la matrice de Hankel de rang faible la plus proche au matrice initiale et on montre son effet à corriger les erreurs sur les moments. On étudie la décomposition d’un tenseur multi-symétrique T comme une somme des puissances de produit des formes linéaires en corrélation avec la décomposition de son dual comme une somme pondérée des évaluations. On utilise les propriétés de l’algèbre de Gorenstein associée pour calculer la décomposition de son dual qui est définie à partir d’une série formelle τ. On utilise la décomposition d’un opérateur de Hankel de rang faible associé au symbole τ comme une somme des opérateurs indécomposables de rang faible. La base d’ est choisie de façon que la multiplication par certains variables soit possible. On calcule les coordonnées des points et leurs poids correspondants à partir la structure propre des matrices de multiplication. Ce nouvel algorithme qu’on propose marche bien pour les matrices de Hankel de rang faible. On propose une approche théorique de la méthode dans un espace de dimension n. On donne un exemple numérique de la décomposition d’un tenseur multilinéaire de rang 3 en dimension 3 et un autre exemple de la décomposition d’un tenseur multi-symétrique de rang 3 en dimension 3. On étudie le problème de complétion de matrice de Hankel comme un problème de minimisation. On utilise la relaxation du problème basé sur la minimisation de la norme nucléaire de la matrice de Hankel. On adapte le SVT algorithme pour le cas d’une matrice de Hankel et on calcule l’opérateur linéaire qui décrit les contraintes du problème de minimisation de norme nucléaire. On montre l’utilité du problème de décomposition à dissocier un modèle statistique ou biologique
We study the decomposition of a multivariate Hankel matrix as a sum of Hankel matrices of small rank in correlation with the decomposition of its symbol σ as a sum of polynomialexponential series. We present a new algorithm to compute the low rank decomposition of the Hankel operator and the decomposition of its symbol exploiting the properties of the associated Artinian Gorenstein quotient algebra . A basis of is computed from the Singular Value Decomposition of a sub-matrix of the Hankel matrix . The frequencies and the weights are deduced from the generalized eigenvectors of pencils of shifted sub-matrices of Explicit formula for the weights in terms of the eigenvectors avoid us to solve a Vandermonde system. This new method is a multivariate generalization of the so-called Pencil method for solving Pronytype decomposition problems. We analyse its numerical behaviour in the presence of noisy input moments, and describe a rescaling technique which improves the numerical quality of the reconstruction for frequencies of high amplitudes. We also present a new Newton iteration, which converges locally to the closest multivariate Hankel matrix of low rank and show its impact for correcting errors on input moments. We study the decomposition of a multi-symmetric tensor T as a sum of powers of product of linear forms in correlation with the decomposition of its dual as a weighted sum of evaluations. We use the properties of the associated Artinian Gorenstein Algebra to compute the decomposition of its dual which is defined via a formal power series τ. We use the low rank decomposition of the Hankel operator associated to the symbol τ into a sum of indecomposable operators of low rank. A basis of is chosen such that the multiplication by some variables is possible. We compute the sub-coordinates of the evaluation points and their weights using the eigen-structure of multiplication matrices. The new algorithm that we propose works for small rank. We give a theoretical generalized approach of the method in n dimensional space. We show a numerical example of the decomposition of a multi-linear tensor of rank 3 in 3 dimensional space. We show a numerical example of the decomposition of a multi-symmetric tensor of rank 3 in 3 dimensional space. We study the completion problem of the low rank Hankel matrix as a minimization problem. We use the relaxation of it as a minimization problem of the nuclear norm of Hankel matrix. We adapt the SVT algorithm to the case of Hankel matrix and we compute the linear operator which describes the constraints of the problem and its adjoint. We try to show the utility of the decomposition algorithm in some applications such that the LDA model and the ODF model
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Royer, Jean-Philip. „Identification aveugle de mélanges et décomposition canonique de tenseurs : application à l'analyse de l'eau“. Phd thesis, Université Nice Sophia Antipolis, 2013. http://tel.archives-ouvertes.fr/tel-00933819.

Der volle Inhalt der Quelle
Annotation:
Dans cette thèse, nous nous focalisons sur le problème de la décomposition polyadique minimale de tenseurs de dimension trois, problème auquel on se réfère généralement sous différentes terminologies : " Polyadique Canonique " (CP en anglais), " CanDecomp ", ou encore " Parafac ". Cette décomposition s'avère très utile dans un très large panel d'applications. Cependant, nous nous concentrons ici sur la spectroscopie de fluorescence appliquée à des données environnementales particulières de type échantillons d'eau qui pourront avoir été collectés en divers endroits ou différents moments. Ils contiennent un mélange de plusieurs molécules organiques et l'objectif des traitements numériques mis en œuvre est de parvenir à séparer et à ré-estimer ces composés présents dans les échantillons étudiés. Par ailleurs, dans plusieurs applications comme l'imagerie hyperspectrale ou justement, la chimiométrie, il est intéressant de contraindre les matrices de facteurs recherchées à être réelles et non négatives car elles sont représentatives de quantités physiques réelles non négatives (spectres, fractions d'abondance, concentrations, ...etc.). C'est pourquoi tous les algorithmes développés durant cette thèse l'ont été dans ce cadre (l'avantage majeur de cette contrainte étant de rendre le problème d'approximation considéré bien posé). Certains de ces algorithmes reposent sur l'utilisation de méthodes proches des fonctions barrières, d'autres approches consistent à paramétrer directement les matrices de facteurs recherchées par des carrés.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Traoré, Abraham. „Contribution à la décomposition de données multimodales avec des applications en apprentisage de dictionnaires et la décomposition de tenseurs de grande taille“. Thesis, Normandie, 2019. http://www.theses.fr/2019NORMR068/document.

Der volle Inhalt der Quelle
Annotation:
Dans ce travail, on s'intéresse à des outils mathématiques spéciaux appelés tenseurs qui sont formellement définis comme des tableaux multidimensionnels définis sur le produit tensoriel d'espaces vectoriels (chaque espace vectoriel étant muni de son système de coordonnées), le nombre d'espaces vectoriels impliqués dans ce produit étant l'ordre du tenseur. L'intérêt pour les tenseurs est motivé par certains travaux expérimentaux qui ont prouvé, dans divers contextes, que traiter des données multidimensionnelles avec des tenseurs plutôt que des matrices donne un meilleur résultat aussi bien pour des tâches de régression que de classification. Dans le cadre de la thèse, nous nous sommes focalisés sur une décomposition dite de Tucker et avons mis en place une méthode pour l'apprentissage de dictionnaires, une technique pour l'apprentissage en ligne de dictionnaires, une approche pour la décomposition d'un tenseur de grandes tailles et enfin une méthodologie pour la décomposition d'un tenseur qui croît par rapport à tous les modes. De nouveaux résultats théoriques concernant la convergence et la vitesse de convergence sont établis et l'efficacité des algorithmes proposés, reposant soit sur la minimisation alternée, soit sur la descente de gradients par coordonnées, est démontrée sur des problèmes réels
In this work, we are interested in special mathematical tools called tensors, that are multidimensional arrays defined on tensor product of some vector spaces, each of which has its own coordinate system and the number of spaces involved in this product is generally referred to as order. The interest for these tools stem from some empirical works (for a range of applications encompassing both classification and regression) that prove the superiority of tensor processing with respect to matrix decomposition techniques. In this thesis framework, we focused on specific tensor model named Tucker and established new approaches for miscellaneous tasks such as dictionary learning, online dictionary learning, large-scale processing as well as the decomposition of a tensor evolving with respect to each of its modes. New theoretical results are established and the efficiency of the different algorithms, which are based either on alternate minimization or coordinate gradient descent, is proven via real-world problems
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Lestandi, Lucas. „Approximations de rang faible et modèles d'ordre réduit appliqués à quelques problèmes de la mécanique des fluides“. Thesis, Bordeaux, 2018. http://www.theses.fr/2018BORD0186/document.

Der volle Inhalt der Quelle
Annotation:
Les dernières décennies ont donné lieux à d'énormes progrès dans la simulation numérique des phénomènes physiques. D'une part grâce au raffinement des méthodes de discrétisation des équations aux dérivées partielles. Et d'autre part grâce à l'explosion de la puissance de calcul disponible. Pourtant, de nombreux problèmes soulevés en ingénierie tels que les simulations multi-physiques, les problèmes d'optimisation et de contrôle restent souvent hors de portée. Le dénominateur commun de ces problèmes est le fléau des dimensions. Un simple problème tridimensionnel requiert des centaines de millions de points de discrétisation auxquels il faut souvent ajouter des milliers de pas de temps pour capturer des dynamiques complexes. L'avènement des supercalculateurs permet de générer des simulations de plus en plus fines au prix de données gigantesques qui sont régulièrement de l'ordre du pétaoctet. Malgré tout, cela n'autorise pas une résolution ``exacte'' des problèmes requérant l'utilisation de plusieurs paramètres. L'une des voies envisagées pour résoudre ces difficultés est de proposer des représentations ne souffrant plus du fléau de la dimension. Ces représentations que l'on appelle séparées sont en fait un changement de paradigme. Elles vont convertir des objets tensoriels dont la croissance est exponentielle $n^d$ en fonction du nombre de dimensions $d$ en une représentation approchée dont la taille est linéaire en $d$. Pour le traitement des données tensorielles, une vaste littérature a émergé ces dernières années dans le domaine des mathématiques appliquées.Afin de faciliter leurs utilisations dans la communauté des mécaniciens et en particulier pour la simulation en mécanique des fluides, ce manuscrit présente dans un vocabulaire rigoureux mais accessible les formats de représentation des tenseurs et propose une étude détaillée des algorithmes de décomposition de données qui y sont associées. L'accent est porté sur l'utilisation de ces méthodes, aussi la bibliothèque de calcul texttt{pydecomp} développée est utilisée pour comparer l'efficacité de ces méthodes sur un ensemble de cas qui se veut représentatif. La seconde partie de ce manuscrit met en avant l'étude de l'écoulement dans une cavité entraînée à haut nombre de Reynolds. Cet écoulement propose une physique très riche (séquence de bifurcation de Hopf) qui doit être étudiée en amont de la construction de modèle réduit. Cette étude est enrichie par l'utilisation de la décomposition orthogonale aux valeurs propres (POD). Enfin une approche de construction ``physique'', qui diffère notablement des développements récents pour les modèles d'ordre réduit, est proposée. La connaissance détaillée de l'écoulement permet de construire un modèle réduit simple basé sur la mise à l'échelle des fréquences d'oscillation (time-scaling) et des techniques d'interpolation classiques (Lagrange,..)
Numerical simulation has experienced tremendous improvements in the last decadesdriven by massive growth of computing power. Exascale computing has beenachieved this year and will allow solving ever more complex problems. But suchlarge systems produce colossal amounts of data which leads to its own difficulties.Moreover, many engineering problems such as multiphysics or optimisation andcontrol, require far more power that any computer architecture could achievewithin the current scientific computing paradigm. In this thesis, we proposeto shift the paradigm in order to break the curse of dimensionality byintroducing decomposition and building reduced order models (ROM) for complexfluid flows.This manuscript is organized into two parts. The first one proposes an extendedreview of data reduction techniques and intends to bridge between appliedmathematics community and the computational mechanics one. Thus, foundingbivariate separation is studied, including discussions on the equivalence ofproper orthogonal decomposition (POD, continuous framework) and singular valuedecomposition (SVD, discrete matrices). Then a wide review of tensor formats andtheir approximation is proposed. Such work has already been provided in theliterature but either on separate papers or into a purely applied mathematicsframework. Here, we offer to the data enthusiast scientist a comparison ofCanonical, Tucker, Hierarchical and Tensor train formats including theirapproximation algorithms. Their relative benefits are studied both theoreticallyand numerically thanks to the python library texttt{pydecomp} that wasdeveloped during this thesis. A careful analysis of the link between continuousand discrete methods is performed. Finally, we conclude that for mostapplications ST-HOSVD is best when the number of dimensions $d$ lower than fourand TT-SVD (or their POD equivalent) when $d$ grows larger.The second part is centered on a complex fluid dynamics flow, in particular thesingular lid driven cavity at high Reynolds number. This flow exhibits a seriesof Hopf bifurcation which are known to be hard to capture accurately which iswhy a detailed analysis was performed both with classical tools and POD. Oncethis flow has been characterized, emph{time-scaling}, a new ``physics based''interpolation ROM is presented on internal and external flows. This methodsgives encouraging results while excluding recent advanced developments in thearea such as EIM or Grassmann manifold interpolation
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

André, Rémi. „Algorithmes de diagonalisation conjointe par similitude pour la décomposition canonique polyadique de tenseurs : applications en séparation de sources“. Thesis, Toulon, 2018. http://www.theses.fr/2018TOUL0011/document.

Der volle Inhalt der Quelle
Annotation:
Cette thèse présente de nouveaux algorithmes de diagonalisation conjointe par similitude. Cesalgorithmes permettent, entre autres, de résoudre le problème de décomposition canonique polyadiquede tenseurs. Cette décomposition est particulièrement utilisée dans les problèmes deséparation de sources. L’utilisation de la diagonalisation conjointe par similitude permet de paliercertains problèmes dont les autres types de méthode de décomposition canonique polyadiquesouffrent, tels que le taux de convergence, la sensibilité à la surestimation du nombre de facteurset la sensibilité aux facteurs corrélés. Les algorithmes de diagonalisation conjointe par similitudetraitant des données complexes donnent soit de bons résultats lorsque le niveau de bruit est faible,soit sont plus robustes au bruit mais ont un coût calcul élevé. Nous proposons donc en premierlieu des algorithmes de diagonalisation conjointe par similitude traitant les données réelles etcomplexes de la même manière. Par ailleurs, dans plusieurs applications, les matrices facteursde la décomposition canonique polyadique contiennent des éléments exclusivement non-négatifs.Prendre en compte cette contrainte de non-négativité permet de rendre les algorithmes de décompositioncanonique polyadique plus robustes à la surestimation du nombre de facteurs ou lorsqueces derniers ont un haut degré de corrélation. Nous proposons donc aussi des algorithmes dediagonalisation conjointe par similitude exploitant cette contrainte. Les simulations numériquesproposées montrent que le premier type d’algorithmes développés améliore l’estimation des paramètresinconnus et diminue le coût de calcul. Les simulations numériques montrent aussi queles algorithmes avec contrainte de non-négativité améliorent l’estimation des matrices facteurslorsque leurs colonnes ont un haut degré de corrélation. Enfin, nos résultats sont validés à traversdeux applications de séparation de sources en télécommunications numériques et en spectroscopiede fluorescence
This thesis introduces new joint eigenvalue decomposition algorithms. These algorithms allowamongst others to solve the canonical polyadic decomposition problem. This decomposition iswidely used for blind source separation. Using the joint eigenvalue decomposition to solve thecanonical polyadic decomposition problem allows to avoid some problems whose the others canonicalpolyadic decomposition algorithms generally suffer, such as the convergence rate, theoverfactoring sensibility and the correlated factors sensibility. The joint eigenvalue decompositionalgorithms dealing with complex data give either good results when the noise power is low, orthey are robust to the noise power but have a high numerical cost. Therefore, we first proposealgorithms equally dealing with real and complex. Moreover, in some applications, factor matricesof the canonical polyadic decomposition contain only nonnegative values. Taking this constraintinto account makes the algorithms more robust to the overfactoring and to the correlated factors.Therefore, we also offer joint eigenvalue decomposition algorithms taking advantage of thisnonnegativity constraint. Suggested numerical simulations show that the first developed algorithmsimprove the estimation accuracy and reduce the numerical cost in the case of complexdata. Our numerical simulations also highlight the fact that our nonnegative joint eigenvaluedecomposition algorithms improve the factor matrices estimation when their columns have ahigh correlation degree. Eventually, we successfully applied our algorithms to two blind sourceseparation problems : one concerning numerical telecommunications and the other concerningfluorescence spectroscopy
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Nguyen, Viet-Dung. „Contribution aux décompositions rapides des matrices et tenseurs“. Thesis, Orléans, 2016. http://www.theses.fr/2016ORLE2085/document.

Der volle Inhalt der Quelle
Annotation:
De nos jours, les grandes masses de données se retrouvent dans de nombreux domaines relatifs aux applications multimédia, sociologiques, biomédicales, radio astronomiques, etc. On parle alors du phénomène ‘Big Data’ qui nécessite le développement d’outils appropriés pour la manipulation et l’analyse appropriée de telles masses de données. Ce travail de thèse est dédié au développement de méthodes efficaces pour la décomposition rapide et adaptative de tenseurs ou matrices de grandes tailles et ce pour l’analyse de données multidimensionnelles. Nous proposons en premier une méthode d’estimation de sous espaces qui s’appuie sur la technique dite ‘divide and conquer’ permettant une estimation distribuée ou parallèle des sous-espaces désirés. Après avoir démontré l’efficacité numérique de cette solution, nous introduisons différentes variantes de celle-ci pour la poursuite adaptative ou bloc des sous espaces principaux ou mineurs ainsi que des vecteurs propres de la matrice de covariance des données. Une application à la suppression d’interférences radiofréquences en radioastronomie a été traitée. La seconde partie du travail a été consacrée aux décompositions rapides de type PARAFAC ou Tucker de tenseurs multidimensionnels. Nous commençons par généraliser l’approche ‘divide and conquer’ précédente au contexte tensoriel et ce en vue de la décomposition PARAFAC parallélisable des tenseurs. Ensuite nous adaptons une technique d’optimisation de type ‘all-at-once’ pour la décomposition robuste (à la méconnaissance des ordres) de tenseurs parcimonieux et non négatifs. Finalement, nous considérons le cas de flux de données continu et proposons deux algorithmes adaptatifs pour la décomposition rapide (à complexité linéaire) de tenseurs en dimension 3. Malgré leurs faibles complexités, ces algorithmes ont des performances similaires (voire parfois supérieures) à celles des méthodes existantes de la littérature. Au final, ce travail aboutit à un ensemble d’outils algorithmiques et algébriques efficaces pour la manipulation et l’analyse de données multidimensionnelles de grandes tailles
Large volumes of data are being generated at any given time, especially from transactional databases, multimedia content, social media, and applications of sensor networks. When the size of datasets is beyond the ability of typical database software tools to capture, store, manage, and analyze, we face the phenomenon of big data for which new and smarter data analytic tools are required. Big data provides opportunities for new form of data analytics, resulting in substantial productivity. In this thesis, we will explore fast matrix and tensor decompositions as computational tools to process and analyze multidimensional massive-data. We first aim to study fast subspace estimation, a specific technique used in matrix decomposition. Traditional subspace estimation yields high performance but suffers from processing large-scale data. We thus propose distributed/parallel subspace estimation following a divide-and-conquer approach in both batch and adaptive settings. Based on this technique, we further consider its important variants such as principal component analysis, minor and principal subspace tracking and principal eigenvector tracking. We demonstrate the potential of our proposed algorithms by solving the challenging radio frequency interference (RFI) mitigation problem in radio astronomy. In the second part, we concentrate on fast tensor decomposition, a natural extension of the matrix one. We generalize the results for the matrix case to make PARAFAC tensor decomposition parallelizable in batch setting. Then we adapt all-at-once optimization approach to consider sparse non-negative PARAFAC and Tucker decomposition with unknown tensor rank. Finally, we propose two PARAFAC decomposition algorithms for a classof third-order tensors that have one dimension growing linearly with time. The proposed algorithms have linear complexity, good convergence rate and good estimation accuracy. The results in a standard setting show that the performance of our proposed algorithms is comparable or even superior to the state-of-the-art algorithms. We also introduce an adaptive nonnegative PARAFAC problem and refine the solution of adaptive PARAFAC to tackle it. The main contributions of this thesis, as new tools to allow fast handling large-scale multidimensional data, thus bring a step forward real-time applications
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Zniyed, Yassine. „Breaking the curse of dimensionality based on tensor train : models and algorithms“. Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLS330.

Der volle Inhalt der Quelle
Annotation:
Le traitement des données massives, communément connu sous l’appellation “Big Data”, constitue l’un des principaux défis scientifiques de la communauté STIC.Plusieurs domaines, à savoir économique, industriel ou scientifique, produisent des données hétérogènes acquises selon des protocoles technologiques multi-modales. Traiter indépendamment chaque ensemble de données mesurées est clairement une approche réductrice et insatisfaisante. En faisant cela, des “relations cachées” ou des inter-corrélations entre les données peuvent être totalement ignorées.Les représentations tensorielles ont reçu une attention particulière dans ce sens en raison de leur capacité à extraire de données hétérogènes et volumineuses une information physiquement interprétable confinée à un sous-espace de dimension réduite. Dans ce cas, les données peuvent être organisées selon un tableau à D dimensions, aussi appelé tenseur d’ordre D.Dans ce contexte, le but de ce travail et que certaines propriétés soient présentes : (i) avoir des algorithmes de factorisation stables (ne souffrant pas de probème de convergence), (ii) avoir un faible coût de stockage (c’est-à-dire que le nombre de paramètres libres doit être linéaire en D), et (iii) avoir un formalisme sous forme de graphe permettant une visualisation mentale simple mais rigoureuse des décompositions tensorielles de tenseurs d’ordre élevé, soit pour D > 3.Par conséquent, nous nous appuyons sur la décomposition en train de tenseurs (TT) pour élaborer de nouveaux algorithmes de factorisation TT, et des nouvelles équivalences en termes de modélisation tensorielle, permettant une nouvelle stratégie de réduction de dimensionnalité et d'optimisation de critère des moindres carrés couplés pour l'estimation des paramètres d'intérêts nommé JIRAFE.Ces travaux d'ordre méthodologique ont eu des applications dans le contexte de l'analyse spectrale multidimensionelle et des systèmes de télécommunications à relais
Massive and heterogeneous data processing and analysis have been clearly identified by the scientific community as key problems in several application areas. It was popularized under the generic terms of "data science" or "big data". Processing large volumes of data, extracting their hidden patterns, while preforming prediction and inference tasks has become crucial in economy, industry and science.Treating independently each set of measured data is clearly a reductiveapproach. By doing that, "hidden relationships" or inter-correlations between thedatasets may be totally missed. Tensor decompositions have received a particular attention recently due to their capability to handle a variety of mining tasks applied to massive datasets, being a pertinent framework taking into account the heterogeneity and multi-modality of the data. In this case, data can be arranged as a D-dimensional array, also referred to as a D-order tensor.In this context, the purpose of this work is that the following properties are present: (i) having a stable factorization algorithms (not suffering from convergence problems), (ii) having a low storage cost (i.e., the number of free parameters must be linear in D), and (iii) having a formalism in the form of a graph allowing a simple but rigorous mental visualization of tensor decompositions of tensors of high order, i.e., for D> 3.Therefore, we rely on the tensor train decomposition (TT) to develop new TT factorization algorithms, and new equivalences in terms of tensor modeling, allowing a new strategy of dimensionality reduction and criterion optimization of coupled least squares for the estimation of parameters named JIRAFE.This methodological work has had applications in the context of multidimensional spectral analysis and relay telecommunications systems
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Goulart, José Henrique De Morais. „Estimation de modèles tensoriels structurés et récupération de tenseurs de rang faible“. Thesis, Université Côte d'Azur (ComUE), 2016. http://www.theses.fr/2016AZUR4147/document.

Der volle Inhalt der Quelle
Annotation:
Dans la première partie de cette thèse, on formule deux méthodes pour le calcul d'une décomposition polyadique canonique avec facteurs matriciels linéairement structurés (tels que des facteurs de Toeplitz ou en bande): un algorithme de moindres carrés alternés contraint (CALS) et une solution algébrique dans le cas où tous les facteurs sont circulants. Des versions exacte et approchée de la première méthode sont étudiées. La deuxième méthode fait appel à la transformée de Fourier multidimensionnelle du tenseur considéré, ce qui conduit à la résolution d'un système d'équations monomiales homogènes. Nos simulations montrent que la combinaison de ces approches fournit un estimateur statistiquement efficace, ce qui reste vrai pour d'autres combinaisons de CALS dans des scénarios impliquant des facteurs non-circulants. La seconde partie de la thèse porte sur la récupération de tenseurs de rang faible et, en particulier, sur le problème de reconstruction tensorielle (TC). On propose un algorithme efficace, noté SeMPIHT, qui emploie des projections séquentiellement optimales par mode comme opérateur de seuillage dur. Une borne de performance est dérivée sous des conditions d'isométrie restreinte habituelles, ce qui fournit des bornes d'échantillonnage sous-optimales. Cependant, nos simulations suggèrent que SeMPIHT obéit à des bornes optimales pour des mesures Gaussiennes. Des heuristiques de sélection du pas et d'augmentation graduelle du rang sont aussi élaborées dans le but d'améliorer sa performance. On propose aussi un schéma d'imputation pour TC basé sur un seuillage doux du coeur du modèle de Tucker et son utilité est illustrée avec des données réelles de trafic routier
In the first part of this thesis, we formulate two methods for computing a canonical polyadic decomposition having linearly structured matrix factors (such as, e.g., Toeplitz or banded factors): a general constrained alternating least squares (CALS) algorithm and an algebraic solution for the case where all factors are circulant. Exact and approximate versions of the former method are studied. The latter method relies on a multidimensional discrete-time Fourier transform of the target tensor, which leads to a system of homogeneous monomial equations whose resolution provides the desired circulant factors. Our simulations show that combining these approaches yields a statistically efficient estimator, which is also true for other combinations of CALS in scenarios involving non-circulant factors. The second part of the thesis concerns low-rank tensor recovery (LRTR) and, in particular, the tensor completion (TC) problem. We propose an efficient algorithm, called SeMPIHT, employing sequentially optimal modal projections as its hard thresholding operator. Then, a performance bound is derived under usual restricted isometry conditions, which however yield suboptimal sampling bounds. Yet, our simulations suggest SeMPIHT obeys optimal sampling bounds for Gaussian measurements. Step size selection and gradual rank increase heuristics are also elaborated in order to improve performance. We also devise an imputation scheme for TC based on soft thresholding of a Tucker model core and illustrate its utility in completing real-world road traffic data acquired by an intelligent transportation
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Maurandi, Victor. „Algorithmes pour la diagonalisation conjointe de tenseurs sans contrainte unitaire. Application à la séparation MIMO de sources de télécommunications numériques“. Thesis, Toulon, 2015. http://www.theses.fr/2015TOUL0009/document.

Der volle Inhalt der Quelle
Annotation:
Cette thèse développe des méthodes de diagonalisation conjointe de matrices et de tenseurs d’ordre trois, et son application à la séparation MIMO de sources de télécommunications numériques. Après un état, les motivations et objectifs de la thèse sont présentés. Les problèmes de la diagonalisation conjointe et de la séparation de sources sont définis et un lien entre ces deux domaines est établi. Par la suite, plusieurs algorithmes itératifs de type Jacobi reposant sur une paramétrisation LU sont développés. Pour chacun des algorithmes, on propose de déterminer les matrices permettant de diagonaliser l’ensemble considéré par l’optimisation d’un critère inverse. On envisage la minimisation du critère selon deux approches : la première, de manière directe, et la seconde, en supposant que les éléments de l’ensemble considéré sont quasiment diagonaux. En ce qui concerne l’estimation des différents paramètres du problème, deux stratégies sont mises en œuvre : l’une consistant à estimer tous les paramètres indépendamment et l’autre reposant sur l’estimation indépendante de couples de paramètres spécifiquement choisis. Ainsi, nous proposons trois algorithmes pour la diagonalisation conjointe de matrices complexes symétriques ou hermitiennes et deux algorithmes pour la diagonalisation conjointe d’ensembles de tenseurs symétriques ou non-symétriques ou admettant une décomposition INDSCAL. Nous montrons aussi le lien existant entre la diagonalisation conjointe de tenseurs d’ordre trois et la décomposition canonique polyadique d’un tenseur d’ordre quatre, puis nous comparons les algorithmes développés à différentes méthodes de la littérature. Le bon comportement des algorithmes proposés est illustré au moyen de simulations numériques. Puis, ils sont validés dans le cadre de la séparation de sources de télécommunications numériques
This thesis develops joint diagonalization of matrices and third-order tensors methods for MIMO source separation in the field of digital telecommunications. After a state of the art, the motivations and the objectives are presented. Then the joint diagonalisation and the blind source separation issues are defined and a link between both fields is established. Thereafter, five Jacobi-like iterative algorithms based on an LU parameterization are developed. For each of them, we propose to derive the diagonalization matrix by optimizing an inverse criterion. Two ways are investigated : minimizing the criterion in a direct way or assuming that the elements from the considered set are almost diagonal. Regarding the parameters derivation, two strategies are implemented : one consists in estimating each parameter independently, the other consists in the independent derivation of couple of well-chosen parameters. Hence, we propose three algorithms for the joint diagonalization of symmetric complex matrices or hermitian ones. The first one relies on searching for the roots of the criterion derivative, the second one relies on a minor eigenvector research and the last one relies on a gradient descent method enhanced by computation of the optimal adaptation step. In the framework of joint diagonalization of symmetric, INDSCAL or non symmetric third-order tensors, we have developed two algorithms. For each of them, the parameters derivation is done by computing the roots of the considered criterion derivative. We also show the link between the joint diagonalization of a third-order tensor set and the canonical polyadic decomposition of a fourth-order tensor. We confront both methods through numerical simulations. The good behavior of the proposed algorithms is illustrated by means of computing simulations. Finally, they are applied to the source separation of digital telecommunication signals
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Giraldi, Loïc. „Contributions aux méthodes de calcul basées sur l'approximation de tenseurs et applications en mécanique numérique“. Phd thesis, Ecole centrale de nantes - ECN, 2012. http://tel.archives-ouvertes.fr/tel-00861986.

Der volle Inhalt der Quelle
Annotation:
Cette thèse apporte différentes contributions à la résolution de problèmes de grande dimension dans le domaine du calcul scientifique, en particulier pour la quantification d'incertitudes. On considère ici des problèmes variationnels formulés dans des espaces produit tensoriel. On propose tout d'abord une stratégie de préconditionnement efficace pour la résolution de systèmes linéaires par des méthodes itératives utilisant des approximations de tenseurs de faible rang. Le préconditionneur est recherché comme une approximation de faible rang de l'inverse. Un algorithme glouton permet le calcul de cette approximation en imposant éventuellement des propriétés de symétrie ou un caractère creux. Ce préconditionneur est validé sur des problèmes linéaires symétriques ou non symétriques. Des contributions sont également apportées dans le cadre des méthodes d'approximation directes de tenseurs qui consistent à rechercher la meilleure approximation de la solution d'une équation dans un ensemble de tenseurs de faibles rangs. Ces méthodes, parfois appelées "Proper Generalized Decomposition" (PGD), définissent l'optimalité au sens de normes adaptées permettant le calcul a priori de cette approximation. On propose en particulier une extension des algorithmes gloutons classiquement utilisés pour la construction d'approximations dans les ensembles de tenseurs de Tucker ou hiérarchiques de Tucker. Ceci passe par la construction de corrections successives de rang un et de stratégies de mise à jour dans ces ensembles de tenseurs. L'algorithme proposé peut être interprété comme une méthode de construction d'une suite croissante d'espaces réduits dans lesquels on recherche une projection, éventuellement approchée, de la solution. L'application à des problèmes symétriques et non symétriques montre l'efficacité de cet algorithme. Le préconditionneur proposé est appliqué également dans ce contexte et permet de définir une meilleure norme pour l'approximation de la solution. On propose finalement une application de ces méthodes dans le cadre de l'homogénéisation numérique de matériaux hétérogènes dont la géométrie est extraite d'images. On présente tout d'abord des traitements particuliers de la géométrie ainsi que des conditions aux limites pour mettre le problème sous une forme adaptée à l'utilisation des méthodes d'approximation de tenseurs. Une démarche d'approximation adaptative basée sur un estimateur d'erreur a posteriori est utilisée afin de garantir une précision donnée sur les quantités d'intérêt que sont les propriétés effectives. La méthodologie est en premier lieu développée pour l'estimation de propriétés thermiques du matériau, puis est étendue à l'élasticité linéaire.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Bai, Lijie. „Ordonnancement des trains dans une gare complexe et à forte densité de circulation“. Thesis, Ecole centrale de Lille, 2015. http://www.theses.fr/2015ECLI0017/document.

Der volle Inhalt der Quelle
Annotation:
Cette thèse porte sur l'ordonnancement des trains dans les gares complexes en forte densité de circulation. L'objet se situe à la réalisation d'un outil pour aider les managers de la gare à générer un tableau des horaires sans-conflits dans un journée. Le management des circulations ferroviaires dans la gare demande l'ordonnancement soigneux pour adapter les ressources limités, en évitant les conflits entre les trains et satisfaisant l'objectif et les politiques économiques et de la sécurité en même temps. D'après les méthodes appliquées en recherche opérationnelle et les expériences professionnelles, une modèle mathématique applicable aux gares différentes est construit pour formaliser le problème de l'ordonnancement des trains contenant la topologie de la gare, activités des trains, contraintes de planification et objectives. Comme un problème à grande échelle, l'ordonnancement des trains dans un journée est décomposé en sous-problèmes traitables dans l'ordre du temps par sliding window algorithme accumulé. Chaque sous-problème est résolu par branch-and-bound de CPLEX. Afin d'accélérer le calcul des sous-problèmes, tri-level optimisation méthode est construit pour offrir une solution optimale locale dans un temps de calcul assez court. Cette solution est donnée à branch-and-bound comme une solution initiale.Ce système consiste à vérifier la faisabilité des horaires donnés à la gare. Les trains avec les conflits insolvables sont retournés à l'origine de ces trains avec les modifications des heures proposées. Déviations des trains commerciaux sont minimisées pour diminuer la propagation du délai dans le réseau ferroviaire
This thesis focuses on the trains platforming problem within busy and complex railway stations and aims to develop a computerized dispatching support tool for railway station dispatchers to generate a full-day conflict-free timetable. The management of rail traffic in stations requires careful scheduling to fit to the existing infrastructure, while avoiding conflicts between large numbers of trains and satisfying safety or business policy and objectives. Based on operations research techniques and professional railway expertise, we design a generalized mathematical model to formalize the trains platforming problem including topology of railway station, trains' activities, dispatching constraints and objectives. As a large-scale problem, full-day platforming problem is decomposed into tractable sub-problems in time order by cumulative sliding window algorithm. Each sub-problem is solved by branch-and-bound algorithm implemented in CPLEX. To accelerate calculation process of sub-problems, tri-level optimization model is designed to provide a local optimal solution in a rather short time. This local optimum is provided to branch-and bound algorithm as an initial solution.This system is able to verify the feasibility of tentative timetable given to railway station. Trains with unsolvable conflicts will return to their original activity managers with suggestions for the modification of arrival and departure times. Time deviations of commercial trains' activities are minimized to reduce the delay propagation within the whole railway networks
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Luu, Thi Hieu. „Amélioration du modèle de sections efficaces dans le code de cœur COCAGNE de la chaîne de calculs d'EDF“. Thesis, Paris 6, 2017. http://www.theses.fr/2017PA066120/document.

Der volle Inhalt der Quelle
Annotation:
Afin d'exploiter au mieux son parc nucléaire, la R&D d'EDF est en train de développer une nouvelle chaîne de calcul pour simuler le cœur des réacteurs nucléaires avec des outils à l'état de l'art. Ces calculs nécessitent une grande quantité de données physiques, en particulier les sections efficaces. Dans la simulation d'un cœur complet, le nombre de valeurs des sections efficaces est de l'ordre de plusieurs milliards. Ces sections efficaces peuvent être représentées comme des fonctions multivariées dépendant de plusieurs paramètres physiques. La détermination des sections efficaces étant un calcul complexe et long, nous pouvons donc les précalculer en certaines valeurs des paramètres (caluls hors ligne) puis les évaluer en tous points par une interpolation (calculs en ligne). Ce processus demande un modèle de reconstruction des sections efficaces entre les deux étapes. Pour réaliser une simulation plus fidèle du cœur dans la nouvelle chaîne d'EDF, les sections efficaces nécessitent d'être mieux représentées en prenant en compte de nouveaux paramètres. Par ailleurs, la nouvelle chaîne se doit d'être en mesure de calculer le réacteur dans des situations plus larges qu'actuellement. Le modèle d'interpolation multilinéaire pour reconstruire les sections efficaces est celui actuellement utilisé pour répondre à ces objectifs. Néanmoins, avec ce modèle, le nombre de points de discrétisation augmente exponentiellement en fonction du nombre de paramètres ou de manière considérable quand on ajoute des points sur un des axes. Par conséquence, le nombre et le temps des calculs hors ligne ainsi que la taille du stockage des données deviennent problématique. L'objectif de cette thèse est donc de trouver un nouveau modèle pour répondre aux demandes suivantes : (i)-(hors ligne) réduire le nombre de précalculs, (ii)-(hors ligne) réduire le stockage de données pour la reconstruction et (iii)-(en ligne) tout en conservant (ou améliorant) la précision obtenue par l'interpolation multilinéaire. D'un point de vue mathématique, ce problème consiste à approcher des fonctions multivariées à partir de leurs valeurs précalculées. Nous nous sommes basés sur le format de Tucker - une approximation de tenseurs de faible rang afin de proposer un nouveau modèle appelé la décomposition de Tucker . Avec ce modèle, une fonction multivariée est approchée par une combinaison linéaire de produits tensoriels de fonctions d'une variable. Ces fonctions d'une variable sont construites grâce à une technique dite de décomposition en valeurs singulières d'ordre supérieur (une « matricization » combinée à une extension de la décomposition de Karhunen-Loève). L'algorithme dit glouton est utilisé pour constituer les points liés à la résolution des coefficients dans la combinaison de la décomposition de Tucker. Les résultats obtenus montrent que notre modèle satisfait les critères exigés sur la réduction de données ainsi que sur la précision. Avec ce modèle, nous pouvons aussi éliminer a posteriori et à priori les coefficients dans la décomposition de Tucker. Cela nous permet de réduire encore le stockage de données dans les étapes hors ligne sans réduire significativement la précision
In order to optimize the operation of its nuclear power plants, the EDF's R&D department iscurrently developing a new calculation chain to simulate the nuclear reactors core with state of the art tools. These calculations require a large amount of physical data, especially the cross-sections. In the full core simulation, the number of cross-section values is of the order of several billions. These cross-sections can be represented as multivariate functions depending on several physical parameters. The determination of cross-sections is a long and complex calculation, we can therefore pre-compute them in some values of parameters (online calculations), then evaluate them at all desired points by an interpolation (online calculations). This process requires a model of cross-section reconstruction between the two steps. In order to perform a more faithful core simulation in the new EDF's chain, the cross-sections need to be better represented by taking into account new parameters. Moreover, the new chain must be able to calculate the reactor in more extensive situations than the current one. The multilinear interpolation is currently used to reconstruct cross-sections and to meet these goals. However, with this model, the number of points in its discretization increases exponentially as a function of the number of parameters, or significantly when adding points to one of the axes. Consequently, the number and time of online calculations as well as the storage size for this data become problematic. The goal of this thesis is therefore to find a new model in order to respond to the following requirements: (i)-(online) reduce the number of pre-calculations, (ii)-(online) reduce stored data size for the reconstruction and (iii)-(online) maintain (or improve) the accuracy obtained by multilinear interpolation. From a mathematical point of view, this problem involves approaching multivariate functions from their pre-calculated values. We based our research on the Tucker format - a low-rank tensor approximation in order to propose a new model called the Tucker decomposition . With this model, a multivariate function is approximated by a linear combination of tensor products of one-variate functions. These one-variate functions are constructed by a technique called higher-order singular values decomposition (a « matricization » combined with an extension of the Karhunen-Loeve decomposition). The so-called greedy algorithm is used to constitute the points related to the resolution of the coefficients in the combination of the Tucker decomposition. The results obtained show that our model satisfies the criteria required for the reduction of the data as well as the accuracy. With this model, we can eliminate a posteriori and a priori the coefficients in the Tucker decomposition in order to further reduce the data storage in online steps but without reducing significantly the accuracy
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Diop, Mamadou. „Décomposition booléenne des tableaux multi-dimensionnels de données binaires : une approche par modèle de mélange post non-linéaire“. Thesis, Université de Lorraine, 2018. http://www.theses.fr/2018LORR0222/document.

Der volle Inhalt der Quelle
Annotation:
Cette thèse aborde le problème de la décomposition booléenne des tableaux multidimensionnels de données binaires par modèle de mélange post non-linéaire. Dans la première partie, nous introduisons une nouvelle approche pour la factorisation booléenne en matrices binaires (FBMB) fondée sur un modèle de mélange post non-linéaire. Contrairement aux autres méthodes de factorisation de matrices binaires existantes, fondées sur le produit matriciel classique, le modèle proposé est équivalent au modèle booléen de factorisation matricielle lorsque les entrées des facteurs sont exactement binaires et donne des résultats plus interprétables dans le cas de sources binaires corrélées, et des rangs d'approximation matricielle plus faibles. Une condition nécessaire et suffisante d'unicité pour la FBMB est également fournie. Deux algorithmes s'appuyant sur une mise à jour multiplicative sont proposés et illustrés dans des simulations numériques ainsi que sur un jeu de données réelles. La généralisation de cette approche au cas de tableaux multidimensionnels (tenseurs) binaires conduit à la factorisation booléenne de tenseurs binaires (FBTB). La démonstration de la condition nécessaire et suffisante d’unicité de la décomposition booléenne de tenseurs binaires repose sur la notion d'indépendance booléenne d'une famille de vecteurs. L'algorithme multiplicatif fondé sur le modèle de mélange post non-linéaire est étendu au cas multidimensionnel. Nous proposons également un nouvel algorithme, plus efficace, s'appuyant sur une stratégie de type AO-ADMM (Alternating Optimization -ADMM). Ces algorithmes sont comparés à ceux de l'état de l'art sur des données simulées et sur un jeu de données réelles
This work is dedicated to the study of boolean decompositions of binary multidimensional arrays using a post nonlinear mixture model. In the first part, we introduce a new approach for the boolean factorization of binary matrices (BFBM) based on a post nonlinear mixture model. Unlike the existing binary matrix factorization methods, the proposed method is equivalent to the boolean factorization model when the matrices are strictly binary and give thus more interpretable results in the case of correlated sources and lower rank matrix approximations compared to other state-of-the-art algorithms. A necessary and suffi-cient condition for the uniqueness of the BFBM is also provided. Two algorithms based on multiplicative update rules are proposed and tested in numerical simulations, as well as on a real dataset. The gener-alization of this approach to the case of binary multidimensional arrays (tensors) leads to the boolean factorisation of binary tensors (BFBT). The proof of the necessary and sufficient condition for the boolean decomposition of binary tensors is based on a notion of boolean independence of binary vectors. The multiplicative algorithm based on the post nonlinear mixture model is extended to the multidimensional case. We also propose a new algorithm based on an AO-ADMM (Alternating Optimization-ADMM) strategy. These algorithms are compared to state-of-the-art algorithms on simulated and on real data
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Chauvet, Eric. „Une approche de la décomposition de l'EMG de surface : application à la caractérisation des unités motrices et à la localisation des zones d'activités musculaires“. Compiègne, 2003. http://www.theses.fr/2003COMP1483.

Der volle Inhalt der Quelle
Annotation:
Développer une méthodologie en vue d'une investigation non traumatisante du fonctionnement neuromusculaire à partir du signal EMG de surface fait l'objet de cette thèse. Une caractérisation des unités motrices, entités fonctionnelles du muscle, contribue à une exploration approfondie du système neuromusculaire. Une telle investigation implique une identification des trains de potentiel d'action d'unités motrices qui composent le signal enregistré en surface. L'importance des caractéristiques inhérentes à ce type d'approche que sont l'imprécision, la nature incertaine des informations, nous a conduit à recourir à la logique floue comme principal outil, pour élaborer un algorithme de décomposition du signal EMG de surface. Son application à une coupe musculaire du biceps brachial, a permis une localisation des zones d'activités musculaires et une caractérisation des unités motrices associées. Le chapitre 1 présente la composition du signal EMG et les techniques de mesure associées, notamment le système Laplacien de recueil nécessaire au problème posé. L'adaptation non évidente des techniques de décomposition existantes et présentées chapitre 2, nous a conduit à élaborer un algorithme de décomposition non supervisé, dont le principe est décrit chapitre 3. La méthode repose sur un processus itératif et inclut une technique de classification fondée sur un système floue de décision. La localisation des zones d'activités musculaires décrite chapitre 4, fondée sur une modélisation du potentiel d'action d'unité motrice paramétrée par la distance, utilise la procédure d'optimisation de Quasi-Newton avec contrainte. Dans le dernier chapitre, est décrite une technique de synchronisation, utile à la détermination des paramètres caractéristiques des unités motrices. Les résultats intéressants obtenus pour ces deux applications, montrent la pertinence de l'emploi d'une méthode qui s'appuie sur la démarche adoptée par un expert lors d'une décomposition manuelle d'un signal EMG.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Safatly, Elias. „Méthode multiéchelle et réduction de modèle pour la propagation d'incertitudes localisées dans les modèles stochastiques“. Phd thesis, Université de Nantes, 2012. http://tel.archives-ouvertes.fr/tel-00798526.

Der volle Inhalt der Quelle
Annotation:
Dans de nombreux problèmes physiques, un modèle incertain peut être traduit par un ensemble d'équations aux dérivées partielles stochastiques. Nous nous intéressons ici à des problèmes présentant de nombreuses sources d'incertitudes localisées en espace. Dans le cadre des approches fonctionnelles pour la propagation d'incertitudes, ces problèmes présentent deux difficultés majeures. La première est que leurs solutions possèdent un caractère multi-échelle, ce qui nécessite des méthodes de réduction de modèle et des stratégies de calcul adaptées. La deuxième difficulté est associée à la représentation de fonctions de nombreux paramètres pour la prise en compte de nombreuses variabilités. Pour résoudre ces difficultés, nous proposons tout d'abord une méthode de décomposition de domaine multi-échelle qui exploite le caractère localisé des aléas. Un algorithme itératif est proposé, qui requiert une résolution alternée de problèmes globaux et de problèmes locaux, ces derniers étant définis sur des patchs contenant les variabilités localisées. Des méthodes d'approximation de tenseurs sont ensuite utilisées pour la gestion de la grande dimension paramétrique. La séparation multi-échelle améliore le conditionnement des problèmes à résoudre et la convergence des méthodes d'approximation de tenseurs qui est liée aux propriétés spectrales des fonctions à décomposer. Enfin, pour la prise en compte de variabilités géométriques localisées, des méthodes spécifiques basées sur les approches de domaines fictifs sont introduites.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Ossman, Hala. „Etude mathématique de la convergence de la PGD variationnelle dans certains espaces fonctionnels“. Thesis, La Rochelle, 2017. http://www.theses.fr/2017LAROS006/document.

Der volle Inhalt der Quelle
Annotation:
On s’intéresse dans cette thèse à la PGD (Proper Generalized Decomposition), l’une des méthodes de réduction de modèles qui consiste à chercher, a priori, la solution d’une équation aux dérivées partielles sous forme de variables séparées. Ce travail est formé de cinq chapitres dans lesquels on vise à étendre la PGD aux espaces fractionnaires et aux espaces des fonctions à variation bornée, et à donner des interprétations théoriques de cette méthode pour une classe de problèmes elliptiques et paraboliques. Dans le premier chapitre, on fait un bref aperçu sur la littérature puis on présente les notions et outils mathématiques utilisés dans le corps de la thèse. Dans le second chapitre, la convergence des suites des directions alternées (AM) pour une classe de problèmes variationnels elliptiques est étudiée. Sous une condition de non-orthogonalité uniforme entre les itérés et le terme source, on montre que ces suites sont en général bornées et compactes. Alors, si en particulier la suite (AM) converge faiblement alors elle converge fortement et la limite serait la solution du problème de minimisation alternée. Dans le troisième chapitre, on introduit la notion des dérivées fractionnaires au sens de Riemann-Liouville puis on considère un problème variationnel qui est une généralisation d’ordre fractionnaire de l’équation de Poisson. En se basant sur la nature quadratique et la décomposabilité de l’énergie associée, on démontre que la suite PGD progressive converge fortement vers la solution faible de ce problème. Dans le quatrième chapitre, on profite de la structure tensorielle des espaces BV par rapport à la topologie faible étoile pour définir les suites PGD dans ce type d’espaces. La convergence de telle suite reste une question ouverte. Le dernier chapitre est consacré à l’équation de la chaleur d-dimensionnelle, où on discrétise en temps puis à chaque pas de temps on cherche la solution de l’équation elliptique en utilisant la PGD. On montre alors que la fonction affine par morceaux en temps obtenue à partir des solutions construites en utilisant la PGD converge vers la solution faible de l’équation
In this thesis, we are interested in the PGD (Proper Generalized Decomposition), one of the reduced order models which consists in searching, a priori, the solution of a partial differential equation in a separated form. This work is composed of five chapters in which we aim to extend the PGD to the fractional spaces and the spaces of functions of bounded variation and to give theoretical interpretations of this method for a class of elliptic and parabolic problems. In the first chapter, we give a brief review of the litterature and then we introduce the mathematical notions and tools used in this work. In the second chapter, the convergence of rank-one alternating minimisation AM algorithms for a class of variational linear elliptic equations is studied. We show that rank-one AM sequences are in general bounded in the ambient Hilbert space and are compact if a uniform non-orthogonality condition between iterates and the reaction term is fulfilled. In particular, if a rank-one (AM) sequence is weakly convergent then it converges strongly and the common limit is a solution of the alternating minimization problem. In the third chapter, we introduce the notion of fractional derivatives in the sense of Riemann-Liouville and then we consider a variational problem which is a generalization of fractional order of the Poisson equation. Basing on the quadratic nature and the decomposability of the associated energy, we prove that the progressive PGD sequence converges strongly towards the weak solution of this problem. In the fourth chapter, we benefit from tensorial structure of the spaces BV with respect to the weak-star topology to define the PGD sequences in this type of spaces. The convergence of this sequence remains an open question. The last chapter is devoted to the d-dimensional heat equation, we discretize in time and then at each time step one seeks the solution of the elliptic equation using the PGD. Then, we show that the piecewise linear function in time obtained from the solutions constructed using the PGD converges to the weak solution of the equation
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Mbinky, Estelle. „Adaptation de maillages pour des schémas numériques d'ordre très élevé“. Phd thesis, Université Pierre et Marie Curie - Paris VI, 2013. http://tel.archives-ouvertes.fr/tel-00923773.

Der volle Inhalt der Quelle
Annotation:
L'adaptation de maillages est un processus itératif qui consiste à changer localement la taille et l'orientation du maillage en fonction du comportement de la solution physique étudiée. Les méthodes d'adaptation de maillages ont prouvé qu'elles pouvaient être extrêmement efficaces en réduisant significativement la taille des maillages pour une précision donnée et en atteignant rapidement une convergence asymptotique d'ordre 2 pour des problèmes contenant des singularités lorsqu'elles sont couplées à des méthodes numériques d'ordre élevé. Dans les techniques d'adaptation de maillages basées sur les métriques, deux approches ont été proposées: les méthodes multi-échelles basées sur un contrôle de l'erreur d'interpolation en norme Lp et les méthodes ciblées à une fonctionnelle qui contrôle l'erreur d'approximation sur une fonctionnelle d'intérêt via l'utilisation de l'état adjoint. Cependant, avec l'émergence de méthodes numériques d'ordre très élevé telles que la méthode de Galerkin discontinue, il devient nécessaire de prendre en compte l'ordre du schéma numérique dans le processus d'adaptation de maillages. Il est à noter que l'adaptation de maillages devient encore plus cruciale pour de tels schémas car ils ne convergent qu'à l'ordre 1 dans les singularités de l'écoulement. Par conséquent, le raffinement du maillage au niveau des singularités de la solution doit être d'autant plus important que l'ordre de la méthode est élevé. L'objectif de cette thèse sera d'étendre les résultats numériques et théoriques obtenus dans le cas de l'adaptation pour des solutions linéaires par morceaux à l'adaptation pour des solutions d'ordre élevé polynomiales par morceaux. Ces solutions sont représentées sur le maillage par des éléments finis de Lagrange d'ordre k ≥ 2. Cette thèse portera sur la modélisation de l'erreur d'interpolation locale, polynôme homogène de degré k ≥ 3 dans le formalisme du maillage continu. Or, les méthodes d'adaptation de maillages basées sur les métriques nécessitent que le modèle d'erreur soit une forme quadratique, laquelle fait apparaître intrinsèquement un espace métrique. Pour pouvoir exhiber un tel espace, il est nécessaire de décomposer le polynôme homogène et de l'approcher par une forme quadratique à la puissance k/2. Cette modélisation permet ainsi de révéler un champ de métriques indispensable pour communiquer avec le générateur de maillages. En deux et trois dimensions, des méthodes de décomposition de tenseurs telles que la décomposition de Sylvester nous permettront de décomposer la fonction exacte d'erreur puis d'en déduire le modèle d'erreur quadratique. Ce modèle d'erreur local est ensuite utilisé pour contrôler globalement l'erreur en norme Lp et le maillage optimal est obtenu en minimisant cette erreur. Dans cette thèse, on s'attachera à démontrer la convergence à l'ordre k de la méthode d'adaptation de maillages pour des fonctions analytiques et pour des simulations numériques utilisant des solveurs d'ordre k ≥ 3.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Gdoura, Souhir. „Identification électromagnétique de petites inclusions enfouies“. Phd thesis, Université Paris Sud - Paris XI, 2008. http://tel.archives-ouvertes.fr/tel-00651167.

Der volle Inhalt der Quelle
Annotation:
L'objet de la thèse est la détection électromagnétique non-itérative de petits objets enfouis. Le problème direct de diffraction est abordé en utilisant une formule asymptotique rigoureuse du champ diffracté par des inclusions dont la taille caractéristique est petite devant la longueur d'onde de leur illumination dans le milieu d'enfouissement. La prise en compte de la diffraction multiple dans le cas de deux inclusions sphériques est abordée grâce à un tenseur de polarisation spécifique qui est calculé dans un système approprié de coordonnées bisphériques. Le modèle de Foldy-Lax est aussi utilisé afin de prendre en compte le couplage entre plusieurs inclusions. Les simulations numériques montrent que cet effet de couplage ne peut être ressenti qu'en leurs voisinages immédiats. Une configuration d'enfouissement en demi-espace est aussi étudiée en détail. Les dyades de Green alors nécessaires sont calculées de manière exacte par "force brutale" numérique. Puis trois méthodes approchées de calcul des intégrales de Sommerfeld qui sont impliquées sont proposées, les simulations montrant qu'elles font gagner un temps de calcul significatif dans le calcul de ces dyades, tout en étant de précision convenable. La prise en compte du couplage entre une sphère et l'interface est aussi investiguée grâce à un tenseur de polarisation adéquat en coordonnées bisphériques (de facto, une des deux sphères dégénère en cette interface). A chaque fois, les champs diffractés simulés par la méthode asymptotique sont comparés à des champs obtenus par la méthode dite des dipôles couplés (CDM). Les résultats montrent que la méthode asymptotique fournit des valeurs du champ diffracté satisfaisantes tant que les tailles des inclusions restent assez petites devant la longueur d'onde. L'algorithme d'imagerie MUSIC est quant à lui utilisé pour détecter ces inclusions à partir de leur matrice de réponse multistatique (MSR) collectée via un réseau plan d'extension limitée de dipôles émetteurs-récepteurs idéaux. L'analyse des valeurs et des vecteurs singuliers de la matrice MSR montre qu'il existe une différence entre les données calculées par la méthode asymptotique et celles calculées par la méthode CDM. Mais cette différence ne persiste pas si l'on considère des données bruitées, même à relativement faible niveau de bruit. Dans les deux cas, MUSIC permet une estimation fiable de la position des inclusions, la notion de "super-localisation" étant en particulier discutée. Une méthode est par ailleurs proposée afin de détecter l'angle d'inclinaison d'un ellipsoïde incliné enfoui.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Rolim, Fernandes Carlos Estêvao. „Méthodes statistiques d'ordre élevé pour l'identification aveugle de canaux et la détection de sources avec des applications aux systèmes de communicaton sans fil“. Phd thesis, 2008. http://tel.archives-ouvertes.fr/tel-00460158.

Der volle Inhalt der Quelle
Annotation:
Les systèmes de télécommunications modernes exigent des débits de transmission très élevés. Dans ce cadre, le problème d'identification de canaux est un enjeu majeur. L'utilisation de techniques aveugles est d'un grand intérêt pour avoir le meilleur compromis entre un taux binaire adéquat et la qualité de l'information récupérée. En utilisant les propriétés des cumulants d'ordre 4 des signaux de sortie du canal, cette thèse introduit de nouvelles méthodes de traitement du signal tensoriel avec des applications pour les systèmes de communication radio-mobiles. En utilisant la structure symétrique des cumulants de sortie, nous traitons le problème de l'identification aveugle de canaux en ntroduisant un modèle multilinéaire pour le tenseur des cumulants d'ordre 4, basé sur une décomposition de type Parafac. Dans le cas SISO, les composantes du modèle tensoriel ont une structure de Hankel. Dans le cas de canaux MIMO instantanés, la redondance des facteurs tensoriels est exploitée pour l'estimation des coefficients du canal. Dans ce contexte, nous développons des algorithmes d'identification aveugle basés sur une minimisation de type moindres carrés à pas unique (SS-LS). Les méthodes proposées exploitent la structure multilinéaire du tenseur de cumulants aussi bien que les relations de symétrie et de redondance, ce qui permet d'éviter toute sorte de traitement au préalable. En effet, l'approche SS-LS induit une solution basée sur une seule et unique procédure d'optimisation, sans les étapes intermédiaires requises par la majorité des méthodes existant dans la littérature. En exploitant seulement les cumulants d'ordre 4 et le concept de réseau virtuel, nous abordons aussi le problème de la localisation de sources dans le cadre d'un réseau d'antennes multiutilisateur. Une contribution originale consiste à augmenter le nombre de capteurs virtuels en exploitant un arrangement particulier du tenseur de cumulants, de manière à améliorer la résolution du réseau, dont la structure équivaut à celle qui est typiquement issue de l'utilisation des statistiques d'ordre 6. Nous traitons par ailleurs le problème de l'estimation des paramètres physiques d'un canal de communication de type MIMO à trajets multiples. Dans un premier temps, nous considérons le canal à trajets multiples comme un modèle MIMO convolutif et proposons une nouvelle technique d'estimation des coefficients. Cette technique non-paramétrique généralise les méthodes proposées dans les chapitres précédents pour les cas SISO et MIMO instantané. En représentant le canal multi-trajet à l'aide d'un formalisme tensoriel, les paramètres physiques sont obtenus en utilisant une technique combinée de type ALS-MUSIC, basée sur un algorithme de sous-espaces. Enfin, nous considérons le problème de la détermination d'ordre de canaux de type RIF, dans le contexte des systèmes MISO. Nous introduisons une procédure complète qui combine la détection des signaux avec l'estimation des canaux de communication MISO sélectifs en fréquence. Ce nouvel algorithme, basé sur une technique de déflation, est capable de détecter successivement les sources, de déterminer l'ordre de chaque canal de transmission et d'estimer les coefficients associés.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie