Zeitschriftenartikel zum Thema „Data structures (Computer science)“

Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Data structures (Computer science).

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Data structures (Computer science)" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Manjula, V. „Graph Applications to Data Structures“. Advanced Materials Research 433-440 (Januar 2012): 3297–301. http://dx.doi.org/10.4028/www.scientific.net/amr.433-440.3297.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
This paper presents a topic on Graph theory and its application to data Structures which I consider basic and useful to students in APPLIED MATHEMATICS and ENGINEERING.This paper gives an elementary introduction of Graph theory and its application to data structures. Elements of Graph theory are indispensable in almost all computer Science areas .It can be used in Some areas such as syntactic analysis, fault detection, diagnosis in computers and minimal path problems. The computer representation and manipulation of graph are also discussed so that certain algorithms can be included .A major theme of this paper is to study Graph theory and its Application to data structures Furthermore I hope the students not only learn the course but also develop their analogy perceive, formulate and to solve mathematical programs Thus Graphs especially trees, binary trees are used widely in the representation of data structures this course one can develop mathematical maturity, ability to understand and create mathematical argumentsMethod of derivation is procedure given in the text books with necessary formulae and their application . Concepts and notations from discrete mathematics are useful in studying and describing objects and problems in branches of computer science, such as computer algorithms, programming languages.
2

Tiwari, Adarsh, Pradeep Kanyal, Himanshu Panchal und Manjot Kaur Bhatia. „Computer Science and High Dimensional Data Modelling“. International Journal for Research in Applied Science and Engineering Technology 10, Nr. 12 (31.12.2022): 517–20. http://dx.doi.org/10.22214/ijraset.2022.47922.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Abstract: The need to grasp large database structures is a very important issue in biological and life science. This review paper is aimed toward quantitative medical researchers searching for guidance in modeling large numbers of variables in medical research, how this relates to straightforward linear models and therefore the geometry that underlies their analysis. Issues reviewed include LASSO-related approaches, principal-component based analysis, and problems with model stability and interpretation. Model misspecification issues associated with potential nonlinearities are examined, as is that the Bayesian perspective on these issues.
3

Munro, Ian. „Succinct Data Structures“. Electronic Notes in Theoretical Computer Science 91 (Februar 2004): 3. http://dx.doi.org/10.1016/j.entcs.2003.12.002.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Giles, D. „Editorial - Data Structures“. Computer Journal 34, Nr. 5 (01.05.1991): 385. http://dx.doi.org/10.1093/comjnl/34.5.385.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Almanza-Cortés, Daniel Felipe, Manuel Felipe Del Toro-Salazar, Ricardo Andrés Urrego-Arias, Pedro Guillermo Feijóo-García und Fernando De la Rosa-Rosero. „Scaffolded Block-based Instructional Tool for Linear Data Structures: A Constructivist Design to Ease Data Structures’ Understanding“. International Journal of Emerging Technologies in Learning (iJET) 14, Nr. 10 (30.05.2019): 161. http://dx.doi.org/10.3991/ijet.v14i10.10051.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Data Structures courses commonly introduce topics involving high levels of abstraction and complexity, requiring significant effort from instructors and apprentices to achieve positive outcomes from the teaching-learning process. Despite the multiple studies that have occurred within the Computer Science Education (CSE) community to understand the experiences novice programmers may have when learning how to program, there is still a lack of exploration and research on understanding these experiences in scenarios different from first-year Computer Science (CS) courses. Looking further from CS introductory courses, this paper presents the results of a pilot study that evaluated the interaction of a group of CS Colombian students with DStBlocks, which is a scaffolded block-based instructional technology, designed and developed to ease linear data structures understanding. The findings and results of this pilot study are favorable, corresponding to tests centered on user experience and learning impact.
6

Smaragdakis, Yannis. „High-level data structures“. Communications of the ACM 55, Nr. 12 (Dezember 2012): 90. http://dx.doi.org/10.1145/2380656.2380676.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Louchard, G., Claire Kenyon und R. Schott. „Data Structures' Maxima“. SIAM Journal on Computing 26, Nr. 4 (August 1997): 1006–42. http://dx.doi.org/10.1137/s0097539791196603.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Panangaden, Prakash, und Clark Verbrugge. „Generating irregular partitionable data structures“. Theoretical Computer Science 238, Nr. 1-2 (Mai 2000): 31–80. http://dx.doi.org/10.1016/s0304-3975(98)00226-6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Elmasry, Amr, Meng He, J. Ian Munro und Patrick K. Nicholson. „Dynamic range majority data structures“. Theoretical Computer Science 647 (September 2016): 59–73. http://dx.doi.org/10.1016/j.tcs.2016.07.039.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Gagie, Travis, Meng He, Gonzalo Navarro und Carlos Ochoa. „Tree path majority data structures“. Theoretical Computer Science 833 (September 2020): 107–19. http://dx.doi.org/10.1016/j.tcs.2020.05.039.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Schalk, Andrea, und José Juan Palacios-Perez. „Concrete Data Structures as Games“. Electronic Notes in Theoretical Computer Science 122 (März 2005): 193–210. http://dx.doi.org/10.1016/j.entcs.2004.06.058.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Gupta, Ankur, Wing-Kai Hon, Rahul Shah und Jeffrey Scott Vitter. „Compressed data structures: Dictionaries and data-aware measures“. Theoretical Computer Science 387, Nr. 3 (November 2007): 313–31. http://dx.doi.org/10.1016/j.tcs.2007.07.042.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Smith, N. S. „Spatial data models and data structures“. Computer-Aided Design 22, Nr. 3 (April 1990): 184–90. http://dx.doi.org/10.1016/0010-4485(90)90077-p.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Herlihy, Maurice. „Technical perspectiveHighly concurrent data structures“. Communications of the ACM 52, Nr. 5 (Mai 2009): 99. http://dx.doi.org/10.1145/1506409.1506430.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Hartline, Jason D., Edwin S. Hong, Alexander E. Mohr, William R. Pentney und Emily C. Rocke. „Characterizing History Independent Data Structures“. Algorithmica 42, Nr. 1 (09.02.2005): 57–74. http://dx.doi.org/10.1007/s00453-004-1140-z.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Taubenfeld, Gadi. „Contention-sensitive data structures and algorithms“. Theoretical Computer Science 677 (Mai 2017): 41–55. http://dx.doi.org/10.1016/j.tcs.2017.03.017.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

J., Girish Raguvir, Manas Jyoti Kashyop und N. S. Narayanaswamy. „Dynamic data structures for interval coloring“. Theoretical Computer Science 838 (Oktober 2020): 126–42. http://dx.doi.org/10.1016/j.tcs.2020.06.024.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Colvin, Robert, Simon Doherty und Lindsay Groves. „Verifying Concurrent Data Structures by Simulation“. Electronic Notes in Theoretical Computer Science 137, Nr. 2 (Juli 2005): 93–110. http://dx.doi.org/10.1016/j.entcs.2005.04.026.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Stein, W., S. Hassfeld und J. Muhling. „Tracing of Thin Tubular Structures in Computer Tomographic Data“. Computer Aided Surgery 3, Nr. 2 (Januar 1998): 83–88. http://dx.doi.org/10.3109/10929089809148133.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Esponda-Argüero, Margarita. „Techniques for Visualizing Data Structures in Algorithmic Animations“. Information Visualization 9, Nr. 1 (29.01.2009): 31–46. http://dx.doi.org/10.1057/ivs.2008.26.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
This paper deals with techniques for the design and production of appealing algorithmic animations and their use in computer science education. A good visual animation is both a technical artifact and a work of art that can greatly enhance the understanding of an algorithm's workings. In the first part of the paper, I show that awareness of the composition principles used by other animators and visual artists can help programmers to create better algorithmic animations. The second part shows how to incorporate those ideas in novel animation systems, which represent data structures in a visually intuitive manner. The animations described in this paper have been implemented and used in the classroom for courses at university level.
21

Nash, John B., und Pauline A. Moroz. „An Examination of the Factor Structures of the Computer Attitude Scale“. Journal of Educational Computing Research 17, Nr. 4 (Dezember 1997): 341–56. http://dx.doi.org/10.2190/ngdu-h73e-xmr3-tg5j.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Previous research regarding the popular Computer Attitude Scale (CAS) has indicated that the computer confidence and computer anxiety subscales measure the same trait. This study, utilizing data yielded from 208 educators, obtained estimates of the reliability of the four subscale version of the forty item CAS; provided detailed information regarding the factor patterns of the CAS subscales; and provided evidence about the differential validity of the CAS among four groups with differing intensity of computer usage. Correlations and exploratory factor analysis were used to analyze the data. The results confirm that the confidence and anxiety subscales are a continuum. A new, smaller, subscale was created to reflect this relationship. Further, a new factor, attitudes toward academic endeavors associated with computer training, was named. The CAS may now be interpreted as a thirty-four-item scale addressing computer liking, perceived usefulness of computers, computer confidence/anxiety, and attitudes toward academic endeavors associated with computer training.
22

Zhang, Qin. „Can data structures treat us fairly?“ Communications of the ACM 65, Nr. 8 (August 2022): 82. http://dx.doi.org/10.1145/3543843.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Goller, N. E. „Hybrid Data Structures Defined by Indirection“. Computer Journal 28, Nr. 1 (01.01.1985): 44–53. http://dx.doi.org/10.1093/comjnl/28.1.44.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Shavit, Nir. „Data structures in the multicore age“. Communications of the ACM 54, Nr. 3 (März 2011): 76–84. http://dx.doi.org/10.1145/1897852.1897873.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Gorshkov, P. V. „Rational data structures and their applications“. Cybernetics 25, Nr. 6 (1990): 760–65. http://dx.doi.org/10.1007/bf01069776.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Andon, F. I., V. A. Reznichenko und A. E. Yashunin. „A calculus for hierarchical data structures“. Cybernetics 20, Nr. 6 (1985): 785–90. http://dx.doi.org/10.1007/bf01072163.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Patterson, Evan, Owen Lynch und James Fairbanks. „Categorical Data Structures for Technical Computing“. Compositionality 4 (28.12.2022): 5. http://dx.doi.org/10.32408/compositionality-4-5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Many mathematical objects can be represented as functors from finitely-presented categories C to Set. For instance, graphs are functors to Set from the category with two parallel arrows. Such functors are known informally as C-sets. In this paper, we describe and implement an extension of C-sets having data attributes with fixed types, such as graphs with labeled vertices or real-valued edge weights. We call such structures acsets, short for attributed C-sets. Derived from previous work on algebraic databases, acsets are a joint generalization of graphs and data frames. They also encompass more elaborate graph-like objects such as wiring diagrams and Petri nets with rate constants. We develop the mathematical theory of acsets and then describe a generic implementation in the Julia programming language, which uses advanced language features to achieve performance comparable with specialized data structures.
28

Shand, Mark A. „Algorithms for corner stitched data-structures“. Algorithmica 2, Nr. 1-4 (November 1987): 61–80. http://dx.doi.org/10.1007/bf01840349.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Gostev, Yu G. „Generating power of atomic grammars on data structures. Encoding of data structures by strings of symbols“. Cybernetics 24, Nr. 5 (September 1988): 575–82. http://dx.doi.org/10.1007/bf01255669.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Ferragina, Paolo, Fabrizio Lillo und Giorgio Vinciguerra. „On the performance of learned data structures“. Theoretical Computer Science 871 (Juni 2021): 107–20. http://dx.doi.org/10.1016/j.tcs.2021.04.015.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Hains, Gaétan, Frédéric Loulergue und John Mullins. „Concrete data structures and functional parallel programming“. Theoretical Computer Science 258, Nr. 1-2 (Mai 2001): 233–67. http://dx.doi.org/10.1016/s0304-3975(00)00010-4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Ono, Hirotaka, Kazuhisa Makino und Toshihide Ibaraki. „Logical analysis of data with decomposable structures“. Theoretical Computer Science 289, Nr. 2 (Oktober 2002): 977–95. http://dx.doi.org/10.1016/s0304-3975(01)00413-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Delgado-Friedrichs, Olaf. „Data structures and algorithms for tilings I“. Theoretical Computer Science 303, Nr. 2-3 (Juli 2003): 431–45. http://dx.doi.org/10.1016/s0304-3975(02)00500-5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Andy, Gill. „Debugging Haskell by Observing Intermediate Data Structures“. Electronic Notes in Theoretical Computer Science 41, Nr. 1 (August 2001): 1. http://dx.doi.org/10.1016/s1571-0661(05)80538-9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Fariña, Antonio, Susana Ladra, Oscar Pedreira und Ángeles S. Places. „Rank and Select for Succinct Data Structures“. Electronic Notes in Theoretical Computer Science 236 (April 2009): 131–45. http://dx.doi.org/10.1016/j.entcs.2009.03.019.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Tasiran, Serdar, und Shaz Qadeer. „Runtime Refinement Checking of Concurrent Data Structures“. Electronic Notes in Theoretical Computer Science 113 (Januar 2005): 163–79. http://dx.doi.org/10.1016/j.entcs.2004.01.028.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Ábrahám, Erika, Marc Herbstritt, Bernd Becker und Martin Steffen. „Bounded Model Checking with Parametric Data Structures“. Electronic Notes in Theoretical Computer Science 174, Nr. 3 (Mai 2007): 3–16. http://dx.doi.org/10.1016/j.entcs.2006.12.019.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Guessarian, Irène. „Some Fixpoint Techniques in Algebraic Structures and Applications to Computer Science“. Fundamenta Informaticae 10, Nr. 4 (01.10.1987): 387–413. http://dx.doi.org/10.3233/fi-1987-10405.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
This paper recalls some fixpoint theorems in ordered algebraic structures and surveys some ways in which these theorems are applied in computer science. We describe via examples three main types of applications: in semantics and proof theory, in logic programming and in deductive data bases.
39

Driscoll, James R., Neil Sarnak, Daniel D. Sleator und Robert E. Tarjan. „Making data structures persistent“. Journal of Computer and System Sciences 38, Nr. 1 (Februar 1989): 86–124. http://dx.doi.org/10.1016/0022-0000(89)90034-2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Jagannathan, Suresh. „TS/Scheme: Distributed data structures in Lisp“. LISP and Symbolic Computation 7, Nr. 4 (1994): 291–314. http://dx.doi.org/10.1007/bf01018613.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Rakesh, Palepu Narasimha. „A Data Science Approach to Bioinformatics“. International Journal for Research in Applied Science and Engineering Technology 9, Nr. VII (31.07.2021): 3860–69. http://dx.doi.org/10.22214/ijraset.2021.37221.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Computer aided drug design (CADD) which uses the computational advance towards to develop, discover and scrutinize and examine drugs and alike biologically agile molecules. CADD is a specialized stream which uses the computational techniques to mimic drug-receptor interactions. CADD procedures are so much dependent on the tools of bioinformatics, databases & applications. There are so many advantages of computer aided drug discovery; it saves lot of time which is one of the main advantages followed by low cost and more accuracy. CADD required less manpower to work. There are different types of CADD such as ligand and structure based design. Objectives of the Computer aided drug design are to boost up the screening process, to test the rational of drug design, to efficiently screen and to remove hopeless ones as early as possible. In Drug designing the selected molecule should be organic small molecule, complementary in shape to the target and oppositely charged to the biomolecular target. The molecule will interacts and binds with the target which activates or inhibits the function of a biomolecule such as a protein or lipid. The main basic goal in the drug design is to forecast whether a given molecule will bind to target and if thus how strongly. Molecular mechanics techniques also used to provide the semi quantitative prediction of the binding affinity. These techniques use machine learning, linear regression, neural nets or other statistical methods to derive predictive binding affinity equations. Preferably, the computational technique will be able to forecast the affinity prior to a compound is synthesized, saving huge time and cost. Computational techniques have quickened the discovery by decreasing the number of iterations required and have often produced the novel structures.
42

ETIENNE, F. „The Impact of Modern Graphics Tools on Science, and their Limitations“. International Journal of Modern Physics C 02, Nr. 01 (März 1991): 58–65. http://dx.doi.org/10.1142/s012918319100007x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Within the last few years the range of scientific applications for which computer graphics is used has become extremely large. However, not all scientists require the same level of computing power. Until recently the software interface to graphics display systems has been provided by the manufacturers of the hardware. This generated interest in the possibility of using graphics standards. Another important issue is related to the deluge of data generated by super-computers and high-volume data sources which make it impossible for users to have an overall knowledge of either the data structures or the application programs. Partial solutions can be found in emerging products providing an interactive computational environment for scientific visualization. Some of the characteristics required for graphics hardware are presented. From a hardware perspective, graphics computing involves the use of a graphical computer system with sufficient power and functionality that the user can manipulate and interact with displayed objects. To achieve such a level of performance computers are usually designed as networked workstations with access to local graphics capabilities. Finally, it is made clear that the main computer graphics applications are scientific activities. From high energy physics experiments with wireframe event displays up to medical imaging with interactive volume rendering, scientific visualization is not simply displaying data from data intensive sources. Fields of computer graphics like image processing, computer aided design, signal processing and user interfaces provide tools helping researchers to understand and steer scientific computation.
43

Hambrusch, Susanne E., und Chuan-Ming Liu. „Data replication in static tree structures“. Information Processing Letters 86, Nr. 4 (Mai 2003): 197–202. http://dx.doi.org/10.1016/s0020-0190(02)00503-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Chanchary, Farah, und Anil Maheshwari. „Time Windowed Data Structures for Graphs“. Journal of Graph Algorithms and Applications 23, Nr. 2 (2019): 191–226. http://dx.doi.org/10.7155/jgaa.00489.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Prokop, Yu V., O. H. Trofymenko und O. V. Dykyi. „RESEARCH OF APPROACHES TO TEACHING THE COURSE “ALGORITHMS AND DATA STRUCTURES” FOR COMPUTER SCIENCE STUDENTS“. Scientific notes of Taurida National V.I. Vernadsky University. Series: Technical Sciences 1, Nr. 2 (2021): 216–20. http://dx.doi.org/10.32838/2663-5941/2021.2-1/34.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Brit, Hagit, Shlomo Moran und Gadi Taubenfeld. „Public data structures: counters as a special case“. Theoretical Computer Science 289, Nr. 1 (Oktober 2002): 401–23. http://dx.doi.org/10.1016/s0304-3975(01)00312-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Laube, Ulrich, und Markus E. Nebel. „Maximum likelihood analysis of algorithms and data structures“. Theoretical Computer Science 411, Nr. 1 (Januar 2010): 188–212. http://dx.doi.org/10.1016/j.tcs.2009.09.025.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Martí-Oliet, Narciso, Miguel Palomino und Alberto Verdejo. „A Tutorial on Specifying Data Structures in Maude“. Electronic Notes in Theoretical Computer Science 137, Nr. 1 (Juli 2005): 105–32. http://dx.doi.org/10.1016/j.entcs.2005.01.041.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Vitter, Jeffrey Scott. „Algorithms and Data Structures for External Memory“. Foundations and Trends® in Theoretical Computer Science 2, Nr. 4 (2006): 305–474. http://dx.doi.org/10.1561/0400000014.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Desnoyers, Mathieu. „Proving the Correctness of Nonblocking Data Structures“. Queue 11, Nr. 5 (Mai 2013): 30–43. http://dx.doi.org/10.1145/2488364.2490873.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Zur Bibliographie