Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Data Storage Representations“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Data Storage Representations" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Data Storage Representations"
Gutsche, Oliver, und Igor Mandrichenko. „Striped Data Analysis Framework“. EPJ Web of Conferences 245 (2020): 06042. http://dx.doi.org/10.1051/epjconf/202024506042.
Der volle Inhalt der QuelleLee, Sang Hun, und Kunwoo Lee. „Partial Entity Structure: A Compact Boundary Representation for Non-Manifold Geometric Modeling“. Journal of Computing and Information Science in Engineering 1, Nr. 4 (01.11.2001): 356–65. http://dx.doi.org/10.1115/1.1433486.
Der volle Inhalt der QuelleGertsiy, O. „COMPARATIVE ANALYSIS OF COMPACT METHODS REPRESENTATIONS OF GRAPHIC INFORMATION“. Collection of scientific works of the State University of Infrastructure and Technologies series "Transport Systems and Technologies" 1, Nr. 37 (29.06.2021): 130–43. http://dx.doi.org/10.32703/2617-9040-2021-37-13.
Der volle Inhalt der QuelleJackson, T. R., W. Cho, N. M. Patrikalakis und E. M. Sachs. „Memory Analysis of Solid Model Representations for Heterogeneous Objects“. Journal of Computing and Information Science in Engineering 2, Nr. 1 (01.03.2002): 1–10. http://dx.doi.org/10.1115/1.1476380.
Der volle Inhalt der QuelleFrenkel, Michael, Robert D. Chiroco, Vladimir Diky, Qian Dong, Kenneth N. Marsh, John H. Dymond, William A. Wakeham, Stephen E. Stein, Erich Königsberger und Anthony R. H. Goodwin. „XML-based IUPAC standard for experimental, predicted, and critically evaluated thermodynamic property data storage and capture (ThermoML) (IUPAC Recommendations 2006)“. Pure and Applied Chemistry 78, Nr. 3 (01.01.2006): 541–612. http://dx.doi.org/10.1351/pac200678030541.
Der volle Inhalt der QuelleALHONIEMI, ESA. „Simplified time series representations for efficient analysis of industrial process data“. Artificial Intelligence for Engineering Design, Analysis and Manufacturing 17, Nr. 2 (Mai 2003): 103–14. http://dx.doi.org/10.1017/s0890060403172010.
Der volle Inhalt der QuelleHernaez, Mikel, Dmitri Pavlichin, Tsachy Weissman und Idoia Ochoa. „Genomic Data Compression“. Annual Review of Biomedical Data Science 2, Nr. 1 (20.07.2019): 19–37. http://dx.doi.org/10.1146/annurev-biodatasci-072018-021229.
Der volle Inhalt der QuelleRachkovskij, Dmitri A., und Ernst M. Kussul. „Binding and Normalization of Binary Sparse Distributed Representations by Context-Dependent Thinning“. Neural Computation 13, Nr. 2 (Februar 2001): 411–52. http://dx.doi.org/10.1162/089976601300014592.
Der volle Inhalt der QuelleDe Masi, A. „DIGITAL DOCUMENTATION’S ONTOLOGY: CONTEMPORARY DIGITAL REPRESENTATIONS AS EXPRESS AND SHARED MODELS OF REGENERATION AND RESILIENCE IN THE PLATFORM BIM/CONTAMINATED HYBRID REPRESENTATION“. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLVI-M-1-2021 (28.08.2021): 189–97. http://dx.doi.org/10.5194/isprs-archives-xlvi-m-1-2021-189-2021.
Der volle Inhalt der QuelleTan, Xiaojing, Ming Zou und Xiqin He. „Target Recognition in SAR Images Based on Multiresolution Representations with 2D Canonical Correlation Analysis“. Scientific Programming 2020 (24.02.2020): 1–9. http://dx.doi.org/10.1155/2020/7380790.
Der volle Inhalt der QuelleDissertationen zum Thema "Data Storage Representations"
Munalula, Themba. „Measuring the applicability of Open Data Standards to a single distributed organisation: an application to the COMESA Secretariat“. Thesis, University of Cape Town, 2008. http://pubs.cs.uct.ac.za/archive/00000461/.
Der volle Inhalt der QuelleMunyaradzi, Ngoni. „Transcription of the Bleek and Lloyd Collection using the Bossa Volunteer Thinking Framework“. Thesis, University of Cape Town, 2013. http://pubs.cs.uct.ac.za/archive/00000913/.
Der volle Inhalt der QuelleUgail, Hassan, und Eyad Elyan. „Efficient 3D data representation for biometric applications“. IOS Press, 2007. http://hdl.handle.net/10454/2683.
Der volle Inhalt der QuelleAn important issue in many of today's biometric applications is the development of efficient and accurate techniques for representing related 3D data. Such data is often available through the process of digitization of complex geometric objects which are of importance to biometric applications. For example, in the area of 3D face recognition a digital point cloud of data corresponding to a given face is usually provided by a 3D digital scanner. For efficient data storage and for identification/authentication in a timely fashion such data requires to be represented using a few parameters or variables which are meaningful. Here we show how mathematical techniques based on Partial Differential Equations (PDEs) can be utilized to represent complex 3D data where the data can be parameterized in an efficient way. For example, in the case of a 3D face we show how it can be represented using PDEs whereby a handful of key facial parameters can be identified for efficient storage and verification.
Folmer, Brennan Thomas. „Metadata storage for file management systems data storage and representation techniques for a file management system /“. [Gainesville, Fla.] : University of Florida, 2002. http://purl.fcla.edu/fcla/etd/UFE1001141.
Der volle Inhalt der QuelleCheeseman, Bevan. „The Adaptive Particle Representation (APR) for Simple and Efficient Adaptive Resolution Processing, Storage and Simulations“. Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2018. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-234245.
Der volle Inhalt der QuelleVanCalcar, Jenny E. (Jenny Elizabeth). „Collection and representation of GIS data to aid household water treatment and safe storage technology implementation in the northern region of Ghana“. Thesis, Massachusetts Institute of Technology, 2006. http://hdl.handle.net/1721.1/34583.
Der volle Inhalt der QuelleIncludes bibliographical references (leaves 46-51).
In 2005, a start-up social business called Pure Home Water (PHW) was begun in Ghana to promote and sell household water treatment and safe storage (HWTS) technologies. The original aim of the company was to offer a variety of products, allowing customers to choose the technology which best fit their individual needs. This differed from the typical implementation of HWTS promoters to date, in which an organization often distributes a single technology for the population to use. Instead, Pure Home Water wanted to give users a choice. PHW is also unique because they are attempting to sell their products without any subsidy. The goal is to create a sustainable business that will both bring better quality water to the population and be financially self-supporting. Because the company is new, a need existed to gather data on the demographic, health, and water and sanitation infrastructure within the region. Due to the geographic nature of the project, it was decided that a Geographic Information System (GIS) would be the best tool to store, analyze and represent the data.
(cont.) The system could be used to help plan relevant business strategies, and maps could be created to visually communicate important information among the Pure Home Water team and other interested parties. The final database did achieve the goal of collecting and bringing together important regional information in a form hopefully useful to PHW, future MIT teams and others. However, the use of the database for long-term planning is currently too advanced for the small company.
by Jenny E. VanCalcar.
M.Eng.
Elyan, Eyad, und Hassan Ugail. „Reconstruction of 3D human facial images using partial differential equations“. Academy Publisher, 2007. http://hdl.handle.net/10454/2644.
Der volle Inhalt der QuelleFang, Cheng-Hung. „Application for data mining in manufacturing databases“. Ohio : Ohio University, 1996. http://www.ohiolink.edu/etd/view.cgi?ohiou1178653424.
Der volle Inhalt der QuelleSello, Mpho Constance. „Individual Document Management Techniques: an Explorative Study“. Thesis, 2007. http://pubs.cs.uct.ac.za/archive/00000399/.
Der volle Inhalt der QuelleKovacevic, Vlado S. „The impact of bus stop micro-locations on pedestrian safety in areas of main attraction“. 2005. http://arrow.unisa.edu.au:8081/1959.8/28389.
Der volle Inhalt der QuelleBücher zum Thema "Data Storage Representations"
Thompson, Rodney James. Towards a rigorous logic for spatial data representation. Delft: Netherlands Geodetic Commission, 2007.
Den vollen Inhalt der Quelle findenKutyniok, Gitta. Shearlets: Multiscale Analysis for Multivariate Data. Boston: Birkhäuser Boston, 2012.
Den vollen Inhalt der Quelle findenEmilio, Maurizio Di Paolo. Data Acquisition Systems: From Fundamentals to Applied Design. New York, NY: Springer New York, 2013.
Den vollen Inhalt der Quelle findenOffice, General Accounting. Data management: DOD should redirect its efforts to automate technical data repositories : report to the chairman, Committee on Government Operations, House of Representatives. Washington, D.C: The Office, 1986.
Den vollen Inhalt der Quelle findenJosef, Küng, Wagner Roland und SpringerLink (Online service), Hrsg. Transactions on Large-Scale Data- and Knowledge-Centered Systems V. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.
Den vollen Inhalt der Quelle findenDavid, Hutchison. Transactions on Computational Science V: Special Issue on Cognitive Knowledge Representation. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009.
Den vollen Inhalt der Quelle findenArmando, Escalante, und SpringerLink (Online service), Hrsg. Handbook of Data Intensive Computing. New York, NY: Springer Science+Business Media, LLC, 2011.
Den vollen Inhalt der Quelle findenOffice, General Accounting. Navy supply systems: Status of two projects for improving stock point operations : fact sheet for the chairman, Subcommittee on Defense, Committee on Appropriations, House of Representatives. Washington, D.C: The Office, 1986.
Den vollen Inhalt der Quelle findenOffice, General Accounting. Navy supply systems: Status of two projects for improving stock point operations : fact sheet for the chairman, Subcommittee on Defense, Committee on Appropriations, House of Representatives. Washington, D.C: The Office, 1986.
Den vollen Inhalt der Quelle findenHameurlain, Abdelkader. Transactions on Large-Scale Data- and Knowledge-Centered Systems VII. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Data Storage Representations"
Paradies, Marcus, und Hannes Voigt. „Graph Representations and Storage“. In Encyclopedia of Big Data Technologies, 898–904. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-77525-8_211.
Der volle Inhalt der QuelleParadies, Marcus, und Hannes Voigt. „Graph Representations and Storage“. In Encyclopedia of Big Data Technologies, 1–7. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-63962-8_211-1.
Der volle Inhalt der QuelleSmith, William A. P. „3D Data Representation, Storage and Processing“. In 3D Imaging, Analysis and Applications, 265–316. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-44070-1_6.
Der volle Inhalt der QuelleBrazma, Alvis, Ugis Sarkans, Alan Robinson, Jaak Vilo, Martin Vingron, Jörg Hoheisel und Kurt Fellenberg. „Microarray Data Representation, Annotation and Storage“. In Advances in Biochemical Engineering/Biotechnology, 113–39. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/3-540-45713-5_7.
Der volle Inhalt der QuelleTerletskyi, Dmytro. „Object-Oriented Knowledge Representation and Data Storage Using Inhomogeneous Classes“. In Communications in Computer and Information Science, 48–61. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-67642-5_5.
Der volle Inhalt der QuelleTolovski, Ilin, Sašo Džeroski und Panče Panov. „Semantic Annotation of Predictive Modelling Experiments“. In Discovery Science, 124–39. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-61527-7_9.
Der volle Inhalt der QuelleHoque, Abu Sayed M. Latiful. „Storage and Querying of High Dimensional Sparsely Populated Data in Compressed Representation“. In Lecture Notes in Computer Science, 418–25. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/3-540-36087-5_49.
Der volle Inhalt der QuellePurbey, Suniti, und Brijesh Khandelwal. „Analyzing Frameworks for IoT Data Storage, Representation and Analysis: A Statistical Perspective“. In Lecture Notes in Networks and Systems, 472–88. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-84760-9_41.
Der volle Inhalt der QuellePaul, Razan, und Abu Sayed Md Latiful Hoque. „Optimized Column-Oriented Model: A Storage and Search Efficient Representation of Medical Data“. In Information Technology in Bio- and Medical Informatics, ITBAM 2010, 118–27. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-15020-3_12.
Der volle Inhalt der QuelleWycislik, Lukasz. „Storage Efficiency of LOB Structures for Free RDBMSs on Example of PostgreSQL and Oracle Platforms“. In Beyond Databases, Architectures and Structures. Towards Efficient Solutions for Data Analysis and Knowledge Representation, 212–23. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-58274-0_18.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Data Storage Representations"
Klisura, Ðorže. „Embedding Non-planar Graphs: Storage and Representation“. In 7th Student Computer Science Research Conference. University of Maribor Press, 2021. http://dx.doi.org/10.18690/978-961-286-516-0.13.
Der volle Inhalt der QuelleBohm, Matt R., Robert B. Stone und Simon Szykman. „Enhancing Virtual Product Representations for Advanced Design Repository Systems“. In ASME 2003 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/detc2003/cie-48239.
Der volle Inhalt der QuelleLiang, Xiaoyuan, Martin Renqiang Min, Hongyu Guo und Guiling Wang. „Learning K-way D-dimensional Discrete Embedding for Hierarchical Data Visualization and Retrieval“. In Twenty-Eighth International Joint Conference on Artificial Intelligence {IJCAI-19}. California: International Joint Conferences on Artificial Intelligence Organization, 2019. http://dx.doi.org/10.24963/ijcai.2019/411.
Der volle Inhalt der QuelleMenon, Jai, Ranjit Desai und Jay Buckey. „Constraint-Based Reverse Engineering From Ultrasound Cross-Sections“. In ASME 1997 Design Engineering Technical Conferences. American Society of Mechanical Engineers, 1997. http://dx.doi.org/10.1115/detc97/dfm-4365.
Der volle Inhalt der QuelleMalmqvist, Johan. „A Design System for Parametric Design of Complex Products“. In ASME 1990 Design Technical Conferences. American Society of Mechanical Engineers, 1990. http://dx.doi.org/10.1115/detc1990-0003.
Der volle Inhalt der QuellePaul, Razan, und Abu Sayed Md Latiful Hoque. „A storage & search efficient representation of medical data“. In 2010 International Conference on Bioinformatics and Biomedical Technology. IEEE, 2010. http://dx.doi.org/10.1109/icbbt.2010.5478926.
Der volle Inhalt der QuelleTian, Yuan, Scott Klasky, Weikuan Yu, Bin Wang, Hasan Abbasi, Norbert Podhorszki und Ray Grout. „DynaM: Dynamic Multiresolution Data Representation for Large-Scale Scientific Analysis“. In 2013 IEEE 8th International Conference on Networking, Architecture, and Storage (NAS). IEEE, 2013. http://dx.doi.org/10.1109/nas.2013.21.
Der volle Inhalt der QuelleKern, Daniel, und Anna Thornton. „Structured Indexing of Process Capability Data“. In ASME 2002 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2002. http://dx.doi.org/10.1115/detc2002/dfm-34180.
Der volle Inhalt der QuelleMcKenna, Ann F., Wei Chen und Timothy W. Simpson. „Exploring the Impact of Virtual and Physical Dissection Activities on Students’ Understanding of Engineering Design Principles“. In ASME 2008 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2008. http://dx.doi.org/10.1115/detc2008-49783.
Der volle Inhalt der QuelleCevallos, Yesenia, Luis Tello-Oquendo, Deysi Inca, Nicolay Samaniego, Ivone Santillán, Amin Zadeh Shirazi und Guillermo A. Gomez. „On the efficient digital code representation in DNA-based data storage“. In NANOCOM '20: The Seventh Annual ACM International Conference on Nanoscale Computing and Communication. New York, NY, USA: ACM, 2020. http://dx.doi.org/10.1145/3411295.3411314.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Data Storage Representations"
McPhedran, R., K. Patel, B. Toombs, P. Menon, M. Patel, J. Disson, K. Porter, A. John und A. Rayner. Food allergen communication in businesses feasibility trial. Food Standards Agency, März 2021. http://dx.doi.org/10.46756/sci.fsa.tpf160.
Der volle Inhalt der Quelle