Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Data storage into DNA molecules“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Data storage into DNA molecules" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Data storage into DNA molecules"
Jiang, Jiao. „Application of gene editing technology to DNA digital data storage“. Highlights in Science, Engineering and Technology 73 (29.11.2023): 452–58. http://dx.doi.org/10.54097/hset.v73i.14051.
Der volle Inhalt der QuelleGarafutdinov, R. R., A. R. Sakhabutdinova und A. V. Chemeris. „Long-term room temperature storage of DNA molecules“. Biomics 12, Nr. 4 (2020): 552–63. http://dx.doi.org/10.31301/2221-6197.bmcs.2020-49.
Der volle Inhalt der QuelleCeze, Luis, Jeff Nivala und Karin Strauss. „Molecular digital data storage using DNA“. Nature Reviews Genetics 20, Nr. 8 (08.05.2019): 456–66. http://dx.doi.org/10.1038/s41576-019-0125-3.
Der volle Inhalt der QuelleZhang, Yun Peng, Feng Ying Tian, Man Hui Sun, Ding Yu, Fei Xiang Fan und Wei Guo Liu. „Based on DNA OTP Key Generation and Management Research“. Applied Mechanics and Materials 427-429 (September 2013): 2470–72. http://dx.doi.org/10.4028/www.scientific.net/amm.427-429.2470.
Der volle Inhalt der QuelleCoudy, Delphine, Marthe Colotte, Aurélie Luis, Sophie Tuffet und Jacques Bonnet. „Long term conservation of DNA at ambient temperature. Implications for DNA data storage“. PLOS ONE 16, Nr. 11 (11.11.2021): e0259868. http://dx.doi.org/10.1371/journal.pone.0259868.
Der volle Inhalt der QuelleCarmean, Douglas, Luis Ceze, Georg Seelig, Kendall Stewart, Karin Strauss und Max Willsey. „DNA Data Storage and Hybrid Molecular–Electronic Computing“. Proceedings of the IEEE 107, Nr. 1 (Januar 2019): 63–72. http://dx.doi.org/10.1109/jproc.2018.2875386.
Der volle Inhalt der QuelleXu, Chengtao, Chao Zhao, Biao Ma und Hong Liu. „Uncertainties in synthetic DNA-based data storage“. Nucleic Acids Research 49, Nr. 10 (09.04.2021): 5451–69. http://dx.doi.org/10.1093/nar/gkab230.
Der volle Inhalt der QuelleSolanki, Arnav, Zak Griffin, Purab Ranjan Sutradhar, Karisha Pradhan, Caiden Merritt, Amlan Ganguly und Marc Riedel. „Neural network execution using nicked DNA and microfluidics“. PLOS ONE 18, Nr. 10 (19.10.2023): e0292228. http://dx.doi.org/10.1371/journal.pone.0292228.
Der volle Inhalt der QuelleBhattarai-Kline, Santi, Sierra K. Lear und Seth L. Shipman. „One-step data storage in cellular DNA“. Nature Chemical Biology 17, Nr. 3 (26.01.2021): 232–33. http://dx.doi.org/10.1038/s41589-021-00737-2.
Der volle Inhalt der QuelleZhang, Cheng, Ranfeng Wu, Fajia Sun, Yisheng Lin, Yuan Liang, Jiongjiong Teng, Na Liu, Qi Ouyang, Long Qian und Hao Yan. „Parallel molecular data storage by printing epigenetic bits on DNA“. Nature 634, Nr. 8035 (23.10.2024): 824–32. http://dx.doi.org/10.1038/s41586-024-08040-5.
Der volle Inhalt der QuelleDissertationen zum Thema "Data storage into DNA molecules"
Berton, Chloé. „Sécurité des données stockées sur molécules d’ADN“. Electronic Thesis or Diss., Ecole nationale supérieure Mines-Télécom Atlantique Bretagne Pays de la Loire, 2024. http://www.theses.fr/2024IMTA0431.
Der volle Inhalt der QuelleThe volume of digital data produced worldwide every year is increasing exponentially, and current storage solutions are reaching their limits. In this context, data storage on DNA molecules holds great promise. Storing up to 10¹⁸ bytes per gram of DNA for almost no energy consumption, it has a lifespan 100 times longer than hard disks. As this storage technology is still under development, the opportunity presents itself to natively integrate data security mechanisms. This is the aim of this thesis. Our first contribution is a risk analysis of the entire storage chain, which has enabled us to identify vulnerabilities in digital and biological processes, particularly in terms of confidentiality, integrity, availability and traceability. A second contribution is the identification of elementary biological operators for simple manipulations of DNA. Using these operators, we have developed a DNACipher encryption solution that requires biomolecular decryption (DNADecipher) of the molecules before the data can be read correctly. This third contribution, based on enzymes, required the development of a coding algorithm for digital data into DNA sequences, a contribution called DSWE. This algorithm respects the constraints of biological processes (e.g. homopolymers) and our encryption solution. Our final contribution is an experimental validation of our secure storage chain. This is the first proof of concept showing that it is possible to secure this new storage medium using biomolecular manipulations
Piretti, Mattia. „Synthetic DNA as a novel data storage solution for digital images“. Master's thesis, Alma Mater Studiorum - Università di Bologna, 2020. http://amslaurea.unibo.it/22028/.
Der volle Inhalt der QuelleGermishuizen, Willem Andreas. „Dielectrophoresis as an addressing mechanism in a novel data storage system based on DNA“. Thesis, University of Cambridge, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.615680.
Der volle Inhalt der QuelleYanez, Ciceron. „SYNTHESIS OF NOVEL FLUORENE-BASED TWO-PHOTON ABSORBING MOLECULES AND THEIR APPLICATIONS IN OPTICAL DATA STORAGE, MICROFABRICATIO“. Doctoral diss., University of Central Florida, 2009. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/3573.
Der volle Inhalt der QuellePh.D.
Department of Chemistry
Sciences
Chemistry PhD
Camerlengo, Terry Luke. „Techniques for Storing and Processing Next-Generation DNA Sequencing Data“. The Ohio State University, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=osu1388502159.
Der volle Inhalt der QuelleYanez, Ciceron. „Synthesis of novel fluorene-based two-photon absorbing molecules and their applications in optical data storage, microfabrication, and stimulated emission depletion“. Orlando, Fla. : University of Central Florida, 2009. http://purl.fcla.edu/fcla/etd/CFE0002913.
Der volle Inhalt der QuelleHalladjian, Sarkis. „Spatially Integrated Abstraction of Genetic Molecules“. Electronic Thesis or Diss., université Paris-Saclay, 2020. http://www.theses.fr/2020UPASG056.
Der volle Inhalt der QuelleThe human genome consists mainly of DNA, a macromolecule consisting of a long linear sequence of bases, tightly packed to fit in the relatively small nucleus. The packing gives rise to multiple hierarchical organizational levels. Recent research has shown that, along with the linear sequence, the spatial arrangement of the genome plays an important role in the genome’s function and activity. The visualization of both linear and spatial aspects of genome data is therefore necessary. In this thesis, we focus on the concept of continuous visual abstraction for multiscale data, applied to the visualization of the human genome. Visual abstraction is a concept inspired by illustrations that makes the job of visual processing simpler, by guiding the attention of the viewer to important aspects. We first extract characteristics of multiscale data and makes a parallel comparison between genome and astronomical data. The existing differences create the need for different approaches. A common point however is the need for continuous transitions that helps viewers grasp the relationships and relative size differences between scales. To satisfy the conditions posed by the two aspects of the multiscale genome data, we present two conceptual frameworks, based on the same data. The first framework, ScaleTrotter, represents the spatial structure of the genome, on all available levels. It gives users the freedom to travel from the nucleus of a cell to the atoms of the bases, passing through the different organizational levels of the genome. To make the exploration of the structure of all levels possible, smooth temporal transitions are used. Even though all the scales are not simultaneously visible, the temporal transition used superimposes two representations of the same element at consecutive scales emphasizing their relationship. To ensure the understandability and interactivity of the data, unnecessary parts of the data are abstracted away with the use of a scale-dependent camera. The second framework, Multiscale Unfolding, focuses on aspects that are not visible in ScaleTrotter: the linear sequence and a simultaneous overview of all the organizational levels. The data is straightened to unfold the packing that occurs on several levels in a way that conserves the connectivity between the elements. To represent all the available levels, we use smooth spatial transitions between the levels. These spatial transitions are based on the same concept of the temporal transitions of the previous framework, superimposing scales and emphasizing on their relationship and size difference. We introduce an interaction technique called Multiscale Zliding that allows the exploration of the data and further emphasizes the size differences between the levels. In each framework, one of either linear of spatial aspect of genome data is sacrificed to emphasize the other. The thesis concludes with a discussion about the possibility of combining the two frameworks, minimizing the sacrifices to explore the two equally important aspects of the genome. In this thesis, we take a step closer to fully understanding the activity of the genome
Favero, Francesco. „Development of two new approaches for NGS data analysis of DNA and RNA molecules and their application in clinical and research fields“. Doctoral thesis, Università del Piemonte Orientale, 2019. http://hdl.handle.net/11579/102446.
Der volle Inhalt der QuelleBoukis, Andreas Christos [Verfasser], und M. A. R. [Akademischer Betreuer] Meier. „Moleküle als potentielle Datenspeichersysteme: Multikomponentenreaktionen sind der Schlüssel = Molecules as potential data storage systems: Multicomponent reactions are the key / Andreas Christos Boukis ; Betreuer: M. A. R. Meier“. Karlsruhe : KIT-Bibliothek, 2018. http://d-nb.info/1164081071/34.
Der volle Inhalt der QuellePearson, Anthony Craig. „Nanoscale Surface Patterning and Applications: Using Top-Down Patterning Methods to Aid Bottom-Up Fabrication“. BYU ScholarsArchive, 2012. https://scholarsarchive.byu.edu/etd/3757.
Der volle Inhalt der QuelleBücher zum Thema "Data storage into DNA molecules"
I, Bell George, und Marr Thomas G, Hrsg. Computers and DNA: The proceedings of the Interface Between Computation Science and Nucleic Acid Sequencing Workshop, held Dec. 12 to 16, 1988 in Santa Fe, New Mexico. Redwood City, Calif: Addison-Wesley, 1990.
Den vollen Inhalt der Quelle findenVenter, J. Craig, Chris Fields und Mark D. Adams. Automated DNA Sequencing and Analysis. Elsevier Science & Technology Books, 2012.
Den vollen Inhalt der Quelle finden(Editor), Mark D. Adams, Chris Fields (Editor) und J. Craig Venter (Editor), Hrsg. Automated DNA Sequencing and Analysis. Academic Press, 1994.
Den vollen Inhalt der Quelle findenShomorony, Ilan, und Reinhard Heckel. Information-Theoretic Foundations of DNA Data Storage. Now Publishers, 2022.
Den vollen Inhalt der Quelle findenDemidov, Vadim V. DNA Beyond Genes: From Data Storage and Computing to Nanobots, Nanomedicine, and Nanoelectronics. Springer, 2020.
Den vollen Inhalt der Quelle findenDemidov, Vadim V. DNA Beyond Genes: From Data Storage and Computing to Nanobots, Nanomedicine, and Nanoelectronics. Springer International Publishing AG, 2021.
Den vollen Inhalt der Quelle findenData in Modern Biology (Codata Bulletin,). Elsevier Science Pub Co, 1985.
Den vollen Inhalt der Quelle findenHilgurt, S. Ya, und O. A. Chemerys. Reconfigurable signature-based information security tools of computer systems. PH “Akademperiodyka”, 2022. http://dx.doi.org/10.15407/akademperiodyka.458.297.
Der volle Inhalt der QuelleBuchteile zum Thema "Data storage into DNA molecules"
Chen, Yuan-Jyue, und Georg Seelig. „Scaling Up DNA Computing with Array-Based Synthesis and High-Throughput Sequencing“. In Natural Computing Series, 281–93. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-9891-1_16.
Der volle Inhalt der QuelleSingh, Baljinder. „DNA Digital Data Storage: Breakthroughs in Biomedical Research“. In Biomedical Translational Research, 135–40. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-4345-3_9.
Der volle Inhalt der QuelleJenifer, P., und T. Kirthiga Devi. „Enhancing Data Security Using DNA Algorithm in Cloud Storage“. In Artificial Intelligence Techniques for Advanced Computing Applications, 19–26. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-5329-5_3.
Der volle Inhalt der QuelleKim, Raphael. „DNA as Digital Data Storage: Opportunities and Challenges for HCI“. In Communications in Computer and Information Science, 225–32. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-60700-5_29.
Der volle Inhalt der QuelleSiddaramappa, V., und K. B. Ramesh. „DNA-Based XOR Operation (DNAX) for Data Security Using DNA as a Storage Medium“. In Integrated Intelligent Computing, Communication and Security, 343–51. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-8797-4_36.
Der volle Inhalt der QuelleKruglik, S. G., C. Otto, A. G. Shvedko, V. V. Ermolenkov, V. A. Orlovich, V. S. Chirvony und P. Y. Turpin. „New Raman Data on Photoinduced Porphyrin Translocation and Exciplex Formation in Cu(TMpy-P4) — DNA Complex“. In Spectroscopy of Biological Molecules: Modern Trends, 395–96. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-011-5622-6_177.
Der volle Inhalt der QuelleYatribi, Anouar, Mostafa Belkasmi und Fouad Ayoub. „An Efficient and Secure Forward Error Correcting Scheme for DNA Data Storage“. In Proceedings of the Tenth International Conference on Soft Computing and Pattern Recognition (SoCPaR 2018), 226–37. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-17065-3_23.
Der volle Inhalt der QuelleSatz, Alexander L., und Weiren Cui. „Analysis of DNA-Encoded Library Screening Data: Selection of Molecules for Synthesis“. In Methods in Molecular Biology, 195–205. New York, NY: Springer US, 2022. http://dx.doi.org/10.1007/978-1-0716-2545-3_23.
Der volle Inhalt der QuelleRasool, Abdur, Qiang Qu, Qingshan Jiang und Yang Wang. „A Strategy-based Optimization Algorithm to Design Codes for DNA Data Storage System“. In Algorithms and Architectures for Parallel Processing, 284–99. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-95388-1_19.
Der volle Inhalt der QuellePragaladan, R., und S. Sathappan. „A Secure Cloud Data Storage Combining DNA Structure and Multi-aspect Time-Integrated Cut-off Potential“. In Advances in Intelligent Systems and Computing, 361–74. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-7200-0_33.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Data storage into DNA molecules"
Ghosh, Nishant, N. Anushka Reddy, VNS Sasank, K. Suvarchala und Sushma Patkar. „Preserving History with Synthetic DNA: An Innovative Data Storage Solution“. In 2024 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT), 1–6. IEEE, 2024. http://dx.doi.org/10.1109/conecct62155.2024.10677101.
Der volle Inhalt der QuelleEn-Nattouh, Youssef, und Reda Jourani. „Improved storage of Big Data in DNA using the PCA algorithm“. In 2024 International Conference on Circuit, Systems and Communication (ICCSC), 1–5. IEEE, 2024. http://dx.doi.org/10.1109/iccsc62074.2024.10616520.
Der volle Inhalt der QuelleSrivastava, Shubham, Krishna Gopal Benerjee und Adrish Banerjee. „Efficient Bidirectional RNNs for Substitution Error Correction in DNA Data Storage“. In 2024 IEEE International Conference on Machine Learning for Communication and Networking (ICMLCN), 434–39. IEEE, 2024. http://dx.doi.org/10.1109/icmlcn59089.2024.10625179.
Der volle Inhalt der QuelleYuvarani, R., und R. Mahaveerakannan. „Enhanced Cloud Security Through DNA-based Authentication for Data Storage and Transactions“. In 2024 5th International Conference on Electronics and Sustainable Communication Systems (ICESC), 589–94. IEEE, 2024. http://dx.doi.org/10.1109/icesc60852.2024.10689928.
Der volle Inhalt der QuellePalunčić, Filip, Daniella Palunčić und B. T. Maharaj. „Capacity of Runlength-Limited and GC-Content Constrained Codes for DNA Data Storage“. In 2024 IEEE International Symposium on Information Theory (ISIT), 1937–42. IEEE, 2024. http://dx.doi.org/10.1109/isit57864.2024.10619166.
Der volle Inhalt der QuelleMartens, Koen, David Barge, Lijun Liu, Sybren Santermans, Colin Stoquart, Jacobus Delport, Kherim Willems et al. „The Nanopore-FET as a High-Throughput Barcode Molecule Reader for Single-Molecule Omics and Read-out of DNA Digital Data Storage“. In 2022 IEEE International Electron Devices Meeting (IEDM). IEEE, 2022. http://dx.doi.org/10.1109/iedm45625.2022.10019451.
Der volle Inhalt der QuelleHeller, Michael J., Carl Edman, Don Ackley, WJ Kitchen, Christian Gurtner und Rachel Formosa. „ELECTRIC FIELD ASSISTED SELF-ASSEMBLY OF DNA BASED MOLECULAR CHROMOPHORE COMPONENTS FOR OPTICAL DATA STORAGE AND OTHER NANOTECHNOLOGY APPLICATIONS“. In Spatial Light Modulators and Integrated Optoelectronic Arrays. Washington, D.C.: OSA, 1999. http://dx.doi.org/10.1364/slm.1999.stua2.
Der volle Inhalt der QuellePatel, Radhika, Dweepna Garg, Milind Shah, Safeya Dharmajwala, Kush Jindal und Amit Nayak. „DNA Archives: Revolutionizing Data Storage“. In 2023 3rd International Conference on Innovative Mechanisms for Industry Applications (ICIMIA). IEEE, 2023. http://dx.doi.org/10.1109/icimia60377.2023.10426397.
Der volle Inhalt der QuelleWeide-Zaage, Kirsten. „Technical Implementation of DNA Data-Storage“. In 2024 International Conference on Electronics Packaging (ICEP). IEEE, 2024. http://dx.doi.org/10.23919/icep61562.2024.10535600.
Der volle Inhalt der QuelleMansuripur, Masud. „DNA, human memory, and the storage technology of the 21st century“. In Optical Data Storage, herausgegeben von Terril Hurst und Seiji Kobayashi. SPIE, 2002. http://dx.doi.org/10.1117/12.453368.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Data storage into DNA molecules"
Iudicone, Daniele, und Marina Montresor. Omics community protocols. EuroSea, 2023. http://dx.doi.org/10.3289/eurosea_d3.19.
Der volle Inhalt der QuelleHeifetz, Yael, und Michael Bender. Success and failure in insect fertilization and reproduction - the role of the female accessory glands. United States Department of Agriculture, Dezember 2006. http://dx.doi.org/10.32747/2006.7695586.bard.
Der volle Inhalt der QuelleRon, Eliora, und Eugene Eugene Nester. Global functional genomics of plant cell transformation by agrobacterium. United States Department of Agriculture, März 2009. http://dx.doi.org/10.32747/2009.7695860.bard.
Der volle Inhalt der QuelleRodriguez Muxica, Natalia. Open configuration options Bioinformatics for Researchers in Life Sciences: Tools and Learning Resources. Inter-American Development Bank, Februar 2022. http://dx.doi.org/10.18235/0003982.
Der volle Inhalt der QuelleEpel, Bernard, und Roger Beachy. Mechanisms of intra- and intercellular targeting and movement of tobacco mosaic virus. United States Department of Agriculture, November 2005. http://dx.doi.org/10.32747/2005.7695874.bard.
Der volle Inhalt der QuelleLichter, Amnon, Gopi K. Podila und Maria R. Davis. Identification of Genetic Determinants that Facilitate Development of B. cinerea at Low Temperature and its Postharvest Pathogenicity. United States Department of Agriculture, März 2011. http://dx.doi.org/10.32747/2011.7592641.bard.
Der volle Inhalt der Quelle