Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Data series gap-filling“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Data series gap-filling" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Data series gap-filling"
Keysar, Ariela. „Filling a data gap: the American Religious Identification Survey (ARIS) series“. Religion 44, Nr. 3 (22.04.2014): 383–95. http://dx.doi.org/10.1080/0048721x.2014.903648.
Der volle Inhalt der QuelleYu, Wentao, Jing Li, Qinhuo Liu, Jing Zhao, Yadong Dong, Xinran Zhu, Shangrong Lin, Hu Zhang und Zhaoxing Zhang. „Gap Filling for Historical Landsat NDVI Time Series by Integrating Climate Data“. Remote Sensing 13, Nr. 3 (29.01.2021): 484. http://dx.doi.org/10.3390/rs13030484.
Der volle Inhalt der QuelleLompar, Miloš, Branislava Lalić, Ljiljana Dekić und Mina Petrić. „Filling Gaps in Hourly Air Temperature Data Using Debiased ERA5 Data“. Atmosphere 10, Nr. 1 (04.01.2019): 13. http://dx.doi.org/10.3390/atmos10010013.
Der volle Inhalt der QuelleKang, Minseok, Kazuhito Ichii, Joon Kim, Yohana M. Indrawati, Juhan Park, Minkyu Moon, Jong-Hwan Lim und Jung-Hwa Chun. „New Gap-Filling Strategies for Long-Period Flux Data Gaps Using a Data-Driven Approach“. Atmosphere 10, Nr. 10 (22.09.2019): 568. http://dx.doi.org/10.3390/atmos10100568.
Der volle Inhalt der QuelleSTAUCH, VANESSA J., und ANDREW J. JARVIS. „A semi-parametric gap-filling model for eddy covariance CO2 flux time series data“. Global Change Biology 12, Nr. 9 (01.08.2006): 1707–16. http://dx.doi.org/10.1111/j.1365-2486.2006.01227.x.
Der volle Inhalt der QuelleZhao, Junbin, Holger Lange und Helge Meissner. „Gap-filling continuously-measured soil respiration data: A highlight of time-series-based methods“. Agricultural and Forest Meteorology 285-286 (Mai 2020): 107912. http://dx.doi.org/10.1016/j.agrformet.2020.107912.
Der volle Inhalt der QuelleBoudhina, Nissaf, Rim Zitouna-Chebbi, Insaf Mekki, Frédéric Jacob, Nétij Ben Mechlia, Moncef Masmoudi und Laurent Prévot. „Evaluating four gap-filling methods for eddy covariance measurements of evapotranspiration over hilly crop fields“. Geoscientific Instrumentation, Methods and Data Systems 7, Nr. 2 (07.06.2018): 151–67. http://dx.doi.org/10.5194/gi-7-151-2018.
Der volle Inhalt der QuellePascual-Granado, J., R. Garrido, J. Gutirrez-Soto und S. Martín-Ruiz. „Towards a More General Method for Filling Gaps in Time Series“. Proceedings of the International Astronomical Union 7, S285 (September 2011): 392–93. http://dx.doi.org/10.1017/s1743921312001172.
Der volle Inhalt der QuelleBeguería, Santiago, Miquel Tomas-Burguera, Roberto Serrano-Notivoli, Dhais Peña-Angulo, Sergio M. Vicente-Serrano und José-Carlos González-Hidalgo. „Gap Filling of Monthly Temperature Data and Its Effect on Climatic Variability and Trends“. Journal of Climate 32, Nr. 22 (22.10.2019): 7797–821. http://dx.doi.org/10.1175/jcli-d-19-0244.1.
Der volle Inhalt der QuelleSantos, Janaina Cassiano dos, Gustavo Bastos Lyra, Marcel Carvalho Abreu und Daniel Carlos de Menezes. „An approach to quality analysis, gap filling and homogeneity of monthly rainfall series“. Revista Engenharia na Agricultura - Reveng 29 (16.08.2021): 157–68. http://dx.doi.org/10.13083/reveng.v29i1.11738.
Der volle Inhalt der QuelleDissertationen zum Thema "Data series gap-filling"
Rodrigues, Mutti Pedro. „Caractérisation de la sécheresse dans le nord-est du Brésil : une analyse multi-échelle des bassins versants et suivi par télédétection“. Thesis, Rennes 2, 2020. http://www.theses.fr/2020REN20036.
Der volle Inhalt der QuelleDrought is a recurrent phenomenon in the Northeast Brazil (NEB) region, especially in its semiarid inlands. Although several drought studies have been carried out at the NEB, some important methodological aspects inherent to data quality and control, specificities of the used techniques, and spatial scale still need to be further discussed. Therefore, the objective of this thesis is to characterize different aspects of drought in the NEB considering different spatial scales, meteorological data characteristics, and remote sensing monitoring alternatives. This characterization was carried out in the São Francisco watershed (SFW), which presents a remarkable climate diversity, in the Piranhas-Açu watershed (PAW), which is entirely located in the semiarid NEB, and in desertification hotspots. In the first study, we used the evaporation deficit as drought index in the SFW. Results show that periods of water shortage are becoming more frequent and more intense in the coastal and middle zones of the basin. In the second study, a rainfall anomaly index was used in the PAW to identify drought events, which are mostly associated with El Niño events and the anomalous warming of the Tropical North Atlantic Ocean. Finally, in the third study, different stochastic models were tested in order to forecast remotely sensed Normalized Difference Vegetation Index data over six desertification hotspots in the NEB. Results show that the tested models satisfactorily forecast short-term dry and degraded vegetation states
Buchteile zum Thema "Data series gap-filling"
Mordick, Briana E. „Filling the Data Gap: What We Know (and Don’t Know) about Hydraulic Fracturing and Acidizing in California“. In ACS Symposium Series, 205–20. Washington, DC: American Chemical Society, 2015. http://dx.doi.org/10.1021/bk-2015-1216.ch010.
Der volle Inhalt der QuelleSarafanov, Mikhail, Nikolay O. Nikitin und Anna V. Kalyuzhnaya. „Automated Data-Driven Approach for Gap Filling in the Time Series Using Evolutionary Learning“. In 16th International Conference on Soft Computing Models in Industrial and Environmental Applications (SOCO 2021), 633–42. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-87869-6_60.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Data series gap-filling"
Fischer, Raphael, Nico Piatkowski, Charlotte Pelletier, Geoffrey I. Webb, Francois Petitjean und Katharina Morik. „No Cloud on the Horizon: Probabilistic Gap Filling in Satellite Image Series“. In 2020 IEEE 7th International Conference on Data Science and Advanced Analytics (DSAA). IEEE, 2020. http://dx.doi.org/10.1109/dsaa49011.2020.00069.
Der volle Inhalt der QuelleGolestani, Maziar, und Mostafa Zeinoddini. „Gap-Filling and Predicting Wave Parameters Using Support Vector Regression Method“. In ASME 2011 30th International Conference on Ocean, Offshore and Arctic Engineering. ASMEDC, 2011. http://dx.doi.org/10.1115/omae2011-49814.
Der volle Inhalt der QuelleBaltazar, Juan-Carlos, und David E. Claridge. „Study of Cubic Splines and Fourier Series as Interpolation Techniques for Filling in Short Periods of Missing Building Energy Use and Weather Data“. In ASME Solar 2002: International Solar Energy Conference. ASMEDC, 2002. http://dx.doi.org/10.1115/sed2002-1031.
Der volle Inhalt der Quelle