Zeitschriftenartikel zum Thema „Data processing“

Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Data processing.

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Data processing" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Mehraj, Nadiya, und Harveen Kour. „Data Processing Through Image Processing using Gaussian Minimum Shift Keying“. International Journal of Trend in Scientific Research and Development Volume-2, Issue-6 (31.10.2018): 977–81. http://dx.doi.org/10.31142/ijtsrd18819.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Rossmann, Michael G., und Cornelis G. van Beek. „Data processing“. Acta Crystallographica Section D Biological Crystallography 55, Nr. 10 (01.10.1999): 1631–40. http://dx.doi.org/10.1107/s0907444999008379.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
X-ray diffraction data processing proceeds through indexing, pre-refinement of camera parameters and crystal orientation, intensity integration, post-refinement and scaling. TheDENZOprogram has set new standards for autoindexing, but no publication has appeared which describes the algorithm. In the development of the newData Processing Suite(DPS), one of the first aims has been the development of an autoindexing procedure at least as powerful as that used byDENZO. The resultant algorithm will be described. Another major problem which has arisen in recent years is scaling and post-refinement of data from different images when there are few, if any, full reflections. This occurs when the mosaic spread approaches or exceeds the angle of oscillation, as is usually the case for frozen crystals. A procedure which is able to obtain satisfactory results for such a situation will be described.
3

Volkova, T., E. Furta, O. Dmitrieva und I. Shabalina. „Pattern Building Methods in Genetic Data Processing“. Journal on Selected Topics in Nano Electronics and Computing 1, Nr. 2 (Juni 2014): 2–6. http://dx.doi.org/10.15393/j8.art.2014.3041.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Dayalan, Muthu. „MapReduce: Simplified Data Processing on Large Cluster“. International Journal of Research and Engineering 5, Nr. 5 (April 2018): 399–403. http://dx.doi.org/10.21276/ijre.2018.5.5.4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Zasuhina, Ol'ga, Egor Ershov, Leonid Golovatiukov und Grigory Shitenkov. „BIG DATA PROCESSING TECHNOLOGY“. Bulletin of the Angarsk State Technical University 1, Nr. 16 (27.12.2022): 98–100. http://dx.doi.org/10.36629/2686-777x-2022-1-16-98-100.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Gnip, P., und S. Kafka. „Using technology of data collection and data processing in precision farming“. Agricultural Economics (Zemědělská ekonomika) 49, No. 9 (02.03.2012): 419–26. http://dx.doi.org/10.17221/5426-agricecon.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Data collection, data processing, data presentation and data application in the System of Precision farming guarantee a success of this system in the market. Difficulties of technologies, which are currently and continually involved in this system, argue against its practical using by farmers. In this case, service company wants to create a suitable environment not only for data collection, but also for the high quality of the information distribution to customers. One of such tools is the MapServer placed on Internet web sites.
7

KRYVENCHUK, Yurii, und Mykhailo-Yurii KHANAS. „ALGORITHM OF DATA MINING AND PROCESSING OF RELATED DATA IN SOCIAL NETWORKS“. Herald of Khmelnytskyi National University. Technical sciences 311, Nr. 4 (August 2022): 115–18. http://dx.doi.org/10.31891/2307-5732-2022-311-4-115-118.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
We live in a time of rapid growth of information technology, which is firmly entrenched in our daily lives. It is simply impossible to imagine a modern person without social networks, because they perform a communicative and informational function, namely: communication, information retrieval, news exchange, etc. Five hundred million tweets are posted daily, making Twitter a major social media platform from which topical information on events can be extracted. So, there is a lot of information available to the user, which is difficult to identify something specific and necessary in the usual way viewing. Accordingly, there is a need for technologies that can quickly process large amounts of data and highlight only the information that is useful to a particular user. This technology called recommender systems. It automatically suggest items to users that might be interesting for them. Due to the desire to unite people with common interests, it is relevant to develop a recommendation system based on social networks that help in personification of the user and compilation of his psychotype using his profile. The paper has description and results of the creation of recommendation system. The basis of this work is one of the algorithms used in recommendation systems – the recommendation system is based on content filtering. It analyzes users’ Twitter posts and calculates their interests. If we consider all the words, our model will not have good results and do not pay attention to what is important to use. Therefore, the most important step is always filtering data, so the number one task is to speed up the time of filtering text and retrieving data from the social network for further processing. The feature of this system is that this algorithm uses parallel calculations and frequency analysis of the text.
8

Nikolova, Evgeniya, Mariya Monova-Zheleva und Yanislav Zhelev. „Personal Data Processing in a Digital Educational Environment“. Mathematics and Informatics LXV, Nr. 4 (30.08.2022): 365–78. http://dx.doi.org/10.53656/math2022-4-4-per.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
New technologies provide innovative spaces for cooperation and communication between employers and employees, citizens and structures, educators, and learners. Data protection issues have always been key to education providers, but the proliferation of online learning forms and formats poses new and unique challenges in this regard. When introducing a new technology that involves the collection of sensitive data, the General Data Protection Regulation (GDPR) of the European Parliament and the Council of the European Union requires the identification and mitigation of all risks that could lead to the misuse of personal data. The article discusses some critical points regarding the application of GDPR in online learning. The goal of this article is to investigate the vulnerabilities to personal data security during online learning and to identify methods that schools and universities may apply to ensure that personal data are kept private while students utilize online platforms to learn. For the purposes of the research, the published privacy, and data protection policies of all Bulgarian universities as well as papers on how universities could adapt to the new EU General Data Protection Regulation were revised and analysed. Best practices of some foreign universities in this regard were studied as well.
9

MARTYNIUK, Tatiana, Andrii KOZHEMIAKO, Bohdan KRUKIVSKYI und Antonina BUDA. „ASSOCIATIVE OPERATIONS BASED ON DIFFERENCE-SLICE DATA PROCESSING“. Herald of Khmelnytskyi National University. Technical sciences 311, Nr. 4 (August 2022): 159–63. http://dx.doi.org/10.31891/2307-5732-2022-311-4-159-163.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Associative operations are effectively used to solve such application problems as sorting, searching for certain features, and identifying extreme (maximum/minimum) elements in data sets. Thus, determining the maximum number as a result of sorting a numerical array is an acceptable operation in implementing the competition mechanism in neural networks. In addition, determining the average number in a numerical series by sorting significantly speeds up the process of median filtering of images and signals. In this case, the implementation of median filtering requires the use of sorting with the ranking of the elements of the number array. This paper analyses the possibilities of associative operations implementing the elements of a vector (one-dimensional) array of numbers based on processing by difference slices (DS). A simplified description of DS processing with a selection of the common part of the elements of the vector and the difference slice formed from its elements is given. In addition, elements of the binary mask matrix are used as an example of a topological feature matrix. The proposed approach allows for the formation of the ranks of the elements of the initial vector, as a result of sorting in ascending order of their numerical values. The paper shows a schematic representation of the process of DS processing, as well as an example of DS processing of a number vector in the form of a table, which shows the formation sequence of numbers of the sorted array and the ranks of numbers of the initial array. Therefore, the proposed use of topological features allows to determine the comparative relations between the elements of the numerical array in the process of spatially distributed DS processing, as well as to confirm the versatility of this approach.
10

Stefanowicz, Bogdan, und Marek Cierpiał-Wolan. „Data processing errors“. Wiadomości Statystyczne. The Polish Statistician 60, Nr. 9 (28.09.2015): 23–29. http://dx.doi.org/10.5604/01.3001.0014.8296.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
The article highlights the need to broaden the analysis of the quality of the survey results, taking into account the negative impact of certain operations of so-called editing input data, such as checking their accuracy and correction of errors. In the conclusions it underlines the need to extend the programs for academic lectures in statistics for analysis of the impact of processing operations on the quality of the results.
11

Jaworski, John, und Elizabeth Bliss. „Data Processing Mathematics“. Mathematical Gazette 71, Nr. 458 (Dezember 1987): 334. http://dx.doi.org/10.2307/3617092.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

OHE, Shuzo. „Statistical Data Processing“. Journal of the Japan Society of Colour Material 67, Nr. 9 (1994): 590–95. http://dx.doi.org/10.4011/shikizai1937.67.590.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Sarychev, Dmitriy S. „Lidar data processing“. SAPR i GIS avtomobilnykh dorog, Nr. 1(2) (2014): 16–19. http://dx.doi.org/10.17273/cadgis.2014.1.4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Pu, Wenjing. „Standardized Data Processing“. Transportation Research Record: Journal of the Transportation Research Board 2338, Nr. 1 (Januar 2013): 44–57. http://dx.doi.org/10.3141/2338-06.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Ahlswede, R., und P. Lober. „Quantum data processing“. IEEE Transactions on Information Theory 47, Nr. 1 (2001): 474–78. http://dx.doi.org/10.1109/18.904565.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Ahituv, Niv, Yeheskel Lapid und Seev Neumann. „Processing encrypted data“. Communications of the ACM 30, Nr. 9 (September 1987): 777–80. http://dx.doi.org/10.1145/30401.30404.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Hagaman, Edward W., Jeffrey C. Hoch und Alan S. Stern. „NMR Data Processing“. Radiation Research 147, Nr. 2 (Februar 1997): 272. http://dx.doi.org/10.2307/3579432.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Scherr, A. L. „Distributed data processing“. IBM Systems Journal 38, Nr. 2.3 (1999): 354–74. http://dx.doi.org/10.1147/sj.382.0354.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Satoh, Ichiro. „Pervasive Data Processing“. Procedia Computer Science 63 (2015): 16–23. http://dx.doi.org/10.1016/j.procs.2015.08.307.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Bouchachia, Abdelhamid. „Online data processing“. Neurocomputing 126 (Februar 2014): 116–17. http://dx.doi.org/10.1016/j.neucom.2013.05.008.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Cameron, David G. „Advanced data processing“. Mikrochimica Acta 93, Nr. 1-6 (Januar 1987): 229–39. http://dx.doi.org/10.1007/bf01201692.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Gough, T. G. „Data Processing Methods“. Data Processing 27, Nr. 5 (Juni 1985): 51. http://dx.doi.org/10.1016/0011-684x(85)90145-5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Richards, B. „Data processing mathematics“. Data Processing 28, Nr. 3 (April 1986): 162. http://dx.doi.org/10.1016/0011-684x(86)90015-8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Lepper, AM. „Data Processing Budgets“. Data Processing 28, Nr. 2 (März 1986): 103. http://dx.doi.org/10.1016/0011-684x(86)90114-0.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Campbell-Kelly, Martin. „Victorian data processing“. Communications of the ACM 53, Nr. 10 (Oktober 2010): 19–21. http://dx.doi.org/10.1145/1831407.1831417.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Starck, J. L., A. Abergel, H. Aussel, M. Sauvage, R. Gastaud, A. Claret, X. Desert, C. Delattre und E. Pantin. „ISOCAM data processing“. Astronomy and Astrophysics Supplement Series 134, Nr. 1 (Januar 1999): 135–48. http://dx.doi.org/10.1051/aas:1999129.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

McIntyre, D. J. O. „NMR data processing“. NMR in Biomedicine 12, Nr. 6 (Oktober 1999): 405–6. http://dx.doi.org/10.1002/(sici)1099-1492(199910)12:6<405::aid-nbm590>3.0.co;2-c.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Görlitz, L., B. H. Menze, B. M. Kelm und F. A. Hamprecht. „Processing spectral data“. Surface and Interface Analysis 41, Nr. 8 (August 2009): 636–44. http://dx.doi.org/10.1002/sia.3066.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Rostek, Katarzyna. „Data Analytical Processing in Data Warehouses“. Foundations of Management 2, Nr. 1 (01.01.2010): 99–116. http://dx.doi.org/10.2478/v10238-012-0023-x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Data Analytical Processing in Data Warehouses The article presents issues connected with processing information from data warehouses (the analytical enterprise databases) and two basic types of analytical data processing in data warehouse. The genesis, main definitions, scope of application and real examples from business implementations will be described for each type of analysis. There will be presented copyrighted method of knowledge discovering in databases, together with practical guidelines for its proper and effective use in the enterprise.
30

Hwa Choi, Hyun, Kangho Kim und Seung Jo Bae. „A Remote Memory System for High Performance Data Processing“. International Journal of Future Computer and Communication 4, Nr. 1 (Februar 2015): 50–54. http://dx.doi.org/10.7763/ijfcc.2015.v4.354.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Osborn, Wendy. „Unbounded Spatial Data Stream Query Processing using Spatial Semijoins“. Journal of Ubiquitous Systems and Pervasive Networks 15, Nr. 02 (01.03.2021): 33–41. http://dx.doi.org/10.5383/juspn.15.02.005.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
In this paper, the problem of query processing in spatial data streams is explored, with a focus on the spatial join operation. Although the spatial join has been utilized in many proposed centralized and distributed query processing strategies, for its application to spatial data streams the spatial join operation has received very little attention. One identified limitation with existing strategies is that a bounded region of space (i.e., spatial extent) from which the spatial objects are generated needs to be known in advance. However, this information may not be available. Therefore, two strategies for spatial data stream join processing are proposed where the spatial extent of the spatial object stream is not required to be known in advance. Both strategies estimate the common region that is shared by two or more spatial data streams in order to process the spatial join. An evaluation of both strategies includes a comparison with a recently proposed approach in which the spatial extent of the data set is known. Experimental results show that one of the strategies performs very well at estimating the common region of space using only incoming objects on the spatial data streams. Other limitations of this work are also identified.
32

Proshin, A. A., A. M. Matveev, A. V. Kashnitskiy und M. A. Burtsev. „Satellite data efficient processing with dynamic block archive access“. Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa 17, Nr. 6 (2020): 56–60. http://dx.doi.org/10.21046/2070-7401-2020-17-6-56-60.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Penížek, V., und L. Borůvka. „Processing of conventional soil survey data using geostatistical methods“. Plant, Soil and Environment 50, No. 8 (10.12.2011): 352–57. http://dx.doi.org/10.17221/4043-pse.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
The aim of this study is to find a suitable treatment of conventional soil survey data for geostatistical exploitation. Different aims and methods of a conventional soil survey and the geostatistics can cause some problems. The spatial variability of clay content and pH for an area of 543 km<sup>2</sup> was described by variograms. First the original untreated data were used. Then the original data were treated to overcome the problems that arise from different aims of conventional soil survey and geostatistical approaches. Variograms calculated from the original data, both for clay content and pH, showed a big portion of nugget variability caused by a few extreme values. Simple exclusion of data representing some specific soil units (local extremes, non-zonal soils) did not bring almost any improvement. Exclusion of outlying values from the first three lag classes that were the most influenced due to a relatively big portion of these extreme values provided much better results. The nugget decreased from pure nugget to 50% of the sill variability for clay content and from 81 to 23% for pH.
34

MILOSAN, Ioan. „STATISTICAL PROCESSING OF EXPERIMENTAL DATA USING ANALYSIS OF VARIANCE“. SCIENTIFIC RESEARCH AND EDUCATION IN THE AIR FORCE 18, Nr. 1 (24.06.2016): 489–96. http://dx.doi.org/10.19062/2247-3173.2016.18.1.67.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

More, Prof Vijay, Ms Ankita Shetty und Ms Aishwarya Mapara Mr Rahul Ghuge Mr Rohit Sharma. „Employee Data Mining Based on Text and Image Processing“. International Journal of Trend in Scientific Research and Development Volume-2, Issue-3 (30.04.2018): 379–81. http://dx.doi.org/10.31142/ijtsrd10791.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Ch, Bilal Hussain. „Securing Cloud Data with the Application of Image Processing“. International Journal of Trend in Scientific Research and Development Volume-2, Issue-6 (31.10.2018): 297–301. http://dx.doi.org/10.31142/ijtsrd18454.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Maruddani, Baso, und Efri Sandi. „The Development of Ground Penetrating Radar (GPR) Data Processing“. International Journal of Machine Learning and Computing 9, Nr. 6 (Dezember 2019): 768–73. http://dx.doi.org/10.18178/ijmlc.2019.9.6.871.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Ummatovich, Eshonqulov Sherzod. „DATA FILTERING IN THE IMAGE PROCESSING TOOLBOX(IPT) ENVIRONMENT“. American Journal of Applied Science and Technology 4, Nr. 3 (01.03.2024): 24–28. http://dx.doi.org/10.37547/ajast/volume04issue03-05.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Analysis of the Aydar-Arnasoy lake system in the environment of IPT. A brief hydrogeological description of the Aydar-Arnasoy lake system. Digital filtering of the Aydar-Arnasoy lake system image. Development of a digital model of the image of the Aydar-Arnasoy lake system using discrete Fourier transformation.
39

., A. Hassini, N. Benabadji . und A. H. Belbachir . „AVHRR Data Sensor Processing“. Journal of Applied Sciences 6, Nr. 11 (15.05.2006): 2501–5. http://dx.doi.org/10.3923/jas.2006.2501.2505.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Lukesh, Susan, J. D. Richards und N. S. Ryan. „Data Processing in Archaeology“. American Journal of Archaeology 90, Nr. 4 (Oktober 1986): 476. http://dx.doi.org/10.2307/506039.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Shao, Wei, und Ron Balliet. „NMR Logging Data Processing“. Petrophysics – The SPWLA Journal of Formation Evaluation and Reservoir Description 63, Nr. 3 (01.06.2022): 300–338. http://dx.doi.org/10.30632/pjv63n3-2022a3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
An overview of NMR data processing is provided with more emphasis on the algorithms and interpretation methods commonly used in everyday NMR logging practices. For many of these algorithms and methods discussed in this paper, either enough technical details or field examples are given for better understanding NMR data processing and interpretation, but more focus is given to the algorithms’ applicable scope and the related issues encountered in the practice of NMR logging interpretation. The latest developments in NMR data processing and interpretation are also discussed.
42

Rowland,, Robert J., J. D. Richards und N. S. Ryan. „Data Processing in Archaeology“. Classical World 80, Nr. 1 (1986): 61. http://dx.doi.org/10.2307/4349991.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Saleh, Eyad, Ahmad Alsa'deh, Ahmad Kayed und Christoph Meinel. „Processing Over Encrypted Data“. ACM SIGMOD Record 45, Nr. 3 (06.12.2016): 5–16. http://dx.doi.org/10.1145/3022860.3022862.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Tang, Qiu-hua, Xing-hua Zhou, Zhong-chen Liu und AND De-wen DU. „Processing Multibeam Backscatter Data“. Marine Geodesy 28, Nr. 3 (Juli 2005): 251–58. http://dx.doi.org/10.1080/01490410500204595.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Stozhkov, Yu I., S. V. Viktorov, A. A. Kvashnin, A. N. Kvashnin und V. I. Logachev. „PAMELA spectrometer data processing“. Bulletin of the Lebedev Physics Institute 43, Nr. 3 (März 2016): 102–7. http://dx.doi.org/10.3103/s1068335616030040.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Taniguchi, D. K., und R. L. Hagrman. „Processing flight test data“. IEEE Potentials 10, Nr. 3 (Oktober 1991): 55–57. http://dx.doi.org/10.1109/45.127649.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Barnes, Gary, und John Lumley. „Processing gravity gradient data“. GEOPHYSICS 76, Nr. 2 (März 2011): I33—I47. http://dx.doi.org/10.1190/1.3548548.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
As the demand for high-resolution gravity gradient data increases and surveys are undertaken over larger areas, new challenges for data processing have emerged. In the case of full-tensor gradiometry, the processor is faced with multiple derivative measurements of the gravity field with useful signal content down to a few hundred meters’ wavelength. Ideally, all measurement data should be processed together in a joint scheme to exploit the fact that all components derive from a common source. We have investigated two methods used in commercial practice to process airborne full-tensor gravity gradient data; the methods result in enhanced, noise-reduced estimates of the tensor. The first is based around Fourier operators that perform integration and differentiation in the spatial frequency domain. By transforming the tensor measurements to a common component, the data can be combined in a way that reduces noise. The second method is based on the equivalent-source technique, where all measurements are inverted into a single density distribution. This technique incorporates a model that accommodates low-order drift in the measurements, thereby making the inversion less susceptible to correlated time-domain noise. A leveling stage is therefore not required in processing. In our work, using data generated from a geologic model along with noise and survey patterns taken from a real survey, we have analyzed the difference between the processed data and the known signal to show that, when considering the Gzz component, the modified equivalent-source processing method can reduce the noise level by a factor of 2.4. The technique has proven useful for processing data from airborne gradiometer surveys over mountainous terrain where the flight lines tend to be flown at vastly differing heights.
48

Sobala, G. M., und A. T. R. Axon. „Data Processing in Endoscopy“. Endoscopy 24, Nr. 01/02 (Januar 1992): 167–68. http://dx.doi.org/10.1055/s-2007-1010456.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Mueller, Rene, Jens Teubner und Gustavo Alonso. „Data processing on FPGAs“. Proceedings of the VLDB Endowment 2, Nr. 1 (August 2009): 910–21. http://dx.doi.org/10.14778/1687627.1687730.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Briddon, A. „Amino Acid Data Processing“. Annals of Clinical Biochemistry: International Journal of Laboratory Medicine 32, Nr. 6 (November 1995): 595. http://dx.doi.org/10.1177/000456329503200615.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Zur Bibliographie