Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Data approximation“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Data approximation" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Data approximation"
FROYLAND, GARY, KEVIN JUDD, ALISTAIR I. MEES, DAVID WATSON und KENJI MURAO. „CONSTRUCTING INVARIANT MEASURES FROM DATA“. International Journal of Bifurcation and Chaos 05, Nr. 04 (August 1995): 1181–92. http://dx.doi.org/10.1142/s0218127495000843.
Der volle Inhalt der QuelleGrubas, Serafim I., Georgy N. Loginov und Anton A. Duchkov. „Traveltime-table compression using artificial neural networks for Kirchhoff-migration processing of microseismic data“. GEOPHYSICS 85, Nr. 5 (19.08.2020): U121—U128. http://dx.doi.org/10.1190/geo2019-0427.1.
Der volle Inhalt der QuelleSTOJANOVIĆ, MIRJANA. „PERTURBED SCHRÖDINGER EQUATION WITH SINGULAR POTENTIAL AND INITIAL DATA“. Communications in Contemporary Mathematics 08, Nr. 04 (August 2006): 433–52. http://dx.doi.org/10.1142/s0219199706002180.
Der volle Inhalt der QuelleFRAHLING, GEREON, PIOTR INDYK und CHRISTIAN SOHLER. „SAMPLING IN DYNAMIC DATA STREAMS AND APPLICATIONS“. International Journal of Computational Geometry & Applications 18, Nr. 01n02 (April 2008): 3–28. http://dx.doi.org/10.1142/s0218195908002520.
Der volle Inhalt der QuelleChen, Jing-Bo, Hong Liu und Zhi-Fu Zhang. „A separable-kernel decomposition method for approximating the DSR continuation operator“. GEOPHYSICS 72, Nr. 1 (Januar 2007): S25—S31. http://dx.doi.org/10.1190/1.2399368.
Der volle Inhalt der QuelleMardia, K. V., und I. L. Dryden. „Shape distributions for landmark data“. Advances in Applied Probability 21, Nr. 4 (Dezember 1989): 742–55. http://dx.doi.org/10.2307/1427764.
Der volle Inhalt der QuelleMardia, K. V., und I. L. Dryden. „Shape distributions for landmark data“. Advances in Applied Probability 21, Nr. 04 (Dezember 1989): 742–55. http://dx.doi.org/10.1017/s0001867800019029.
Der volle Inhalt der QuelleBirch, A. C., und A. G. Kosovichev. „Towards a Wave Theory Interpretation of Time-Distance Helioseismology Data“. Symposium - International Astronomical Union 203 (2001): 180–82. http://dx.doi.org/10.1017/s0074180900219025.
Der volle Inhalt der QuelleDong, Bin, Zuowei Shen und Jianbin Yang. „Approximation from Noisy Data“. SIAM Journal on Numerical Analysis 59, Nr. 5 (Januar 2021): 2722–45. http://dx.doi.org/10.1137/20m1389091.
Der volle Inhalt der QuellePiegl, L. A., und W. Tiller. „Data Approximation Using Biarcs“. Engineering with Computers 18, Nr. 1 (29.04.2002): 59–65. http://dx.doi.org/10.1007/s003660200005.
Der volle Inhalt der QuelleDissertationen zum Thema "Data approximation"
Ross, Colin. „Applications of data fusion in data approximation“. Thesis, University of Huddersfield, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.247372.
Der volle Inhalt der QuelleDeligiannakis, Antonios. „Accurate data approximation in constrained environments“. College Park, Md. : University of Maryland, 2005. http://hdl.handle.net/1903/2681.
Der volle Inhalt der QuelleThesis research directed by: Computer Science. Title from abstract of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.
Tomek, Peter. „Approximation of Terrain Data Utilizing Splines“. Master's thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2012. http://www.nusl.cz/ntk/nusl-236488.
Der volle Inhalt der QuelleCao, Phuong Thao. „Approximation of OLAP queries on data warehouses“. Phd thesis, Université Paris Sud - Paris XI, 2013. http://tel.archives-ouvertes.fr/tel-00905292.
Der volle Inhalt der QuelleLehman, Eric (Eric Allen) 1970. „Approximation algorithms for grammar-based data compression“. Thesis, Massachusetts Institute of Technology, 2002. http://hdl.handle.net/1721.1/87172.
Der volle Inhalt der QuelleIncludes bibliographical references (p. 109-113).
This thesis considers the smallest grammar problem: find the smallest context-free grammar that generates exactly one given string. We show that this problem is intractable, and so our objective is to find approximation algorithms. This simple question is connected to many areas of research. Most importantly, there is a link to data compression; instead of storing a long string, one can store a small grammar that generates it. A small grammar for a string also naturally brings out underlying patterns, a fact that is useful, for example, in DNA analysis. Moreover, the size of the smallest context-free grammar generating a string can be regarded as a computable relaxation of Kolmogorov complexity. Finally, work on the smallest grammar problem qualitatively extends the study of approximation algorithms to hierarchically-structured objects. In this thesis, we establish hardness results, evaluate several previously proposed algorithms, and then present new procedures with much stronger approximation guarantees.
by Eric Lehman.
Ph.D.
Hou, Jun. „Function Approximation and Classification with Perturbed Data“. The Ohio State University, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=osu1618266875924225.
Der volle Inhalt der QuelleZaman, Muhammad Adib Uz. „Bicubic L1 Spline Fits for 3D Data Approximation“. Thesis, Northern Illinois University, 2018. http://pqdtopen.proquest.com/#viewpdf?dispub=10751900.
Der volle Inhalt der QuelleUnivariate cubic L1 spline fits have been successful to preserve the shapes of 2D data with abrupt changes. The reason is that the minimization of L1 norm of the data is considered, as opposite to L2 norm. While univariate L1 spline fits for 2D data are discussed by many, bivariate L1 spline fits for 3D data are yet to be fully explored. This thesis aims to develop bicubic L1 spline fits for 3D data approximation. This can be achieved by solving a bi-level optimization problem. One level is bivariate cubic spline interpolation and the other level is L1 error minimization. In the first level, a bicubic interpolated spline surface will be constructed on a rectangular grid with necessary first and second order derivative values estimated by using a 5-point window algorithm for univariate L 1 interpolation. In the second level, the absolute error (i.e. L1 norm) will be minimized using an iterative gradient search. This study may be extended to higher dimensional cubic L 1 spline fits research.
Cooper, Philip. „Rational approximation of discrete data with asymptotic behaviour“. Thesis, University of Huddersfield, 2007. http://eprints.hud.ac.uk/id/eprint/2026/.
Der volle Inhalt der QuelleSchmid, Dominik. „Scattered data approximation on the rotation group and generalizations“. Aachen Shaker, 2009. http://d-nb.info/995021562/04.
Der volle Inhalt der QuelleMcQuarrie, Shane Alexander. „Data Assimilation in the Boussinesq Approximation for Mantle Convection“. BYU ScholarsArchive, 2018. https://scholarsarchive.byu.edu/etd/6951.
Der volle Inhalt der QuelleBücher zum Thema "Data approximation"
Iske, Armin. Approximation Theory and Algorithms for Data Analysis. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-05228-7.
Der volle Inhalt der QuelleMotwani, Rajeev. Lecture notes on approximation algorithms. Stanford, CA: Dept. of Computer Science, Stanford University, 1992.
Den vollen Inhalt der Quelle findenC, Mason J., und Cox M. G, Hrsg. Algorithms for approximation II: Based on the proceedings of the Second International Conference on Algorithms for Approximation, held at Royal Military College of Science, Shrivenham, July 1988. London: Chapman and Hall, 1990.
Den vollen Inhalt der Quelle findenFranke, Richard. Recent advances in the approximation of surfaces from scattered data. Monterey, Calif: Naval Postgraduate School, 1987.
Den vollen Inhalt der Quelle findenIvanov, Viktor Vladimirovich. Metody vychisleniĭ na ĖVM: Spravochnoe posobie. Kiev: Nauk. dumka, 1986.
Den vollen Inhalt der Quelle findenFranke, Richard H. Least squares surface approximation to scattered data using multiquadric functions. Monterey, Calif: Naval Postgraduate School, 1993.
Den vollen Inhalt der Quelle findenMolchanov, I. N. Mashinnye metody reshenii͡a︡ prikladnykh zadach algebra, priblizhenie funkt͡s︡iĭ. Kiev: Nauk. dumka, 1987.
Den vollen Inhalt der Quelle findenK, Ray Bimal, Hrsg. Polygonal approximation and scale-space analysis. Oakville, Ont: Apple Academic Press, 2013.
Den vollen Inhalt der Quelle findenC, Mason J., Cox M. G und Institute of Mathematics and Its Applications., Hrsg. Algorithms for approximation: Based on the proceedings of the IMA Conference on Algorithms for the Approximation of Functions and Data, held at the Royal Military College of Science, Shrivenham, July 1985. Oxford [Oxfordshire]: Clarendon Press, 1987.
Den vollen Inhalt der Quelle findenEitan, Tadmor, Institute for Computer Applications in Science and Engineering. und Langley Research Center, Hrsg. Recovering pointwise values of discontinuous data within spectral accuracy. Hampton, Va: Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, 1985.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Data approximation"
Shekhar, Shashi, und Hui Xiong. „Data Approximation“. In Encyclopedia of GIS, 203. Boston, MA: Springer US, 2008. http://dx.doi.org/10.1007/978-0-387-35973-1_237.
Der volle Inhalt der QuelleHutchings, Matthew, und Bertrand Gauthier. „Local Optimisation of Nyström Samples Through Stochastic Gradient Descent“. In Machine Learning, Optimization, and Data Science, 123–40. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-25599-1_10.
Der volle Inhalt der QuelleMarkovsky, Ivan. „From Data to Models“. In Low-Rank Approximation, 37–70. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-89620-5_2.
Der volle Inhalt der QuelleDeng, Shaobo, Huihui Lu, Sujie Guan, Min Li und Hui Wang. „Approximation Relation for Rough Sets“. In Data Mining and Big Data, 402–17. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-7502-7_38.
Der volle Inhalt der QuelleRengaswamy, Raghunathan, und Resmi Suresh. „Function Approximation Methods“. In Data Science for Engineers, 175–252. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/b23276-6.
Der volle Inhalt der QuelleIske, Armin. „Euclidean Approximation“. In Approximation Theory and Algorithms for Data Analysis, 103–38. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-05228-7_4.
Der volle Inhalt der QuelleIske, Armin. „Chebyshev Approximation“. In Approximation Theory and Algorithms for Data Analysis, 139–84. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-05228-7_5.
Der volle Inhalt der QuelleMarkovsky, Ivan. „Data-Driven Filtering and Control“. In Low-Rank Approximation, 161–72. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-89620-5_6.
Der volle Inhalt der QuelleAdir, Allon, Ehud Aharoni, Nir Drucker, Ronen Levy, Hayim Shaul und Omri Soceanu. „Approximation Methods Part II: Approximations of Standard Functions“. In Homomorphic Encryption for Data Science (HE4DS), 125–47. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-65494-7_6.
Der volle Inhalt der QuelleWu, Weili, Yi Li, Panos M. Pardalos und Ding-Zhu Du. „Data-Dependent Approximation in Social Computing“. In Approximation and Optimization, 27–34. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-12767-1_3.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Data approximation"
Ma, Guanqun, David Lenz, Tom Peterka, Hanqi Guo und Bei Wang. „Critical Point Extraction from Multivariate Functional Approximation“. In 2024 IEEE Topological Data Analysis and Visualization (TopoInVis), 12–22. IEEE, 2024. http://dx.doi.org/10.1109/topoinvis64104.2024.00006.
Der volle Inhalt der QuelleSahrom, Nor Ashikin, Mohammad Izat Emir Zulkifly und Siti Nur Idara Rosli. „Interval-Valued Fuzzy Bézier Surface Approximation“. In 2024 5th International Conference on Artificial Intelligence and Data Sciences (AiDAS), 1–5. IEEE, 2024. http://dx.doi.org/10.1109/aidas63860.2024.10730727.
Der volle Inhalt der QuelleBarbas, Petros, Aristidis G. Vrahatis und Sotiris K. Tasoulis. „RLAC: Random Line Approximation Clustering“. In 2021 IEEE International Conference on Big Data (Big Data). IEEE, 2021. http://dx.doi.org/10.1109/bigdata52589.2021.9671596.
Der volle Inhalt der QuelleZhao, Danfeng, Zhou Huang, Feng Zhou, Antonio Liotta und Dongmei Huang. „An Approximation Method for Large Graph Similarity“. In 2020 IEEE International Conference on Big Data (Big Data). IEEE, 2020. http://dx.doi.org/10.1109/bigdata50022.2020.9378447.
Der volle Inhalt der QuelleDas, Abhinandan, Johannes Gehrke und Mirek Riedewald. „Approximation techniques for spatial data“. In the 2004 ACM SIGMOD international conference. New York, New York, USA: ACM Press, 2004. http://dx.doi.org/10.1145/1007568.1007646.
Der volle Inhalt der QuelleFreedman, Daniel, und Pavel Kisilev. „Fast Data Reduction via KDE Approximation“. In 2009 Data Compression Conference (DCC). IEEE, 2009. http://dx.doi.org/10.1109/dcc.2009.47.
Der volle Inhalt der QuellePanda, Biswanath, Mirek Riedewald, Johannes Gehrke und Stephen B. Pope. „High-Speed Function Approximation“. In Seventh IEEE International Conference on Data Mining (ICDM 2007). IEEE, 2007. http://dx.doi.org/10.1109/icdm.2007.107.
Der volle Inhalt der QuelleHuang, Zhou, und Feng Zhou. „An Approximation Method for Querying Similar Large Graphs“. In 2022 IEEE International Conference on Big Data (Big Data). IEEE, 2022. http://dx.doi.org/10.1109/bigdata55660.2022.10020310.
Der volle Inhalt der QuelleShahcheraghi, Maryam, Trevor Cappon, Samet Oymak, Evangelos Papalexakis, Eamonn Keogh, Zachary Zimmerman und Philip Brisk. „Matrix Profile Index Approximation for Streaming Time Series“. In 2021 IEEE International Conference on Big Data (Big Data). IEEE, 2021. http://dx.doi.org/10.1109/bigdata52589.2021.9671484.
Der volle Inhalt der QuelleKannan, Ramakrishnan, Mariya Ishteva und Haesun Park. „Bounded Matrix Low Rank Approximation“. In 2012 IEEE 12th International Conference on Data Mining (ICDM). IEEE, 2012. http://dx.doi.org/10.1109/icdm.2012.131.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Data approximation"
Franke, Richard, Hans Hagen und Gregory M. Nielson. Least Squares Surface Approximation to Scattered Data Using Multiquadric Functions. Fort Belvoir, VA: Defense Technical Information Center, Dezember 1992. http://dx.doi.org/10.21236/ada259804.
Der volle Inhalt der QuelleRay, Jaideep, Matthew Barone, Stefan Domino, Tania Banerjee und Sanjay Ranka. Verification of Data-Driven Models of Physical Phenomena using Interpretable Approximation. Office of Scientific and Technical Information (OSTI), September 2021. http://dx.doi.org/10.2172/1821318.
Der volle Inhalt der QuelleBaraniuk, Richard, Ronald DeVore, Sanjeev Kulkarni, Andrew Kurdila, Stanley Osher, Guergana Petrova, Robert Sharpley, Richard Tsai und Hongkai Zhao. Model Classes, Approximation, and Metrics for Dynamic Processing of Urban Terrain Data. Fort Belvoir, VA: Defense Technical Information Center, Januar 2013. http://dx.doi.org/10.21236/ada586168.
Der volle Inhalt der QuelleFranke, Richard. Using Legendre Functions for Spatial Covariance Approximation and Investigation of Radial Nonisotrophy for NOGAPS Data. Fort Belvoir, VA: Defense Technical Information Center, Januar 2001. http://dx.doi.org/10.21236/ada389396.
Der volle Inhalt der QuelleWu, Yan, Sonia Fahmy und Ness B. Shroff. On the Construction of a Maximum-Lifetime Data Gathering Tree in Sensor Networks: NP-Completeness and Approximation Algorithm. Fort Belvoir, VA: Defense Technical Information Center, Januar 2008. http://dx.doi.org/10.21236/ada517885.
Der volle Inhalt der QuelleShah, Rajiv R. High-Level Adaptive Signal Processing Architecture with Applications to Radar Non-Gaussian Clutter. Volume 2. A New Technique for Distribution Approximation of Random Data. Fort Belvoir, VA: Defense Technical Information Center, September 1995. http://dx.doi.org/10.21236/ada300902.
Der volle Inhalt der QuelleGorton, O., und J. Escher. Cross Sections for Neutron-Induced Reactions from Surrogate Data: Assessing the Use of the Weisskopf-Ewing Approximation for (n,n') and (n,2n) Reactions. Office of Scientific and Technical Information (OSTI), September 2020. http://dx.doi.org/10.2172/1668500.
Der volle Inhalt der QuelleGuan, Jiajing, Sophia Bragdon und Jay Clausen. Predicting soil moisture content using Physics-Informed Neural Networks (PINNs). Engineer Research and Development Center (U.S.), August 2024. http://dx.doi.org/10.21079/11681/48794.
Der volle Inhalt der QuelleBunn, M. I., T. R. Carter, H. A. J. Russell und C. E. Logan. A semiquantitative representation of uncertainty for the 3D Paleozoic bedrock model of Southern Ontario. Natural Resources Canada/CMSS/Information Management, 2023. http://dx.doi.org/10.4095/331658.
Der volle Inhalt der QuelleRofman, Rafael, Joaquín Baliña und Emanuel López. Evaluating the Impact of COVID-19 on Pension Systems in Latin America and the Caribbean. The Case of Argentina. Inter-American Development Bank, Oktober 2022. http://dx.doi.org/10.18235/0004508.
Der volle Inhalt der Quelle