Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Dark Matter and Energy.

Zeitschriftenartikel zum Thema „Dark Matter and Energy“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Dark Matter and Energy" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

R K Dubey, R. K. Dubey, Pratima Ojha und Anil Saini. „Cosmological Model with Dark Energy and Dark Matter“. International Journal of Scientific Research 2, Nr. 5 (01.06.2012): 400–401. http://dx.doi.org/10.15373/22778179/may2013/135.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Nadar, Arun Kumar Koottharasan. „Exploring the Nature of Dark Matter and Dark Energy“. International Journal of Research Publication and Reviews 5, Nr. 1 (24.01.2024): 4640–46. http://dx.doi.org/10.55248/gengpi.5.0124.0341.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Perković, Dalibor, und Hrvoje Štefančić. „Dark sector unifications: Dark matter-phantom energy, dark matter - constant w dark energy, dark matter-dark energy-dark matter“. Physics Letters B 797 (Oktober 2019): 134806. http://dx.doi.org/10.1016/j.physletb.2019.134806.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Battersby, Stephen. „Dark matter, dark energy, dark… magnetism?“ New Scientist 214, Nr. 2867 (Juni 2012): 36–39. http://dx.doi.org/10.1016/s0262-4079(12)61430-4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Regmi, Jeevan. „Dark Energy and Dark Matter“. Himalayan Physics 4 (23.12.2013): 91–94. http://dx.doi.org/10.3126/hj.v4i0.9436.

Der volle Inhalt der Quelle
Annotation:
The new discoveries and evidences in the field of astrophysics have explored new area of discussion each day. It provides an inspiration for the search of new laws and symmetries in nature. One of the interesting issues of the decade is the accelerating universe. Though much is known about universe, still a lot of mysteries are present about it. The new concepts of dark energy and dark matter are being explained to answer the mysterious facts. However it unfolds the rays of hope for solving the various properties and dimensions of space.The Himalayan Physics Vol. 4, No. 4, 2013 Page: 90-94 Uploaded date: 12/23/2013
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Caldwell, Robert, und Marc Kamionkowski. „Dark matter and dark energy“. Nature 458, Nr. 7238 (April 2009): 587–89. http://dx.doi.org/10.1038/458587a.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Comelli, D., M. Pietroni und A. Riotto. „Dark energy and dark matter“. Physics Letters B 571, Nr. 3-4 (Oktober 2003): 115–20. http://dx.doi.org/10.1016/j.physletb.2003.05.006.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Khuri, Ramzi R. „Dark matter as dark energy“. Physics Letters B 568, Nr. 1-2 (August 2003): 8–10. http://dx.doi.org/10.1016/j.physletb.2003.06.051.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Edmonds, Douglas, Duncan Farrah, Djordje Minic, Y. Jack Ng und Tatsu Takeuchi. „Modified dark matter: Relating dark energy, dark matter and baryonic matter“. International Journal of Modern Physics D 27, Nr. 02 (Januar 2018): 1830001. http://dx.doi.org/10.1142/s021827181830001x.

Der volle Inhalt der Quelle
Annotation:
Modified dark matter (MDM) is a phenomenological model of dark matter, inspired by gravitational thermodynamics. For an accelerating universe with positive cosmological constant ([Formula: see text]), such phenomenological considerations lead to the emergence of a critical acceleration parameter related to [Formula: see text]. Such a critical acceleration is an effective phenomenological manifestation of MDM, and it is found in correlations between dark matter and baryonic matter in galaxy rotation curves. The resulting MDM mass profiles, which are sensitive to [Formula: see text], are consistent with observational data at both the galactic and cluster scales. In particular, the same critical acceleration appears both in the galactic and cluster data fits based on MDM. Furthermore, using some robust qualitative arguments, MDM appears to work well on cosmological scales, even though quantitative studies are still lacking. Finally, we comment on certain nonlocal aspects of the quanta of modified dark matter, which may lead to novel nonparticle phenomenology and which may explain why, so far, dark matter detection experiments have failed to detect dark matter particles.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Wu, Yumiao. „The dark matter and dark energy“. SHS Web of Conferences 174 (2023): 03014. http://dx.doi.org/10.1051/shsconf/202317403014.

Der volle Inhalt der Quelle
Annotation:
The dark matter and dark energy are one of the biggest challenges facing contemporary physics and astronomy. Dark energy and dark matter play an important role the universe. The amount of dark energy and dark matter determines how the universe changes. When there’s more dark energy, the universe is accelerating. If there were more dark matter, the universe might slow down, or even stop expanding and start contracting. So in this paper, the basic definition of dark matter and dark energy are introduced. And how were dark matter and dark energy discovered and their respective detection methods and the current progress of experiments to detect dark matter and dark energy respectively.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

de la Macorra, A. „Dark group: dark energy and dark matter“. Physics Letters B 585, Nr. 1-2 (April 2004): 17–23. http://dx.doi.org/10.1016/j.physletb.2004.02.006.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

常, 炳功. „Matter-Dark Matter-Dark Energy Are a Whole“. Modern Physics 08, Nr. 05 (2018): 239–52. http://dx.doi.org/10.12677/mp.2018.85026.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Wang, Huai-Yu. „A theory of dark energy that matches dark matter“. Physics Essays 36, Nr. 2 (27.06.2023): 149–59. http://dx.doi.org/10.4006/0836-1398-36.2.149.

Der volle Inhalt der Quelle
Annotation:
In this paper, a theory of dark energy is proposed that matches dark matter. The relativistic quantum mechanics equations reveal that free particles can have negative energies. We think that the negative energy is the dark energy, which behaves as dark photons with negative energies. In this work, the photon number states are extended to the cases where the photon number can be negative integers, called negative integer photon states, the physical meaning of which are that the photons in such a state are of negative energy, i.e., dark photons. The dark photons constitute dark radiation, also called negative radiation. The formalism of the statistical mechanics and thermodynamics of the dark radiation is presented. This version of dark energy is of negative temperature and negative pressure, the latter regarded as responsible for the accelerate expansion of the universe. It is believed that there is a symmetry of energy-dark energy in the universe. In our previous work, the theory of the motion of the matters with negative kinetic energy was presented. In our opinion, the negative kinetic energy matter is dark matter. In the present work, we demonstrate that the dark substances absorb and release dark energy. In this view, the dark matter and dark energy match. Therefore, there is a symmetry of matter-energy match and dark matter-dark energy match in the universe. We present the reasons why the negative kinetic energy systems and negative radiation are dark to us.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Konushko, Vladimir. „Universe, Dark Energy and Dark Matter“. Journal of Modern Physics 03, Nr. 11 (2012): 1819–29. http://dx.doi.org/10.4236/jmp.2012.311227.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Farrar, Glennys R., und P. J. E. Peebles. „Interacting Dark Matter and Dark Energy“. Astrophysical Journal 604, Nr. 1 (20.03.2004): 1–11. http://dx.doi.org/10.1086/381728.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

BERTOLAMI, ORFEU. „DARK ENERGY, DARK MATTER AND GRAVITY“. International Journal of Modern Physics D 16, Nr. 12a (Dezember 2007): 2003–12. http://dx.doi.org/10.1142/s0218271807011218.

Der volle Inhalt der Quelle
Annotation:
We discuss the motivation for high accuracy relativistic gravitational experiments in the solar system and complementary cosmological tests. We focus our attention on the issue of distinguishing a generic scalar theory of gravity as the underlying physical theory from the usual general-relativistic picture, where one expects the presence of fundamental scalar fields associated, for instance, with inflation, dark matter and dark energy.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Robson, B. A. „Dark matter, dark energy and gravity“. International Journal of Modern Physics E 24, Nr. 02 (Februar 2015): 1550012. http://dx.doi.org/10.1142/s0218301315500123.

Der volle Inhalt der Quelle
Annotation:
Within the framework of the Generation Model (GM) of particle physics, gravity is identified with the very weak, universal and attractive residual color interactions acting between the colorless particles of ordinary matter (electrons, neutrons and protons), which are composite structures. This gravitational interaction is mediated by massless vector bosons (hypergluons), which self-interact so that the interaction has two additional features not present in Newtonian gravitation: (i) asymptotic freedom and (ii) color confinement. These two additional properties of the gravitational interaction negate the need for the notions of both dark matter and dark energy.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Kuhlen, Michael, Louis E. Strigari, Andrew R. Zentner, James S. Bullock und Joel R. Primack. „Dark energy and dark matter haloes“. Monthly Notices of the Royal Astronomical Society 357, Nr. 1 (17.01.2005): 387–400. http://dx.doi.org/10.1111/j.1365-2966.2005.08663.x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Kalita, Ranku. „Inflation, dark energy, and dark matter“. International Journal of Advanced Astronomy 5, Nr. 1 (08.02.2017): 26. http://dx.doi.org/10.14419/ijaa.v5i1.7180.

Der volle Inhalt der Quelle
Annotation:
Inflation leads to omega=1 for the big bang universe, and which is indeed observed. However, two mysterious constituents – dark energy and dark matter – have to be present in the big bang universe for omega = 1. This paper utilizes propositions about the nature of dark energy and dark matter to trace their origins to the contents of the inflationary universe.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Stetsenko, V. Yu, und A. V. Stetsenko. „On dark matter and dark energy“. Litiyo i Metallurgiya (FOUNDRY PRODUCTION AND METALLURGY), Nr. 4 (16.12.2020): 166–68. http://dx.doi.org/10.21122/1683-6065-2020-4-166-168.

Der volle Inhalt der Quelle
Annotation:
The dark matter hypothesis was created to explain the reason for the preservation of stellar clusters from dispersion. The weak point of this hypothesis is the great age of space, which is 13.8 billion years. Based on experimental data, it is shown that the age of space does not exceed 10 thousand years. In this case, the hypothesis of dark matter is not needed, since stellar clusters cannot scatter in such short cosmic time. The dark energy hypothesis was created to explain the reason for the accelerated expansion of space. The basis for this phenomenon is a large amount of spectral redshift of distant luminous space objects. It is shown that this value is mainly determined by the significant absorption of light energy of distant space objects by a huge amount of intergalactic gas, and not by the movement of these objects. In this case, the hypothesis of dark energy is not needed, and space should not rapidly expand and scatter in space.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Chang, Yi-Fang. „Negative Matter as Unified Dark Matter and Dark Energy, Distributions of Dark Matter-Energy, and Observed Ways in the Milky Way“. European Journal of Theoretical and Applied Sciences 1, Nr. 6 (01.11.2023): 399–410. http://dx.doi.org/10.59324/ejtas.2023.1(6).39.

Der volle Inhalt der Quelle
Annotation:
There are not necessarily dark matter and dark energy in the solar system, and dark energy cannot distribute uniformly in the whole space. Based on Dirac negative energy, Einstein mass-energy relation and principle of equivalence, we proposed the negative matter as the simplest model of unified dark matter and dark energy. All theories are known, only mass includes positive and negative. Because there is repulsion between positive matter and negative matter, so which is invisible dark matter, and repulsion as dark energy. It may explain many phenomena of dark matter and dark energy. We derive that the rotational velocity of galaxy is approximate constant, and an evolutional ratio between total matter and usual matter from 1 to present 11.82 or 7.88. We calculate the accelerated expansion at 9.760 billion years. Further, the mechanism of inflation is origin of positive-negative matters created from nothing, whose expansion is exponential due to strong interactions at small microscopic scales. We propose specifically some possible ways on observe dark matter in the Milky Way. Many observatories should be able to observe these results. Final, we research some basic problems in cosmology: Possible mechanism of missing antimatter, the origins of mass and charge, etc. The negative matter as a candidate of unified dark matter and dark energy is not only the simplest, and is calculable, observable and testable, and may be changed and developed.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Delort, Thierry. „Theory of Dark Matter and Dark Energy“. Applied Physics Research 10, Nr. 5 (27.09.2018): 1. http://dx.doi.org/10.5539/apr.v10n5p1.

Der volle Inhalt der Quelle
Annotation:
In this article, we propose a new model of dark matter. According to this new model, dark matter is a substance, that is a new physical element not constituted of classical particles, called dark substance and filling the Universe. Assuming some very simple physical properties to this dark substance, we theoretically justify the flat rotation curve of galaxies and the baryonic Tully-Fisher’s law. We then study according to our new theory of dark matter  the different possible distributions of dark matter in galaxies and in galaxy clusters, and the velocities of galaxies in galaxy clusters. Then using the new model of dark matter we are naturally led to propose a new geometrical model of Universe, finite, that is different from all geometrical models proposed by the Standard Cosmological Model (SCM). Despite that our Theory of dark matter is compatible with the SCM, we then expose a new Cosmological model based on this new geometrical form of the Universe and on the interpretation of the CMB Rest Frame (CRF), that has not physical interpretation on the SCM and that we will call local Cosmological frame. We then propose 2 possible mathematical models of expansion inside the new Cosmological model. The 1st mathematical model is based on General Relativity as the SCM and gives the same theoretical predictions of distances and of the Hubble’s constant as the SCM. The 2nd mathematical model of expansion of the Universe is mathematically much simpler than the mathematical model of expansion used in the SCM, but we will see that its theoretical predictions are in agreement with astronomical observations. Moreover, this 2nd mathematical model of expansion does not need to introduce the existence of a dark energy contrary to the mathematical model of expansion of the SCM. To end we study the evolution of the temperature of dark substance in the Universe and we make appear the existence of a dark energy, due to our model of dark matter.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Irani, Ardeshir. „Dark Energy, Dark Matter, and the Multiverse“. Journal of High Energy Physics, Gravitation and Cosmology 07, Nr. 01 (2021): 172–90. http://dx.doi.org/10.4236/jhepgc.2021.71009.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Hernandez, Marco. „Theory of Dark Energy and Dark Matter“. Journal of Mathematical Study 48, Nr. 3 (Juni 2015): 199–221. http://dx.doi.org/10.4208/jms.v48n3.15.01.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Broda, Bogusław, und Michał Szanecki. „Vacuum Pressure, Dark Energy, and Dark Matter“. ISRN Astronomy and Astrophysics 2011 (04.01.2011): 1–3. http://dx.doi.org/10.5402/2011/509836.

Der volle Inhalt der Quelle
Annotation:
It has been argued that the correct, that is, positive, sign of quantum vacuum energy density, or, more properly, negative sign of quantum vacuum pressure, requires not a very large, and to some extent model-independent, number, for example, ∼100, of additional, undiscovered fundamental bosonic particle species, absent in the standard model. Interpretation of the new particle species in terms of dark matter ones permits to qualitatively, and even quantitatively, connect all the three concepts given in the title.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Nesbet, Robert. „Conformal Gravity: Dark Matter and Dark Energy“. Entropy 15, Nr. 1 (09.01.2013): 162–76. http://dx.doi.org/10.3390/e15010162.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Fritzsch, Harald, und Joan Solà. „Quantum Haplodynamics, Dark Matter, and Dark Energy“. Advances in High Energy Physics 2014 (2014): 1–6. http://dx.doi.org/10.1155/2014/361587.

Der volle Inhalt der Quelle
Annotation:
In quantum haplodynamics (QHD) the weak bosons, quarks, and leptons are bound states of fundamental constituents, denoted as haplons. The confinement scale of the associated gauge groupSU(2)his of the order ofΛh≃0.3 TeV. One scalar state has zero haplon number and is the resonance observed at the LHC. In addition, there exist new bound states of haplons with no counterpart in the SM, having a mass of the order of 0.5 TeV up to a few TeV. In particular, a neutral scalar state with haplon number 4 is stable and can provide the dark matter in the universe. The QHD, QCD, and QED couplings can unify at the Planck scale. If this scale changes slowly with cosmic time, all of the fundamental couplings, the masses of the nucleons and of the DM particles, including the cosmological term (or vacuum energy density), will evolve with time. This could explain the dark energy of the universe.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Chernin, A. D., P. Teerikorpi, M. J. Valtonen, V. P. Dolgachev, L. M. Domozhilova und G. G. Byrd. „Dark energy and extended dark matter halos“. Astronomy & Astrophysics 539 (17.02.2012): A4. http://dx.doi.org/10.1051/0004-6361/201117143.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Dil, Emre. „Couplingq-Deformed Dark Energy to Dark Matter“. Advances in High Energy Physics 2016 (2016): 1–20. http://dx.doi.org/10.1155/2016/9753208.

Der volle Inhalt der Quelle
Annotation:
We propose a novel coupled dark energy model which is assumed to occur as aq-deformed scalar field and investigate whether it will provide an expanding universe phase. We consider theq-deformed dark energy as coupled to dark matter inhomogeneities. We perform the phase-space analysis of the model by numerical methods and find the late-time accelerated attractor solutions. The attractor solutions imply that the coupledq-deformed dark energy model is consistent with the conventional dark energy models satisfying an acceleration phase of universe. At the end, we compare the cosmological parameters of deformed and standard dark energy models and interpret the implications.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Gehrels, N., und J. K. Cannizzo. „NASAʼs Dark Matter & Dark Energy Programs“. Nuclear Physics B - Proceedings Supplements 243-244 (Oktober 2013): 64–69. http://dx.doi.org/10.1016/j.nuclphysbps.2013.09.010.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Edmonds, Douglas, Djordje Minic und Tatsu Takeuchi. „Dark matter, dark energy and fundamental acceleration“. International Journal of Modern Physics D 29, Nr. 14 (Oktober 2020): 2043030. http://dx.doi.org/10.1142/s0218271820430300.

Der volle Inhalt der Quelle
Annotation:
We discuss the existence of an acceleration scale in galaxies and galaxy clusters and its relevance for the nature of dark matter. The presence of the same acceleration scale found at very different length scales, and in very different astrophysical objects, strongly supports the existence of a fundamental acceleration scale governing the observed gravitational physics. We comment on the implications of such a fundamental acceleration scale for constraining cold dark matter models as well as its relevance for structure formation to be explored in future numerical simulations.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

MANNHEIM, P. „Alternatives to dark matter and dark energy“. Progress in Particle and Nuclear Physics 56, Nr. 2 (April 2006): 340–445. http://dx.doi.org/10.1016/j.ppnp.2005.08.001.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Prescod-Weinstein, Chanda. „Are dark matter and dark energy related?“ New Scientist 245, Nr. 3263 (Januar 2020): 20. http://dx.doi.org/10.1016/s0262-4079(20)30023-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Huterer, Dragan. „Weak lensing, dark matter and dark energy“. General Relativity and Gravitation 42, Nr. 9 (18.07.2010): 2177–95. http://dx.doi.org/10.1007/s10714-010-1051-z.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Shafi, Qaisar, Arunansu Sil und Siew-Phang Ng. „Hybrid inflation, dark energy and dark matter“. Physics Letters B 620, Nr. 3-4 (August 2005): 105–10. http://dx.doi.org/10.1016/j.physletb.2005.06.024.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Takahashi, Fuminobu, und T. T. Yanagida. „Unification of dark energy and dark matter“. Physics Letters B 635, Nr. 2-3 (April 2006): 57–60. http://dx.doi.org/10.1016/j.physletb.2006.02.026.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Linder, Eric V. „Dark energy and dark matter with SNAP“. Nuclear Physics B - Proceedings Supplements 124 (Juli 2003): 76–78. http://dx.doi.org/10.1016/s0920-5632(03)02081-4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Antonov, Alexander Alexandrovich. „Nature of Dark Matter and Dark Energy“. Journal of Modern Physics 08, Nr. 04 (2017): 567–82. http://dx.doi.org/10.4236/jmp.2017.84038.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Marra, Valerio. „Coupling dark energy to dark matter inhomogeneities“. Physics of the Dark Universe 13 (September 2016): 25–29. http://dx.doi.org/10.1016/j.dark.2016.04.001.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Botke, J. C. „Dark Matter, Dark Energy, and Occam’s Razor“. Journal of Modern Physics 14, Nr. 12 (2023): 1641–61. http://dx.doi.org/10.4236/jmp.2023.1412096.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Heavens, Alan. „Weak lensing: Dark Matter, Dark Energy and Dark Gravity“. Nuclear Physics B - Proceedings Supplements 194 (Oktober 2009): 76–81. http://dx.doi.org/10.1016/j.nuclphysbps.2009.07.005.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Capozziello, S., M. De Laurentis, M. Francaviglia und S. Mercadante. „From Dark Energy & Dark Matter to Dark Metric“. Foundations of Physics 39, Nr. 10 (27.08.2009): 1161–76. http://dx.doi.org/10.1007/s10701-009-9332-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Clark, Stuart. „Forget dark matter, forget dark energy… where's the normal matter?“ New Scientist 210, Nr. 2809 (April 2011): 32–35. http://dx.doi.org/10.1016/s0262-4079(11)60928-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Falcon, Nelson. „Modified Gravitation and Mach's Principle: An Alternative to the Dark Matter and Dark Energy Cosmological Paradigm“. Open Access Journal of Astronomy 2023, Nr. 1 (2023): 1–9. http://dx.doi.org/10.23880/oaja-16000103.

Der volle Inhalt der Quelle
Annotation:
The general approach is that all particles with non-null rest mass are subject to the force of gravity through the inverse square law of gravitation, plus an additional term that varies with the comoving distance (UYF-Field). The model is an ΛFRW-Cosmology starting from the modification of the gravity by explicitly incorporating Mach's Principle through an additional term large-scale in the gravitation; the source of this field is the ordinary baryonic matter. It`s deduced from the Matter-radiation decoupling in the early universe. This additional term of gravity UYF result null in the inner solar system, weakly attractive in interstellar ranges, very attractive in ranges comparable to the clusters of galaxies, and repulsive in cosmic scales, in agreement with astronomical and laboratory observables. This term explains dark energy, removes the incompatibility between the density of matter and the flatness of the universe in ᴧFRW-Cosmology; allows the theoretical deduction of the Hubble-Lemaitre Law, between other relevant consequences. Additionally to discuss other relevant astrophysics consequences: Birkhoff Theorem, Virial Theorem, the missing mass of Zwicky, gravitational lenssings, the BAO and the gravitational redshift in AGN, provides an additional contribution for the gravitational redshift that increase the until an factor of ~4, which has resolved the Arp controversy. Also we show the crude explanations of Pioneer anomaly, we obtain as the additional contribution of the acceleration of gravity due to UYF-Field. It is concluded that the dark energy and the missing dark mass can be approached with the usual physics as the large-scale modification of the Gravitation.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Paul, BC. „Dark Matter and Dark Energy in the Universe“. BIBECHANA 11 (08.05.2014): 8–16. http://dx.doi.org/10.3126/bibechana.v11i0.10374.

Der volle Inhalt der Quelle
Annotation:
Cosmological and astronomical observations predict that the present Universe is passing through an accelerating phase of expansion. The Universe emerged out of an exponential phase in the very early Universe. The scalar field of the standard model of particle physics when used in cosmology admits such a phase of expansion known as inflation. The most favourable condition for inflation with scalar field to admit an Inflationary scenario is that the potential energy must dominate over the kinetic energy which one obtains with a flat potential. Thereafter the Universe enters into a matter dominated phase when the field oscillates at the minimum of the potential. But it is not possible to accommodate the present accelerating phase in the Einstein’s gravity. It is known from observational analysis that about 73 % matter is responsible for the late phase expansion and 23 % matter called Dark Matter is responsible for a stable galaxy. We discuss here the relevant fields and theories that are useful for describing the late Universe. DOI: http://dx.doi.org/10.3126/bibechana.v11i0.10374 BIBECHANA 11(1) (2014) 8-16
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Shrestha, Chhabi Kumar. „Dark Energy“. Himalayan Physics 5 (05.07.2015): 126–30. http://dx.doi.org/10.3126/hj.v5i0.12899.

Der volle Inhalt der Quelle
Annotation:
This work is focused to investigate the evidence of existence of the dark energy, its composition, its effects, its nature and some theories to explain Dark Energy, estimation of distributed matter and energy in the universe. Dark energy is the most mysterious hypothetical form of energy that indicates the expansion of the universe. The Himalayan Physics Year 5, Vol. 5, Kartik 2071 (Nov 2014)Page: 126-130
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

HANNESTAD, STEEN. „DARK ENERGY AND DARK MATTER FROM COSMOLOGICAL OBSERVATIONS“. International Journal of Modern Physics A 21, Nr. 08n09 (10.04.2006): 1938–49. http://dx.doi.org/10.1142/s0217751x06032885.

Der volle Inhalt der Quelle
Annotation:
The present status of our knowledge about the dark matter and dark energy is reviewed. Particular emphasis is put on the bounds on the content of cold and hot dark matter from cosmological observations are discussed in some detail. I also review current bounds on the physical properties of dark energy, mainly its equation of state and effective speed of sound.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

LEHNERT, BO. „Dark energy and dark matter as due to zero point energy“. Journal of Plasma Physics 79, Nr. 3 (26.11.2012): 327–34. http://dx.doi.org/10.1017/s0022377812001055.

Der volle Inhalt der Quelle
Annotation:
AbstractAn attempt is made to explain dark energy and dark matter of the expanding universe in terms of the zero point vacuum energy. This analysis is mainly limited to later stages of an observable nearly flat universe. It is based on a revised formulation of the spectral distribution of the zero point energy, for an ensemble in a defined statistical equilibrium having finite total energy density. The steady and dynamic states are studied for a spherical cloud of zero point energy photons. The ‘antigravitational’ force due to its pressure gradient then represents dark energy, and its gravitational force due to the energy density represents dark matter. Four fundamental results come out of the theory. First, the lack of emitted radiation becomes reconcilable with the concepts of dark energy and dark matter. Second, the crucial coincidence problem of equal orders of magnitude of mass density and vacuum energy density cannot be explained by the cosmological constant, but is resolved by the present variable concepts, which originate from the same photon gas balance. Third, the present approach becomes reconcilable with cosmical dimensions and with the radius of the observable universe. Fourth, the deduced acceleration of the expansion agrees with the observed one. In addition, mass polarity of a generalized gravitation law for matter and antimatter is proposed as a source of dark flow.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

On, Vo Van. „A United Description for Dark Matter and Dark Energy“. Communications in Physics 17, Nr. 4S (07.08.2019): 83–91. http://dx.doi.org/10.15625/0868-3166/17/4s/14155.

Der volle Inhalt der Quelle
Annotation:
In this paper, we show a unifying description to the dark matter and dark energy. This description does not demand dark energy with the anti-gravitational property. It also points out a lower limit of the average mass of the particles of cosmological energy (ordinary matter, dark matter and dark energy particles) \(\bar{m}\gg 54\) eV. The coincident problem between the density of dark energy and one of matter is a clear fact.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Seok Yang, Hyun. „Dark Energy and Dark Matter from Emergent Gravity Picture“. EPJ Web of Conferences 168 (2018): 03006. http://dx.doi.org/10.1051/epjconf/201816803006.

Der volle Inhalt der Quelle
Annotation:
We suggest that dark energy and dark matter may be a cosmic uroboros of quantum gravity due to the coherent vacuum structure of spacetime. We apply the emergent gravity to a large N matrix model by considering the vacuum in the noncommutative (NC) Coulomb branch satisfying the Heisenberg algebra. We observe that UV fluctuations in the NC Coulomb branch are always paired with IR fluctuations and these UV/IR fluctuations can be extended to macroscopic scales. We show that space-like fluctuations give rise to the repulsive gravitational force while time-like fluctuations generate the attractive gravitational force. When considering the fact that the fluctuations are random in nature and we are living in the (3+1)-dimensional spacetime, the ratio of the repulsive and attractive components will end in ¾ : ¼= 75 : 25 and this ratio curiously coincides with the dark composition of our current Universe. If one includes ordinary matters which act as the attractive gravitational force, the emergent gravity may explain the dark sector of our Universe more precisely.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie