Dissertationen zum Thema „Dark Matter and Energy“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Dissertationen für die Forschung zum Thema "Dark Matter and Energy" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Dissertationen für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Baldi, Marco. „Interactions between Dark Energy and Dark Matter“. Diss., lmu, 2009. http://nbn-resolving.de/urn:nbn:de:bvb:19-101617.
Der volle Inhalt der QuelleCiocia, Giuseppe. „Emerging dark matter from corpuscular dark energy“. Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amslaurea.unibo.it/23294/.
Der volle Inhalt der QuelleMcEwen, Joseph Eugene McEwen. „The Hidden Universe: Dark Energy, Dark Matter, Baryons“. The Ohio State University, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=osu1471877488.
Der volle Inhalt der QuelleCosta, André Alencar da. „Observational Constraints on Models with an Interaction between Dark Energy and Dark Matter“. Universidade de São Paulo, 2014. http://www.teses.usp.br/teses/disponiveis/43/43134/tde-20012015-123002/.
Der volle Inhalt der QuelleNesta tese vamos além do modelo cosmológico padrão, o LCDM, e estudamos o efeito de uma interação entre a matéria e a energia escuras. Embora o modelo LCDM esteja de acordo com as observações, ele sofre sérios problemas teóricos. Com o objetivo de resolver tais problemas, nós primeiro consideramos um modelo alternativo, onde ambas, a matéria e a energia escuras, são descritas por fluidos com uma interação fenomenológica dada como uma combinação das densidades de energia. Além desse modelo, propomos um modelo mais realista baseado em uma densidade Lagrangiana com uma interação tipo Yukawa. Para vincular os parâmetros cosmológicos usamos dados cosmológicos recentes como as medidas da CMB feitas pelo satélite Planck, bem como medidas de BAO, SNIa, H0 e Lookback time.
Mishra-Sharma, Siddharth. „Extragalactic Searches for Dark Matter Annihilation“. Thesis, Princeton University, 2018. http://pqdtopen.proquest.com/#viewpdf?dispub=10928813.
Der volle Inhalt der QuelleWe are at the dawn of a data-driven era in astrophysics and cosmology. A large number of ongoing and forthcoming experiments combined with an increasingly open approach to data availability offer great potential in unlocking some of the deepest mysteries of the Universe. Among these is understanding the nature of dark matter (DM)—one of the major unsolved problems in particle physics. Characterizing DM through its astrophysical signatures will require a robust understanding of its distribution in the sky and the use of novel statistical methods.
The first part of this thesis describes the implementation of a novel statistical technique which leverages the “clumpiness” of photons originating from point sources (PSs) to derive the properties of PS populations hidden in astrophysical datasets. This is applied to data from the Fermi satellite at high latitudes (|b| ≥ 30°) to characterize the contribution of PSs of extragalactic origin. We find that the majority of extragalactic gamma-ray emission can be ascribed to unresolved PSs having properties consistent with known sources such as active galactic nuclei. This leaves considerably less room for significant dark matter contribution.
The second part of this thesis poses the question: “what is the best way to look for annihilating dark matter in extragalactic sources?” and attempts to answer it by constructing a pipeline to robustly map out the distribution of dark matter outside the Milky Way using galaxy group catalogs. This framework is then applied to Fermi data and existing group catalogs to search for annihilating dark matter in extragalactic galaxies and clusters.
Alles, Alexandre. „Inhomogeneous cosmology : an answer to the Dark Matter and Dark Energy problems?“ Thesis, Lyon 1, 2014. http://www.theses.fr/2014LYO10165/document.
Der volle Inhalt der QuelleThe standard model of cosmology describes the formation of large scale structures in the late Universe within a quasi–Newtonian theory. This model requires the presence of unknown compounds of the Universe, Dark Matter and Dark Energy, to properly fit the observations. These two quantities, according to the Standard Model, represent almost 95% of the content of the Universe. Although the dark components are searched for by the scientific community, there exist several alternatives which try to deal with the problem of the large scale structures. Inhomogeneous theories describe the impact of the kinematical fluctuations on the global behaviour of the Universe. Or some theories proposed to go beyond general relativity. During my Ph.D. thesis, I developed key–elements of a fully relativistic Lagrangian theory of structure formation. Assuming a specific space–time slicing, I solved the first order system of equations to obtain solutions which describe the matter evolution within the perturbed geometry, and I developed higher order schemes and their correspondences with the Lagrangian perturbation solutions in the Newtonian approach. I also worked on some applications of these results like the description of a silent Universe or the Weyl curvature hypothesis and the problem of gravitational entropy. Further objectives are the description of physical observables and the development of direct applications. Next step of the development is an interaction between theoretical and numerical approaches, a study which would require strong cooperation with observers
Zsembinszki, Gabriel. „Light scalar fields in a dark universe: models of inflation, dark energy and dark matter“. Doctoral thesis, Universitat Autònoma de Barcelona, 2007. http://hdl.handle.net/10803/3390.
Der volle Inhalt der QuelleSegún la cosmología estándar del Big Bang, el universo primitivo consistía en un plasma muy caliente y denso que se expandió y se enfrió continuamente hasta el presente, dando paso a una serie de transiciones de fase cosmológicas, donde las teorías que describen el universo en cada fase son distintas. Dado que las energías del universo primitivo fueron mucho más altas que las alcanzadas en experimentos terrestres, el estudio del universo primitivo podría ofrecernos importantes informaciones sobre nuevas interacciones y nuevas partículas, abriendo nuevas direcciones para la extensión del Modelo Estándar de la física de partículas.
Como ya he mencionado anteriormente, durante la expansión del universo ocurrieron varias transiciones de fase que dejaron su huella sobre el estado presente del universo. Las observaciones sugieren que durante una de estas transiciones de fase, el universo primitivo sufrió un periodo de expansión acelerada, conocido como inflación. Aunque no forma parte de la cosmología estándar, la inflación es capaz de solucionar de una manera simple y elegante casi todos los problemas relacionados con el modelo estándar del Big Bang, y debería tenerse en cuenta en cualquier extensión posible de la teoría. Las observaciones también revelan la existencia de dos formas de energía desconocidas, a saber, materia oscura y energía oscura. La materia oscura es una forma de materia no relativista y no bariónica, que solamente puede ser detectada indirectamente, mediante su interacción con la materia normal. La energía oscura es un tipo de sustancia con presión negativa, que empezó a dominar recientemente y que es la causa de la aceleración de la expansión del universo.
En esta tesis doctoral presento varios modelos originales propuestos para resolver algunos de los problemas de la cosmología estándar, como posibles extensiones del modelo del Big Bang. Algunos de estos modelos introducen nuevas simetrías y partículas con el fin de explicar la inflación y la energía oscura y/o la materia oscura en una descripción unificada. Uno de los modelos es propuesto para explicar la energía oscura del universo, a través de un nuevo campo escalar que oscila en un potencial.
The most successful scientific theory today about the origin and evolution of the universe is known as the standard Big Bang model, which is one of the most ambitious intellectual constructions of the humanity. It is based on two consolidated branches of theoretical physics, namely, the theory of General Relativity and the Standard Model of particle physics, and is able to make robust predictions, such as the expansion of the universe, the existence of the cosmic microwave background radiation and the relative primordial abundance of light elements. Some of the theoretical predictions have already been confirmed by very precise observations.
According to the standard Big Bang cosmology, the early universe consisted of a very hot and dense plasma that continuously expanded and cooled up to the present, giving place to a series of cosmological phase transitions, where the theories describing the universe in each phase are different. Given that the energies of the early universe were much higher than those reached in terrestrial experiments, the study of the early universe might give us important information about new interactions and new particles, opening new directions for extending the Standard Model of particle physics.
As already mentioned above, during the expansion of the universe, different phase transitions occurred, which left their imprint on the present state of the universe. Observations suggest that during a very early phase transition the universe suffered a stage of accelerated expansion, known as inflation. Although inflation is not included in the standard cosmology, it is able to solve in a simple and elegant manner almost all of the shortcomings related to the standard Big Bang model, and should be taken into account in any possible extension of the theory. Observations also reveal evidence of the existence of two unknown forms of energy, i.e., dark matter and dark energy. Dark matter is a form of non-relativistic and non-baryonic matter, which can only be detected indirectly, by its gravitational interactions with normal matter. Dark energy is a kind of substance with negative pressure, which started to dominate recently and causes the accelerated expansion of the universe.
In this PhD Thesis, I present a few original models proposed to solve some of the shortcomings of the standard cosmology, as possible extensions of the Big Bang model. Some of these models introduce new symmetries and particles in order to explain inflation and dark energy and/or dark matter in a unified description. One of the models is proposed for explaining the dark energy of the universe, by means of a new scalar field oscillating in a potential.
The most successful scientific theory today about the origin and evolution of the universe is known as the standard Big Bang model, which is one of the most ambitious intellectual constructions of the humanity. It is based on two consolidated branches of theoretical physics, namely, the theory of General Relativity and the Standard Model of particle physics, and is able to make robust predictions, such as the expansion of the universe, the existence of the cosmic microwave background radiation and the relative primordial abundance of light elements. Some of the theoretical predictions have already been confirmed by very precise observations.
According to the standard Big Bang cosmology, the early universe consisted of a very hot and dense plasma that continuously expanded and cooled up to the present, giving place to a series of cosmological phase transitions, where the theories describing the universe in each phase are different. Given that the energies of the early universe were much higher than those reached in terrestrial experiments, the study of the early universe might give us important information about new interactions and new particles, opening new directions for extending the Standard Model of particle physics.
As already mentioned above, during the expansion of the universe, different phase transitions occurred, which left their imprint on the present state of the universe. Observations suggest that during a very early phase transition the universe suffered a stage of accelerated expansion, known as inflation. Although inflation is not included in the standard cosmology, it is able to solve in a simple and elegant manner almost all of the shortcomings related to the standard Big Bang model, and should be taken into account in any possible extension of the theory. Observations also reveal evidence of the existence of two unknown forms of energy, i.e., dark matter and dark energy. Dark matter is a form of non-relativistic and non-baryonic matter, which can only be detected indirectly, by its gravitational interactions with normal matter. Dark energy is a kind of substance with negative pressure, which started to dominate recently and causes the accelerated expansion of the universe.
In this PhD Thesis, I present a few original models proposed to solve some of the shortcomings of the standard cosmology, as possible extensions of the Big Bang model. Some of these models introduce new symmetries and particles in order to explain inflation and dark energy and/or dark matter in a unified description. One of the models is proposed for explaining the dark energy of the universe, by means of a new scalar field oscillating in a potential.
Laycock, Thomas Daniel. „Dark matter excitations via massive vector bosons“. Thesis, McGill University, 2008. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=21959.
Der volle Inhalt der QuelleUn model d'excitations matière sombre est etudié dans une tentative d'explication de la ligne d'emission anormalement large observé par le spectrographe SPI sur INTEGRAL originaire du bulbe galactique de la Voie Lactée. La matière sombre WIMP proposée possède un partenaire ayant une masse de quelques MeV supplémentaires. La diffusion entre les particules de matière sombre mène aux excitations et à la désintégration ultérieure en une paire électron-positron. De cette façon, l'énergie cinétique des particules de matière sombre peut être convertie en paires électron-positron se déplaçant suffisement lentement pour produire l'étroite ligne d'annihilation observée. Avec un espacement en masse suffisement grand, les considérations cinématique et un profil de densité de la matière sombre cuspy contraignent les excitations au bulbe galactique, où la vitesse d'échappement, et donc la fraction de particules matière sombre au-dessus du seuil cinétique, est grande.
Palmese, Antonella. „Unveiling the unseen with the Dark Energy Survey : gravitational waves and dark matter“. Thesis, University College London (University of London), 2018. http://discovery.ucl.ac.uk/10055879/.
Der volle Inhalt der QuelleWhittamore, Zakary. „Isospin-violating dark matter and direct detection experiments“. Thesis, McGill University, 2014. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=123143.
Der volle Inhalt der QuelleConseils de détection directe de la matière noire ont été présentés par les DAMA, CoGeNT, et CRESST collaborations, malgré un certain nombre de résultats nuls qui semblent contredire ces allégations. Bien que la norme matière noire indépendante du spin n'est pas capable de concilier la résultats, la matière noire modèles contenant couplages de isospin-violation ont montré des résultats prometteurs dans résolution des problèmes de détection directe de la matière noire. Diffusion inélastique ou dynamique dépendant de la matière noire a également été démontré que aider à atténuer ces tensions. À la lumière des observations XENON100 2012, analyse actualisée de la contamination de l' événement de surface à CoGeNT, la révision de la résolution de l'énergie utilisée par XENON10, et de nouveaux résultats provenant des détecteurs de silicium CDMS-II, nous étudier la mesure dans laquelle indépendante du spin, dépendant du spin, et des modèles combinés de la matière noire isospin-violation sont capables d'expliquer les données de détection directs actuels. De plus, nous explorons l'effet d'une trempe de sodium dépendant de l'énergie facteur $Q_{\rm Na}$ pour le montage des observations DAMA, et de donner une prévision de isospin-violation de XENON1T. En plus de l'analyse habituelle impliquant des parcelles de l'espace de phase, nous étudions un modèle de halo-indépendant de la matière noire dans l'espace des vitesses minimales requises pour une particule de matière noire se disperser hors d'un noyau donné. Pour la première fois, une telle analyse est effectuée pour les modèles de matière noire qui embrassent les deux couplages élastiques et isospin-violation, ainsi que de la matière noire avec des interactions dépendant du dynamique et spin. En ce qui concerne les modèles considérés ici, nos résultats ne soutiennent pas une question d'interprétation sombre de données de détection directe soit dans la norme ou formalismes halo-indépendant.
Phelps, Patrick. „THE LUX DARK MATTER EXPERIMENT: DETECTOR PERFORMANCE AND ENERGY CALIBRATION“. Case Western Reserve University School of Graduate Studies / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=case1404908222.
Der volle Inhalt der QuelleYoo, Jaiyul. „From galaxy clustering to dark matter clustering“. Columbus, Ohio : Ohio State University, 2007. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1186586898.
Der volle Inhalt der QuelleLima, Nelson Daniel de Aguiar. „Dark energy and modified theories of gravity“. Thesis, University of Edinburgh, 2017. http://hdl.handle.net/1842/23558.
Der volle Inhalt der QuelleZhao, Gang. „Dark world and the standard model“. [College Station, Tex. : Texas A&M University, 2006. http://hdl.handle.net/1969.1/ETD-TAMU-1840.
Der volle Inhalt der QuelleElmufti, Mohammed. „Perturbations of dark energy models“. Thesis, University of Western Cape, 2012. http://hdl.handle.net/11394/3386.
Der volle Inhalt der QuelleThe growth of structure in the Universe proceeds via the collapse of dark matter and baryons. This process is retarded by dark energy which drives an accelerated expansion of the late Universe. In this thesis we use cosmological perturbation theory to investigate structure formation for a particular class of dark energy models, i.e. interacting dark energy models. In these models there is a non-gravitational interaction between dark energy and dark matter, which alters the standard evolution (with non-interacting dark energy) of the Universe. We consider a simple form of the interaction where the energy exchange in the background is proportional to the dark energy density. We analyse the background dynamics to uncover the e ect of the interaction. Then we develop the perturbation equations that govern the evolution of density perturbations, peculiar velocities and the gravitational potential. We carefully account for the complex nature of the perturbed interaction, in particular for the momentum transfer in the dark sector. This leads to two di erent types of model, where the momentum exchange vanishes either in the dark matter rest-frame or the dark energy rest-frame. The evolution equations for the perturbations are solved numerically, to show how structure formation is altered by the interaction.
Graef, Leila Lobato. „Um modelo para decaimento da energia escura“. Universidade de São Paulo, 2012. http://www.teses.usp.br/teses/disponiveis/43/43134/tde-08082012-150548/.
Der volle Inhalt der QuelleIn the present work we discuss a field theory model in which dark energy is described by ultra-light particle situated at a metastable minimum of a potential. We show that dark energy in this model decays into dark matter during a time scale corresponding to the age of the universe, alleviating the coincidence problem.
Savastano, Stefano. „Primordial dark matter halos from fifth-forces“. Master's thesis, Alma Mater Studiorum - Università di Bologna, 2019. http://amslaurea.unibo.it/18143/.
Der volle Inhalt der QuelleSharma, Arjun. „Placing Limits on Experimental Signatures of Dark Matter Model Predictions“. Thesis, The University of Chicago, 2018. http://pqdtopen.proquest.com/#viewpdf?dispub=10807985.
Der volle Inhalt der QuelleIn this work, we consider two different models of dark matter and set limits on results of experiments. One is a dynamic dark matter scenario where we put limits on parameters observable by experiments DAMA and XMASS through nuclear recoil of detector atoms (direct detection). The second is a case of dark matter annihilation into positrons and electrons and the signal this would produce on measured values of positron flux and ratio of electron to positron (indirect detection). The values of these quantities as measured by FERMI and PAMELA experiments are observed and an explanation using a dark matter annihilation is presented vs astrophysical sources of particles.
We explore a dynamic dark matter scenario with an ensemble of dark matter particles that starts at m0 and spans a comb of particles separated by jδΔ m. We verify the model by using Δm = ∞ and comparing the predictions to a non dynamic model for the same mass m0. We then observe the wider set of possibilities available with the dynamic dark matter model compared with the single mass case vis a vis constraints set by NaI and Xe detectors published by the DAMA and XMASS collaborations and check for validity of model against these measurements.
The Fermi experiment has measured the cosmic ray electron+positron spectrum and positron fraction [фe+/(фe++e−)], and PAMELA has measured the positron fraction with better precision. While the majority of cosmic ray electrons and positrons are of astrophysical origin, there may also be a contribution from dark matter annihilation in the galactic halo. The upcoming results of the AMS experiment will show measurements of these quantities with far greater precision. One dark matter annihilation scenario is where two dark matter particles annihilate directly to e + and e− final states. In this article, we calculate the signature “bumps” in these measurements assuming a given density profile (NFW profile). If the dark matter annihilates to electrons and positrons with a cross section σv ∼ 10−26 cm3/s or greater, this feature may be discernible by AMS. However, we demonstrate that such a prominent spectral feature is already ruled out by the relative smoothness of the positron + electron cosmic ray spectrum as measured by Fermi. Hence we conclude that such a feature is undetectable unless the mass is less than ∼40 GeV.
Bernal, Mera José Luis. „Cosmology on the Edge of Lambda-Cold Dark Matter“. Doctoral thesis, Universitat de Barcelona, 2019. http://hdl.handle.net/10803/667707.
Der volle Inhalt der QuelleEl modelo estándar de cosmología, LCDM, se apoya en una cantidad ingente de observaciones extremadamente precisas, que es capaz de reproducir con gran exactitud. Sin embargo, este es un modelo fenomenológico que no es capaz de responder algunas de las preguntas fundamentales sobre el Universo, como la naturaleza de la materia oscura o la energía oscura. Además, cuando este modelo se utiliza para interpretar las observaciones, aparecen tensiones entre experimentos independientes. Estas tensiones, en el caso de no estar producidas por errores sistemáticos no tenidos en cuenta, necesitarían un modelo cosmológico diferente para ser resueltas. Esta tesis recoge trabajos publicados en revistas científicas investigando estos problemas de LCDM. Concretamente, se cubren tres temas principales: la tensión en la constante de Hubble entre las medidas directas usando la escalera de distancias y los valores inferidos a partir de las observaciones de la colaboración Planck asumiendo LCDM; el rol de los agujeros negros primordiales como semillas de los agujeros negros supermasivos, o como candidato para conformar una parte significativa de la materia oscura; y el potencial y las estrategias óptimas a aplicar en experimentos que mapean la estructura a gran escala del Universo para examinar LCDM y medir posibles desviaciones del modelo. De este modo, el trabajo aquí recogido tiene como objetivo investigar las tensiones presentes en LCDM, así como las preguntas que deja sin responder de una manera crítica y desde un punto de vista agnóstico. Además, pretende sentar las bases para futuras investigaciones en estas líneas, cuando estén disponibles nuevas y mejores observaciones, e indicar el camino para poder poner a prueba el modelo estándar de cosmología en los años venideros en regímenes en los que aún no se ha hecho ninguna medida.
Scott, Pat. „Searches for Particle Dark Matter Dark stars, dark galaxies, dark halos and global supersymmetric fits /“. Doctoral thesis, Stockholm : Department of Physics, Stockholm University, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-38221.
Der volle Inhalt der QuelleAt the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 5: Accepted. Paper 6: Submitted. Härtill 6 uppsatser.
Blomqvist, Michael. „Inhomogeneous cosmologies with clustered dark energy or a local matter void“. Doctoral thesis, Stockholms universitet, Institutionen för astronomi, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-43100.
Der volle Inhalt der QuelleAt the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 4: Accepted.
Elieff, Stefan H. P. „Determining properties of neutralino dark matter using high-energy neutrino events“. Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk2/tape15/PQDD_0014/MQ33841.pdf.
Der volle Inhalt der QuelleNojiri, Shin'ichi, Sergei D. Odintsov und Hrvoje Stefancic. „Transition from a matter-dominated era to a dark energy universe“. American Physical Society, 2006. http://hdl.handle.net/2237/8841.
Der volle Inhalt der QuelleDigman, Matthew C. „Opening New Windows Onto the Universe: Studies in Dark Matter, Dark Energy, and Gravitational Wave Sources“. The Ohio State University, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu1595521516852044.
Der volle Inhalt der QuelleAbdalla, Filipe B. „Cosmological constraints with future radio surveys“. Thesis, University of Oxford, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.711600.
Der volle Inhalt der QuelleGhosh, Samrat. „Influences of dark sector on local gravitational phenomena“. Thesis, University of North Bengal, 2020. http://ir.nbu.ac.in/handle/123456789/4234.
Der volle Inhalt der QuelleOlivari, Lucas Collis. „Influência da Transferência de Momento-Energia na Interação entre Matéria e Energia escura“. Universidade de São Paulo, 2014. http://www.teses.usp.br/teses/disponiveis/43/43134/tde-25092014-133708/.
Der volle Inhalt der QuelleIn this work we studied cosmological models in which the dark energy was treated as a field of matter that interacts with dark matter. Three different models were considered. The first one treats both the cold dark matter and the dark energy as perfect fluids. The interaction term between them is given by a expression with phenomenological origin that we postulated to exist in the balance equations between these two fluids. Given the equations in the flat Friedmann-Robertson-Walker (FRW) universe, we wrote a covariant version of the balance equations. Thus, the balance equations in a linearly perturbed FRW universe were obtained. This, in turn, allowed the stability of the obtained differential equations to be studied. The second model comes from f(R) models. These models propose a generalization of General Relativity by considering the action for gravity as a functional of the Ricci scalar, R. Through a conformal transformation, it was possible to reinterpret the f(R) models as models in which a canonical scalar field, which represents the dark energy, interacts with matter fields. Through the principle of least action, we obtained the equations of motion and the energy-momentum tensor for our system. With the scalar field being interpreted as a perfect fluid, we obtained equations of balance for perfect fluids at both the background level and in the linearly perturbed universe. The third model starts with the Lagrangian, in a FRW space-time, of a canonical scalar field, which represents the dark energy, and of a fermionic field of spin-1/2, which represents the dark matter. A Yukawa interaction term between these fields was postulated to exist in the Lagrangian. Again, through the principle of least action, we obtained the equations of motion and the energy-momentum tensor for these fields. These equations of motion could then be rewritten as balance equations for perfect fluids at both the background level and in the linearly perturbed universe.
Otalora, Patiño Giovanni [UNESP]. „Energia escura acoplada“. Universidade Estadual Paulista (UNESP), 2010. http://hdl.handle.net/11449/89570.
Der volle Inhalt der QuelleCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Na última década várias observações indicam que o universo está expandindo aceleradamente. Essa expansão acelerada pode ser explicada em um universo composto de 70% de energia escura e 30% de matéria (25% de matéria escura e 5% de matéria bariônica). A energia escura proporciona a pressão negativa necessária para produzir a aceleração em grandes escalas. Nesse trabalho faz-se uma revisão do modelo de um campo escalar como fonte da energia escura, conhecido genericamente como modelo de quintessência. Estuda-se o modelo de quintessência acoplada à matéria escura
In the previous decade many observations indicate that the universe is accelerating. This rapid expansion can be explained in an universe made up of 70% of dark energy and 30% of matter (25% of dark matter and 5% of baryonic matter). The dark energy provides negative pressure to produce acceleration. In this work it is studied the model of Quintessence, a model of scalar field, as source of the dark energy. It is studied the model of Coupled Quintessence with dark matter
LA, VACCA GIUSEPPE. „Focusing on Dark Energy with Weak Gravitational Lensing“. Doctoral thesis, Università degli Studi di Pavia, 2009. http://hdl.handle.net/10281/149582.
Der volle Inhalt der QuelleRowe, Barnaby Thomas Peter. „Cosmological applications of weak gravitational flexion“. Thesis, University of Edinburgh, 2008. http://hdl.handle.net/1842/3502.
Der volle Inhalt der QuelleHallsjö, Sven-Patrik. „Search for Dark Matter in the Upgraded High Luminosity LHC at CERN : Sensitivity of ATLAS phase II upgrade to dark matter production“. Thesis, Linköpings universitet, Institutionen för fysik, kemi och biologi, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-107583.
Der volle Inhalt der QuellePinzke, Anders. „Gamma-Ray Emission from Galaxy Clusters : DARK MATTER AND COSMIC-RAYS“. Doctoral thesis, Stockholms universitet, Fysikum, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-42453.
Der volle Inhalt der QuelleAt the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 2: Accepted.
Prat, Martí Judit. „Cosmology and the galaxy-matter connection using weak gravitational lensing cross-correlations in the Dark Energy Survey“. Doctoral thesis, Universitat Autònoma de Barcelona, 2019. http://hdl.handle.net/10803/668292.
Der volle Inhalt der QuelleIn this thesis we use data from the Dark Energy Survey to study the evolution and contents of the Universe. The Dark Energy Survey (DES) has built a map of galaxies covering one eighth of the southern sky, measuring the positions and distances to hundreds of millions of galaxies, with the main goal to shed light on the reasons behind the observationally-confirmed accelerated expansion of the Universe. The mechanisms that could drive this accelerated expansion include some vacuum energy associated with the cosmological constant, another form of dark energy, or a modification of General Relativity. With galaxy surveys such as DES we aim to distinguish between these possibilities by probing the growth of structure and geometry of the Universe as a function of time. In this thesis we use weak gravitational lensing measurements from the Dark Energy Survey to contribute to this final goal. Gravitational lensing is produced when light from background objects is deflected due to some foreground mass distribution that curves the space-time canvas. In particular, weak gravitational lensing, which can only be measured in a statistical manner, has emerged as one of the most powerful probes of cosmology, being sensitive to both the geometry of the Universe and the history of structure growth, and is the main technique used in this thesis. Specifically, we have used cross-correlations between a background source of light, such as distant galaxies or the Cosmic Microwave Background (CMB), and galaxy positions in the foreground, tracing the Large-Scale Structure producing the lensing. On one hand, we have used these weak lensing cross-correlations sensitivity to the history of growth of structure and to the geometry of the Universe, to constrain cosmological parameters in combination with other probes. On the other hand, since lensing cross-correlations are also sensitive to the relation between the baryonic (visible) matter forming galaxies and the underlying (mostly dark) matter field, we have been able to measure the so-called galaxy bias, which encapsulates this relation between galaxies and matter.
Flis, Samuel. „Searching for dark matter in the Galactic Halo with IceCube using high energy cascades“. Doctoral thesis, Stockholms universitet, Fysikum, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-142083.
Der volle Inhalt der QuelleEnander, Jonas. „Cosmic tests of massive gravity“. Doctoral thesis, Stockholms universitet, Fysikum, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-113076.
Der volle Inhalt der QuelleAt the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 5: Manuscript. Paper 6: Manuscript.
Cunnama, Daniel. „Galaxy Evolution and Cosmology using Supercomputer Simulations by Daniel Cunnama“. University of the Western Cape, 2013. http://hdl.handle.net/11394/4042.
Der volle Inhalt der QuelleNumerical simulations play a crucial role in testing current cosmological models of the formation and evolution of the cosmic structure observed in the modern Universe. Simulations of the collapse of both baryonic and non-baryonic matter under the influence of gravity have yielded important results in our understanding of the large scale structure of the Universe. In addition to the underlying large scale structure, simulations which include gas dynamics can give us valuable insight into, and allow us to make testable predictions on, the nature and distribution of baryonic matter on a wide range of scales. In this work we give an overview of cosmological simulations and the methods employed in the solution of many body problems. We then present three projects focusing on scales ranging from individual galaxies to the cosmic web connecting clusters of galaxies thereby demonstrating the potential and diversity of numerical simulations in the fields of cosmology and astrophysics. We firstly investigate the environmental dependance of neutral hydrogen in the intergalactic medium by utilising high resolution cosmological hydrodynamic simulations in Chapter 3. We find that the extent of the neutral hydrogen radial profile is dependant on both the environment of the galaxy and its classification within the group ie. whether it is a central or satellite galaxy. We investigate whether this effect could arise from ram pressure forces exerted on the galaxies and find good agreement between galaxies experiencing high ram pressure forces and those with a low neutral hydrogen content. In Chapter 4 we investigate the velocity–shape alignment of clusters in a dark matter only simulation and the effect of such an alignment on measurements of the kinetic Sunyaev–Zeldovich (kSZ) effect. We find an alignment not only exists but can lead to an enhancement in the kSZ signal of up to 60% when the cluster is orientated along the line-of-sight. Finally we attempt to identify shocked gas in clusters and filaments using intermediate resolution cosmological hydrodynamic simulations in Chapter 5 with a view to predicting the synchrotron emission from these areas, something that may be detectable with the Square Kilometer Array.
Castro, Fábio Chibana de. „Tachyon Scalar Field Cosmology“. Universidade de São Paulo, 2017. http://www.teses.usp.br/teses/disponiveis/43/43134/tde-17052017-063702/.
Der volle Inhalt der QuelleNeste trabalho testamos um modelo cosmológico com uma interação entre energia escura e matéria escura, onde um campo escalar taquiônico desempenha o papel da energia escura. Para isso, desenvolvemos um código computacional que resolve as equações numericamente e vincula os parâmetros cosmológicos e, assim, comparamos os resultados do modelo taquiônico interagente com os de outros candidatos à energia escura. Nossas análises mostram que o modelo, de fato, consegue explicar os dados observacionais, além de possuir propriedades cosmológicas interessantes, mas apresenta dificuldades quando comparado a outros modelos de energia escura.
Bachega, Riis Rhavia Assis. „Vinculando modelos de energia escura com idade de galáxias em altos redshifts“. Universidade de São Paulo, 2014. http://www.teses.usp.br/teses/disponiveis/43/43134/tde-27112014-233930/.
Der volle Inhalt der QuelleA number of observations arising from the measurement of distance of type IA Supernovae, age of oldest stars, anisotropy of cosmic microwave background, among others, show that the universe is undergoing a phase of accelerated expansion. This expansion is being caused by a mysterious component called dark energy, which represents about $70\\%$ of the total content of the universe, and whose nature is unknown. To describe the various dark energy models have been proposed, among them we highlight the vacuum energy (cosmological constant), and a dynamic scalar field (quintessence). Are also considered models in which dark energy interacts with another mysterious component, the dark matter. There are several observational tests to constraint the parameters of these models. In this dissertation, we explore a method based on age of galaxies at high redshift and the age of the universe, known as lookback time.
Garaldi, Enrico. „Zoomed simulations of Halo segregation in cosmological models with two species of coupled dark matter“. Master's thesis, Alma Mater Studiorum - Università di Bologna, 2014. http://amslaurea.unibo.it/7592/.
Der volle Inhalt der QuelleBarello, Gregory. „Models and Constraints for New Physics at the Energy, Intensity, and Cosmic Frontiers“. Thesis, University of Oregon, 2016. http://hdl.handle.net/1794/20454.
Der volle Inhalt der QuelleSpengler, Gerrit Christian. „Search for dark matter in the Milky Way halo with the High Energy Stereoscopic System“. Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 2014. http://dx.doi.org/10.18452/16897.
Der volle Inhalt der QuelleAn indirect search for the presence of dark matter particles in the halo of the Milky Way with data that were recorded with the High Energy Stereoscopic System (H.E.S.S.) is discussed in this work
Luca, M. „Sapphire scintillation tests for cryogenic detectors in the EDELWEISS dark matter search“. Phd thesis, Université Claude Bernard - Lyon I, 2007. http://tel.archives-ouvertes.fr/tel-00182326.
Der volle Inhalt der QuelleAfter having shown that sapphire had interesting characteristics for building heat-scintillation detectors, we have tested if using a sapphire detector was feasible within a dark matter search. During the first commissioning tests of EDELWEISS II, we have proved the compatibility between a sapphire heat-scintillation detector and the experimental setup.
Wolf, Martin. „Indirect Searches for Dark Matter in the Milky Way with IceCube-DeepCore“. Doctoral thesis, Stockholms universitet, Fysikum, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-128785.
Der volle Inhalt der QuelleAt the time of the doctoral defense, the following paper was unpublished and had a status as follows: Paper 2: Manuscript.
Palmese, A., O. Lahav, M. Banerji, D. Gruen, S. Jouvel, P. Melchior, J. Aleksić et al. „Comparing Dark Energy Survey and HST–CLASH observations of the galaxy cluster RXC J2248.7−4431: implications for stellar mass versus dark matter“. OXFORD UNIV PRESS, 2016. http://hdl.handle.net/10150/622739.
Der volle Inhalt der QuelleVlcek, Brian J. „Beyond the standard model| Ihc phenomenology, cosmology from post-inflationary sources, and dark matter physics“. Thesis, The University of Wisconsin - Milwaukee, 2014. http://pqdtopen.proquest.com/#viewpdf?dispub=3613650.
Der volle Inhalt der QuelleIt is the goal of this dissertation to demonstrate that beyond the standard model, certain theories exist which solve conflicts between observation and theory -- conflicts such as massive neutrinos, dark matter, unstable Higgs vacuum, and recent Planck observations of excess relativistic degrees of freedom in the early universe. Theories explored include a D-brane inspired construct of U(3) × Sp(1) × U(1) × U(1) extension of the standard model, in which we demonstrate several possible observables that may be detected at the LHC, and an ability to stabilize the Higgs mechanism. The extended model can also explain recent Planck data which, when added to HST data gives an excess of relativistic degrees of freedom of Δ N = 0.574 ± 0.25 above the standard result. Also explored is a possible non-thermal dark matter model for explanation of this result. Recent observations of Fermi bubble results indicate a signal of a 50 GeV dark matter particle annihilating into b b-bar, with a thermally averaged annihilation cross section corresponding to <σ v> = 8 × 10
(-27) cm
3/s, spurs interestin a Higgs portal model suggested by Steven Weinberg. Other implications of this model are also explored such as its ability to explain dark matter direct detection results along with LHC Higgs data, and Planck data. Particle physics is complimented by possible stochastic gravitational wave searches for which a model of second order global phase transitions is explored. These transitions generate gravitational wave spectra with amplitudes of order Ω(gw) h
2 = 10
(-24) - 10
(-15). Furthermore, techniques into such calculationsare investigated in hopes to improve the stability required in such lattice simulations.
Marcondes, Rafael José França. „Interacting dark energy models in Cosmology and large-scale structure observational tests“. Universidade de São Paulo, 2016. http://www.teses.usp.br/teses/disponiveis/43/43134/tde-17102016-123725/.
Der volle Inhalt der QuelleA cosmologia moderna oferece um ótimo entendimento do universo com uma precisão impressionante, possibilitada pelas tecnologias modernas das gerações mais novas de telescópios. O modelo cosmológico padrão, porém, não é livre de problemas do ponto de vista teórico, deixando perguntas ainda sem respostas. Uma possibilidade que tem sido proposta é a existência de um acoplamento entre setores escuros. A ideia de uma interação entre os componentes escuros poderia ajudar os físicos a entender por que vivemos em uma época do universo na qual a matéria escura e a energia escura são comparáveis em termos de densidades de energia, o que pode ser considerado uma estranha coincidência dado que suas evoluções com o tempo são completamente diferentes. Matéria escura e energia escura são geralmente tratadas como fluidos perfeitos. A interação é introduzida ao permitirmos um tensor não nulo no lado direito das equações de conservação dos tensores de energia-momento. Prosseguimos com uma abordagem fenomenológica para testar modelos de interação com observações de distorções no espaço de redshift. Em um universo plano composto apenas por esses dois fluidos, consideramos, separadamente, duas formas de interação, através de termos proporcionais às densidades de energia escura e de matéria escura. Uma expressão analítica para a taxa de crescimento aproximada por f = Omega^gamma, onde Omega é a contribuição percentual da matéria escura para o conteúdo do universo e gamma é o índice de crescimento, é deduzida em termos da interação e de outros parâmetros do modelo no primeiro caso, enquanto para o segundo caso mostramos que uma interação não nula não pode ser acomodada pela aproximação do índice de crescimento. As expressões obtidas são então utilizadas para comparar as previsões com dados observacionais de crescimento de estruturas em um programa para Monte Carlo via cadeias de Markov. Concluímos que tais dados atuais por si só não são capazes de restringir a interação devido às suas grandes incertezas. Utilizamos também observações de aglomerados de galáxias para analisar seus estados viriais através da equação de Layzer-Irvine modificada a fim de detectar sinais de interação. Obtemos medições de taxas viriais observadas, constante de interação, taxa virial de equilíbrio e desvio do equilíbrio para um conjunto de aglomerados. Uma análise combinada indica uma constante de interação 0.29^{+2.25}_{-0.40}, compatível com zero, mas uma taxa virial de equilíbrio combinada de 0.82^{+0.13}_{-0.14}, o que significa uma detecção em um intervalo de confiança de 2 sigma. Apesar desta tensão, o método produz resultados encorajadores enquanto ainda permite melhorias, possivelmente pela remoção da suposição de pequenos desvios do equilíbrio.
Silva, Michel Aguena da. „Cosmologia usando aglomerados de galáxias no Dark Energy Survey“. Universidade de São Paulo, 2017. http://www.teses.usp.br/teses/disponiveis/43/43134/tde-22102017-163407/.
Der volle Inhalt der QuelleAbstract Galaxy clusters are the largest bound structures of the Universe. Their distribution maps the dark matter halos formed in the deep potential wells of the dark matter field. As a result, the abundance of galaxy clusters is highly sensitive to the expansion of the universe as well as the growth of dark matter perturbations, representing a powerful tool for cosmological purposes. In the current era of large scale surveys with enormous volumes of data, the statistical quantities from the objects surveyed (galaxies, clusters, supernovae, quasars, etc) can be used to extract cosmological information. The main goal of this thesis is to explore the potential use of galaxy clusters for constraining cosmology. To that end, we study the halo formation theory, the detection of halos and clusters, the statistical tools required to quarry cosmological information from detected clusters and finally the effects of optical detection. In the composition of the theoretical prediction for the halo number counts, we analyze how each cosmological parameter of interest affects the halo abundance, the importance of the use of the halo covariance, and the effectiveness of halos on cosmological constraints. The redshift range and the use of prior knowledge of parameters are also investigated in detail. The theoretical prediction is tested on a dark matter simulation, where the cosmology is known and a dark matter halo catalog is available. In the analysis of the simulation we find that it is possible to obtain good constraints for some parameters such as (Omega_m,w,sigma_8,n_s) while other parameters (h,Omega_b) require external priors from different cosmological probes. In the statistical methods, we discuss the concept of likelihood, priors and the posterior distribution. The Fisher Matrix formalism and its application on galaxy clusters is presented, and used for making forecasts of ongoing and future surveys. For the real analysis of data we introduce Monte Carlo Markov Chain (MCMC) methods, which do not assume Gaussianity of the parameters distribution, but have a much higher computational cost relative to the Fisher Matrix. The observational effects are studied in detail. Using the Fisher Matrix approach, we carefully explore the effects of completeness and purity. We find in which cases it is worth to include extra parameters in order to lower the mass threshold. An interesting finding is the fact that including completeness and purity parameters along with cosmological parameters does not degrade dark energy constraints if other observational effects are already being considered. The use of priors on nuisance parameters does not seem to affect the dark energy constraints, unless these priors are better than 1\\%.The WaZp cluster finder was run on a cosmological simulation, producing a cluster catalog. Comparing the detected galaxy clusters to the dark matter halos, the observational effects were investigated and measured. Using these measurements, we were able to include corrections for the prediction of cluster counts, resulting in a good agreement with the detected cluster abundance. The results and tools developed in this thesis can provide a framework for the analysis of galaxy clusters for cosmological purposes. Several codes were created and tested along this work, among them are an efficient code to compute theoretical predictions of halo abundance and covariance, a code to estimate the abundance and covariance of galaxy clusters including multiple observational effects and a pipeline to match and compare halo/cluster catalogs. This pipeline has been integrated to the Science Portal of the Laboratório Interinstitucional de e-Astronomia (LIneA) and is being used to automatically assess the quality of cluster catalogs produced by the Dark Energy Survey (DES) collaboration and will be used in other future surveys.
Boddy, Kimberly K., Keith R. Dienes, Doojin Kim, Jason Kumar, Jong-Chul Park und Brooks Thomas. „Boxes, boosts, and energy duality: Understanding the Galactic Center gamma-ray excess through Dynamical Dark Matter“. AMER PHYSICAL SOC, 2017. http://hdl.handle.net/10150/623856.
Der volle Inhalt der QuelleLally, Colin Hugh. „Development of a cooled, sodium iodide scintillation detector and its use in search for dark matter“. Thesis, Imperial College London, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.362784.
Der volle Inhalt der QuelleHierro, Rodriguez Ignacio Miguel. „Scalars beyond the Standard Model: Composite Higgs, dark matter and neutrino masses“. Doctoral thesis, Università degli studi di Padova, 2017. http://hdl.handle.net/11577/3426319.
Der volle Inhalt der QuelleQuesta tesi si occupa di studiare modelli di Higgs Composto (HC), materia oscura e masse dei neutrini. In modelli di tipo HC, lo scalare di Higgs è uno pseudo-bosone di Goldstone associato che origina dalla rottura di una simmetria forte ad alta energia. Nella tesi costruiamo la Lagrangiana chirale bosonica effettiva, per un generico coset simmetrico G/H, derivando esplicitamente tutti gli operatori (sia CP-even che CP-odd) che appaiono fino a quattro derivate. Supponendo che l’uniche fonte di rottura di simmetria custodial siano quelle già presente nel Modello Standard (MS), studiamo la proiezione di questa Lagrangiana sulla Lagrangiana chirale di bassa energia del MS. Particolareggiamo questo studio considerando tre scenari particolari: il modello originale di Georgi-Kaplan SU(5)/SO(5), il modello minimale con simmetria custodial, SO(5)/SO(4), ed il modello minimale senza simmetria custodial, SU(3)/(SU(2) × U(1)). Nella tesi consideriamo inoltre unestensione del MS che coinvolge due nuove particelle scalari con massa alla scala TeV: un singoletto scalare neutro φ, che sarà poi identificato come candidato di materia oscura e un singoletto di SU(2)L scalare con carica q = 2, S++, che può essere la fonte per le masse e del mixing dei neutrini. Supponendo l’esistenza di una simmetria Z_2 nel settore scalare, sotto la quale solo φ è dispari, scriviamo il potenziale scalare (rinormalizzabile) più generale possibile. Il modello si può vedere come una possible estensione dei modelli con Higgs Portal in cui si tiene anche conto del meccanismo con cui generare le masse e i mixings dei neutrini. Il modello da noi studiato, pur predice un eccesso di positroni, non tale tuttavia da poter spiegare l’eccesso di positroni sperimentalmente osservato. Pur tuttavia si possono ottenere dei limiti meno stringenti rispetto ai normali modelli di Higgs Portal, in particolare se la scala della nuova fisica, responsabile della generazione delle masse dei neutrini e dei processi che violano il numero leptonico, è intorno ai 2 TeV.