Auswahl der wissenschaftlichen Literatur zum Thema „Dark Matter and Energy“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Dark Matter and Energy" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Dark Matter and Energy"

1

R K Dubey, R. K. Dubey, Pratima Ojha und Anil Saini. „Cosmological Model with Dark Energy and Dark Matter“. International Journal of Scientific Research 2, Nr. 5 (01.06.2012): 400–401. http://dx.doi.org/10.15373/22778179/may2013/135.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Nadar, Arun Kumar Koottharasan. „Exploring the Nature of Dark Matter and Dark Energy“. International Journal of Research Publication and Reviews 5, Nr. 1 (24.01.2024): 4640–46. http://dx.doi.org/10.55248/gengpi.5.0124.0341.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Perković, Dalibor, und Hrvoje Štefančić. „Dark sector unifications: Dark matter-phantom energy, dark matter - constant w dark energy, dark matter-dark energy-dark matter“. Physics Letters B 797 (Oktober 2019): 134806. http://dx.doi.org/10.1016/j.physletb.2019.134806.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Battersby, Stephen. „Dark matter, dark energy, dark… magnetism?“ New Scientist 214, Nr. 2867 (Juni 2012): 36–39. http://dx.doi.org/10.1016/s0262-4079(12)61430-4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Regmi, Jeevan. „Dark Energy and Dark Matter“. Himalayan Physics 4 (23.12.2013): 91–94. http://dx.doi.org/10.3126/hj.v4i0.9436.

Der volle Inhalt der Quelle
Annotation:
The new discoveries and evidences in the field of astrophysics have explored new area of discussion each day. It provides an inspiration for the search of new laws and symmetries in nature. One of the interesting issues of the decade is the accelerating universe. Though much is known about universe, still a lot of mysteries are present about it. The new concepts of dark energy and dark matter are being explained to answer the mysterious facts. However it unfolds the rays of hope for solving the various properties and dimensions of space.The Himalayan Physics Vol. 4, No. 4, 2013 Page: 90-94 Uploaded date: 12/23/2013
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Caldwell, Robert, und Marc Kamionkowski. „Dark matter and dark energy“. Nature 458, Nr. 7238 (April 2009): 587–89. http://dx.doi.org/10.1038/458587a.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Comelli, D., M. Pietroni und A. Riotto. „Dark energy and dark matter“. Physics Letters B 571, Nr. 3-4 (Oktober 2003): 115–20. http://dx.doi.org/10.1016/j.physletb.2003.05.006.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Khuri, Ramzi R. „Dark matter as dark energy“. Physics Letters B 568, Nr. 1-2 (August 2003): 8–10. http://dx.doi.org/10.1016/j.physletb.2003.06.051.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Edmonds, Douglas, Duncan Farrah, Djordje Minic, Y. Jack Ng und Tatsu Takeuchi. „Modified dark matter: Relating dark energy, dark matter and baryonic matter“. International Journal of Modern Physics D 27, Nr. 02 (Januar 2018): 1830001. http://dx.doi.org/10.1142/s021827181830001x.

Der volle Inhalt der Quelle
Annotation:
Modified dark matter (MDM) is a phenomenological model of dark matter, inspired by gravitational thermodynamics. For an accelerating universe with positive cosmological constant ([Formula: see text]), such phenomenological considerations lead to the emergence of a critical acceleration parameter related to [Formula: see text]. Such a critical acceleration is an effective phenomenological manifestation of MDM, and it is found in correlations between dark matter and baryonic matter in galaxy rotation curves. The resulting MDM mass profiles, which are sensitive to [Formula: see text], are consistent with observational data at both the galactic and cluster scales. In particular, the same critical acceleration appears both in the galactic and cluster data fits based on MDM. Furthermore, using some robust qualitative arguments, MDM appears to work well on cosmological scales, even though quantitative studies are still lacking. Finally, we comment on certain nonlocal aspects of the quanta of modified dark matter, which may lead to novel nonparticle phenomenology and which may explain why, so far, dark matter detection experiments have failed to detect dark matter particles.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Wu, Yumiao. „The dark matter and dark energy“. SHS Web of Conferences 174 (2023): 03014. http://dx.doi.org/10.1051/shsconf/202317403014.

Der volle Inhalt der Quelle
Annotation:
The dark matter and dark energy are one of the biggest challenges facing contemporary physics and astronomy. Dark energy and dark matter play an important role the universe. The amount of dark energy and dark matter determines how the universe changes. When there’s more dark energy, the universe is accelerating. If there were more dark matter, the universe might slow down, or even stop expanding and start contracting. So in this paper, the basic definition of dark matter and dark energy are introduced. And how were dark matter and dark energy discovered and their respective detection methods and the current progress of experiments to detect dark matter and dark energy respectively.
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Dissertationen zum Thema "Dark Matter and Energy"

1

Baldi, Marco. „Interactions between Dark Energy and Dark Matter“. Diss., lmu, 2009. http://nbn-resolving.de/urn:nbn:de:bvb:19-101617.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Ciocia, Giuseppe. „Emerging dark matter from corpuscular dark energy“. Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amslaurea.unibo.it/23294/.

Der volle Inhalt der Quelle
Annotation:
In the last years, the standard model of cosmology has been corroborated by a wide number of astrophysical observations. Despite its undeniable success, nowadays there is little knowledge about the true nature of dark matter and dark energy. In this thesis we use a different approach to give an intriguing answer to these open problems, in the light of the corpuscular model of gravity. We give a general overview on the reasons behind the need for a corpuscular theory of the gravitational interaction. Then, we show that if the same picture is extended to cosmological spaces, dark energy naturally emerges as a quantum state of the gravitational dynamics, and it is described as a Bose-Einstein condensate of very soft and virtual gravitons without the necessity of introducing an exotic dark fluid. Besides, the cosmic condensate responds locally to the presence of baryonic matter, and the back-reaction manifests itself in the emergence of a dark force that mimics a dark matter behavior. In particular, at galactic scales the MOND formula for the acceleration is recovered. Then, a first attempt of estimating the back-reaction is proposed within the framework of Bootstrapped Newtonian gravity, that allows for an effective field description where Newtonian theory is “bootstrapped" introducing post-Newtonian corrections, providing a useful tool for calculations. Finally, we show that a logarithmic potential arises as a solution of the Bootstrapped field equation, in accordance with MOND prediction.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

McEwen, Joseph Eugene McEwen. „The Hidden Universe: Dark Energy, Dark Matter, Baryons“. The Ohio State University, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=osu1471877488.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Costa, André Alencar da. „Observational Constraints on Models with an Interaction between Dark Energy and Dark Matter“. Universidade de São Paulo, 2014. http://www.teses.usp.br/teses/disponiveis/43/43134/tde-20012015-123002/.

Der volle Inhalt der Quelle
Annotation:
In this thesis we go beyond the standard cosmological LCDM model and study the effect of an interaction between dark matter and dark energy. Although the LCDM model provides good agreement with observations, it faces severe challenges from a theoretical point of view. In order to solve such problems, we first consider an alternative model where both dark matter and dark energy are described by fluids with a phenomenological interaction given by a combination of their energy densities. In addition to this model, we propose a more realistic one based on a Lagrangian density with a Yukawa-type interaction. To constrain the cosmological parameters we use recent cosmological data, the CMB measurements made by the Planck satellite, as well as BAO, SNIa, H0 and Lookback time measurements.
Nesta tese vamos além do modelo cosmológico padrão, o LCDM, e estudamos o efeito de uma interação entre a matéria e a energia escuras. Embora o modelo LCDM esteja de acordo com as observações, ele sofre sérios problemas teóricos. Com o objetivo de resolver tais problemas, nós primeiro consideramos um modelo alternativo, onde ambas, a matéria e a energia escuras, são descritas por fluidos com uma interação fenomenológica dada como uma combinação das densidades de energia. Além desse modelo, propomos um modelo mais realista baseado em uma densidade Lagrangiana com uma interação tipo Yukawa. Para vincular os parâmetros cosmológicos usamos dados cosmológicos recentes como as medidas da CMB feitas pelo satélite Planck, bem como medidas de BAO, SNIa, H0 e Lookback time.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Mishra-Sharma, Siddharth. „Extragalactic Searches for Dark Matter Annihilation“. Thesis, Princeton University, 2018. http://pqdtopen.proquest.com/#viewpdf?dispub=10928813.

Der volle Inhalt der Quelle
Annotation:

We are at the dawn of a data-driven era in astrophysics and cosmology. A large number of ongoing and forthcoming experiments combined with an increasingly open approach to data availability offer great potential in unlocking some of the deepest mysteries of the Universe. Among these is understanding the nature of dark matter (DM)—one of the major unsolved problems in particle physics. Characterizing DM through its astrophysical signatures will require a robust understanding of its distribution in the sky and the use of novel statistical methods.

The first part of this thesis describes the implementation of a novel statistical technique which leverages the “clumpiness” of photons originating from point sources (PSs) to derive the properties of PS populations hidden in astrophysical datasets. This is applied to data from the Fermi satellite at high latitudes (|b| ≥ 30°) to characterize the contribution of PSs of extragalactic origin. We find that the majority of extragalactic gamma-ray emission can be ascribed to unresolved PSs having properties consistent with known sources such as active galactic nuclei. This leaves considerably less room for significant dark matter contribution.

The second part of this thesis poses the question: “what is the best way to look for annihilating dark matter in extragalactic sources?” and attempts to answer it by constructing a pipeline to robustly map out the distribution of dark matter outside the Milky Way using galaxy group catalogs. This framework is then applied to Fermi data and existing group catalogs to search for annihilating dark matter in extragalactic galaxies and clusters.

APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Alles, Alexandre. „Inhomogeneous cosmology : an answer to the Dark Matter and Dark Energy problems?“ Thesis, Lyon 1, 2014. http://www.theses.fr/2014LYO10165/document.

Der volle Inhalt der Quelle
Annotation:
Le Modèle Standard de la cosmologie décrit la formation des structures à grande échelle dans l'Univers récent dans un cadre quasi–newtonien. Ce modèle requiert la présence de composantes inconnues, la Matière Noire et l'Énergie Noire, afin de vérifier correctement les observations. Ces deux quantités représentent à elles seules près de 95% du contenu de l'Univers. Bien que ces composantes sombres soient activement recherchées par la communauté scientifique, il existe plusieurs alternatives qui tentent de traiter le problème des structures à grande échelle. Les théories inhomogènes décrivent l'impact des fluctuations cinématiques sur le comportement global de l'Univers. D'autres théories proposent également d'aller au-delà de la relativité générale. Durant cette thèse, j'ai mis au point des éléments clés d'une théorie lagrangienne totalement relativiste de la formation des structures. Supposant un feuilletage particulier de l'espace–temps j'ai résolu le système d'équations du premier ordre afin d'obtenir des solutions décrivant l'évolution de la matière dans un espace à la géométrie perturbée. J'ai également développé un schéma de résolution pour les ordres supérieurs de perturbation ainsi que leurs équivalent newtoniens. Une autre partie de ce travail de thèse consiste en le développement de quelques applications directes : la description d'un Univers silencieux ou l'hypothèse de courbure de Weyl et le problème de 'entropie gravitationnelle. Les objectifs à plus ou moins court terme seraient d'obtenir la description d'observables physiques and le développement d'autres applications. Cette étape de développement sera une interaction entre approches théorique et numérique et requerra de se rapprocher fortement des observateurs
The standard model of cosmology describes the formation of large scale structures in the late Universe within a quasi–Newtonian theory. This model requires the presence of unknown compounds of the Universe, Dark Matter and Dark Energy, to properly fit the observations. These two quantities, according to the Standard Model, represent almost 95% of the content of the Universe. Although the dark components are searched for by the scientific community, there exist several alternatives which try to deal with the problem of the large scale structures. Inhomogeneous theories describe the impact of the kinematical fluctuations on the global behaviour of the Universe. Or some theories proposed to go beyond general relativity. During my Ph.D. thesis, I developed key–elements of a fully relativistic Lagrangian theory of structure formation. Assuming a specific space–time slicing, I solved the first order system of equations to obtain solutions which describe the matter evolution within the perturbed geometry, and I developed higher order schemes and their correspondences with the Lagrangian perturbation solutions in the Newtonian approach. I also worked on some applications of these results like the description of a silent Universe or the Weyl curvature hypothesis and the problem of gravitational entropy. Further objectives are the description of physical observables and the development of direct applications. Next step of the development is an interaction between theoretical and numerical approaches, a study which would require strong cooperation with observers
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Zsembinszki, Gabriel. „Light scalar fields in a dark universe: models of inflation, dark energy and dark matter“. Doctoral thesis, Universitat Autònoma de Barcelona, 2007. http://hdl.handle.net/10803/3390.

Der volle Inhalt der Quelle
Annotation:
La teoría científica de más éxito hoy en día, sobre el origen y la evolución del universo, es conocida como el modelo estándar del Big Bang, el cual es una de las construcciones intelectuales más ambiciosas de la humanidad. Se basa en dos ramas bien consolidadas de la física teórica, a saber, la teoría de la Relatividad General y el Modelo Estándar de la física de partículas, y es capaz de hacer predicciones sólidas, como la expansión del universo, la existencia del fondo de radiación de microondas y las abundancias relativas de los elementos ligeros. Algunas de las predicciones teóricas ya han sido confirmadas por observaciones muy precisas.
Según la cosmología estándar del Big Bang, el universo primitivo consistía en un plasma muy caliente y denso que se expandió y se enfrió continuamente hasta el presente, dando paso a una serie de transiciones de fase cosmológicas, donde las teorías que describen el universo en cada fase son distintas. Dado que las energías del universo primitivo fueron mucho más altas que las alcanzadas en experimentos terrestres, el estudio del universo primitivo podría ofrecernos importantes informaciones sobre nuevas interacciones y nuevas partículas, abriendo nuevas direcciones para la extensión del Modelo Estándar de la física de partículas.
Como ya he mencionado anteriormente, durante la expansión del universo ocurrieron varias transiciones de fase que dejaron su huella sobre el estado presente del universo. Las observaciones sugieren que durante una de estas transiciones de fase, el universo primitivo sufrió un periodo de expansión acelerada, conocido como inflación. Aunque no forma parte de la cosmología estándar, la inflación es capaz de solucionar de una manera simple y elegante casi todos los problemas relacionados con el modelo estándar del Big Bang, y debería tenerse en cuenta en cualquier extensión posible de la teoría. Las observaciones también revelan la existencia de dos formas de energía desconocidas, a saber, materia oscura y energía oscura. La materia oscura es una forma de materia no relativista y no bariónica, que solamente puede ser detectada indirectamente, mediante su interacción con la materia normal. La energía oscura es un tipo de sustancia con presión negativa, que empezó a dominar recientemente y que es la causa de la aceleración de la expansión del universo.
En esta tesis doctoral presento varios modelos originales propuestos para resolver algunos de los problemas de la cosmología estándar, como posibles extensiones del modelo del Big Bang. Algunos de estos modelos introducen nuevas simetrías y partículas con el fin de explicar la inflación y la energía oscura y/o la materia oscura en una descripción unificada. Uno de los modelos es propuesto para explicar la energía oscura del universo, a través de un nuevo campo escalar que oscila en un potencial.
The most successful scientific theory today about the origin and evolution of the universe is known as the standard Big Bang model, which is one of the most ambitious intellectual constructions of the humanity. It is based on two consolidated branches of theoretical physics, namely, the theory of General Relativity and the Standard Model of particle physics, and is able to make robust predictions, such as the expansion of the universe, the existence of the cosmic microwave background radiation and the relative primordial abundance of light elements. Some of the theoretical predictions have already been confirmed by very precise observations.
According to the standard Big Bang cosmology, the early universe consisted of a very hot and dense plasma that continuously expanded and cooled up to the present, giving place to a series of cosmological phase transitions, where the theories describing the universe in each phase are different. Given that the energies of the early universe were much higher than those reached in terrestrial experiments, the study of the early universe might give us important information about new interactions and new particles, opening new directions for extending the Standard Model of particle physics.
As already mentioned above, during the expansion of the universe, different phase transitions occurred, which left their imprint on the present state of the universe. Observations suggest that during a very early phase transition the universe suffered a stage of accelerated expansion, known as inflation. Although inflation is not included in the standard cosmology, it is able to solve in a simple and elegant manner almost all of the shortcomings related to the standard Big Bang model, and should be taken into account in any possible extension of the theory. Observations also reveal evidence of the existence of two unknown forms of energy, i.e., dark matter and dark energy. Dark matter is a form of non-relativistic and non-baryonic matter, which can only be detected indirectly, by its gravitational interactions with normal matter. Dark energy is a kind of substance with negative pressure, which started to dominate recently and causes the accelerated expansion of the universe.
In this PhD Thesis, I present a few original models proposed to solve some of the shortcomings of the standard cosmology, as possible extensions of the Big Bang model. Some of these models introduce new symmetries and particles in order to explain inflation and dark energy and/or dark matter in a unified description. One of the models is proposed for explaining the dark energy of the universe, by means of a new scalar field oscillating in a potential.
The most successful scientific theory today about the origin and evolution of the universe is known as the standard Big Bang model, which is one of the most ambitious intellectual constructions of the humanity. It is based on two consolidated branches of theoretical physics, namely, the theory of General Relativity and the Standard Model of particle physics, and is able to make robust predictions, such as the expansion of the universe, the existence of the cosmic microwave background radiation and the relative primordial abundance of light elements. Some of the theoretical predictions have already been confirmed by very precise observations.
According to the standard Big Bang cosmology, the early universe consisted of a very hot and dense plasma that continuously expanded and cooled up to the present, giving place to a series of cosmological phase transitions, where the theories describing the universe in each phase are different. Given that the energies of the early universe were much higher than those reached in terrestrial experiments, the study of the early universe might give us important information about new interactions and new particles, opening new directions for extending the Standard Model of particle physics.
As already mentioned above, during the expansion of the universe, different phase transitions occurred, which left their imprint on the present state of the universe. Observations suggest that during a very early phase transition the universe suffered a stage of accelerated expansion, known as inflation. Although inflation is not included in the standard cosmology, it is able to solve in a simple and elegant manner almost all of the shortcomings related to the standard Big Bang model, and should be taken into account in any possible extension of the theory. Observations also reveal evidence of the existence of two unknown forms of energy, i.e., dark matter and dark energy. Dark matter is a form of non-relativistic and non-baryonic matter, which can only be detected indirectly, by its gravitational interactions with normal matter. Dark energy is a kind of substance with negative pressure, which started to dominate recently and causes the accelerated expansion of the universe.
In this PhD Thesis, I present a few original models proposed to solve some of the shortcomings of the standard cosmology, as possible extensions of the Big Bang model. Some of these models introduce new symmetries and particles in order to explain inflation and dark energy and/or dark matter in a unified description. One of the models is proposed for explaining the dark energy of the universe, by means of a new scalar field oscillating in a potential.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Laycock, Thomas Daniel. „Dark matter excitations via massive vector bosons“. Thesis, McGill University, 2008. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=21959.

Der volle Inhalt der Quelle
Annotation:
A model of dark matter excitations is studied in an attempt to explain the anomalously large 511 keV photon line emission observed by the SPI spectrograph on INTEGRAL to be originating from the galactic bulge of the Milky Way. The proposed dark matter WIMP has a near degenerate mass partner a few MeV heavier. Scattering between dark matter particles leads to excitations, with the subsequent decays producing an electron-positron pair. In this way, the kinetic energy of the massive dark matter particles can be efficiently converted into electron-positron pairs moving slow enough to produce the narrow annihilation line observed. With a sufficiently large mass gap, kinematic considerations and the cuspy dark matter density profile constrain excitations to the galactic bulge where the escape velocity, and thus the fraction of dark matter particles above the kinematic cutoff, is large.
Un model d'excitations matière sombre est etudié dans une tentative d'explication de la ligne d'emission anormalement large observé par le spectrographe SPI sur INTEGRAL originaire du bulbe galactique de la Voie Lactée. La matière sombre WIMP proposée possède un partenaire ayant une masse de quelques MeV supplémentaires. La diffusion entre les particules de matière sombre mène aux excitations et à la désintégration ultérieure en une paire électron-positron. De cette façon, l'énergie cinétique des particules de matière sombre peut être convertie en paires électron-positron se déplaçant suffisement lentement pour produire l'étroite ligne d'annihilation observée. Avec un espacement en masse suffisement grand, les considérations cinématique et un profil de densité de la matière sombre cuspy contraignent les excitations au bulbe galactique, où la vitesse d'échappement, et donc la fraction de particules matière sombre au-dessus du seuil cinétique, est grande.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Palmese, Antonella. „Unveiling the unseen with the Dark Energy Survey : gravitational waves and dark matter“. Thesis, University College London (University of London), 2018. http://discovery.ucl.ac.uk/10055879/.

Der volle Inhalt der Quelle
Annotation:
In this thesis I show how large galaxy surveys, in particular the study of the properties of galaxies, can shed light on gravitational wave sources and dark matter. This is achieved using the latest data from the Dark Energy Survey, an on-going 5000 deg2 optical survey. Galaxy properties such as photometric redshifts and stellar masses are derived through spectral energy distribution fitting methods. The results are used to study host galaxies of gravitational wave events and how light traces dark matter in galaxy clusters. Gravita- tional wave (GW) science, and particularly the electromagnetic follow up of these events, is transforming what had never been seen into a new astronomical field able to unveil the nature of cataclysmic events. Identifying the galaxies that host these events, and es- timating their redshift, stellar mass, and star–formation rate, is crucial for cosmological analysis with gravitational waves, for follow up studies and to understand the formation of the binary systems that are thought to produce observable gravitational wave signals. This thesis describes how the host matching is implemented within the DES–GW pipeline and how observations of NGC 4993, the galaxy host of the event GW170817, provide important information about possible formation scenarios for binary neutron stars. In particular, we find that NGC 4993 presents shell structures and we relate their formation to the binary formation. The same galaxy properties are used to derive an observable mass proxy for galaxy clusters. I show that this mass observable correlates well with the total mass of clusters, which is mainly composed of dark matter. It can therefore be used for cosmological studies with galaxy clusters. The measurement of stellar–to–halo mass relations in clusters provides insights on the connection between the star content and the total matter content in clusters, and how this evolves over cosmic time.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Whittamore, Zakary. „Isospin-violating dark matter and direct detection experiments“. Thesis, McGill University, 2014. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=123143.

Der volle Inhalt der Quelle
Annotation:
Hints of direct detection of dark matter have been presented by the DAMA, CoGeNT, and CRESST collaborations, despite a number of null results that seem to contradict such claims. Although standard spin-independent dark matter is not capable of reconciling the results, dark matter models containing isospin-violating couplings have shown promise in solving the issues surrounding direct detection of dark matter. Inelastic or momentum-dependent scattering dark matter has also been shown to help alleviate these tensions. In light of the 2012 XENON100 observations, updated analysis of surface event contamination at CoGeNT, revision of the energy resolution employed by XENON10, and new results from the CDMS-II silicon detectors, we study the extent to which spin-independent, spin-dependent, and combined models of isospin-violating dark matter are capable of explaining current direct detection data. Moreover, we explore the effect of an energy-dependent sodium quenching factor $Q_{\rm Na}$ for fitting the DAMA observations, and give an isospin-violating prediction for XENON1T. In addition to the usual analysis involving phase space plots, we investigate a halo-independent model of dark matter in the space of minimum velocities required for a dark matter particle to scatter off a given nucleus. For the first time, such an analysis is performed for models of dark matter which embrace both inelastic and isospin-violating couplings, as well as for dark matter with momentum- and spin dependent interactions. With respect to the models considered herein, our results do not support a dark matter interpretation of direct detection data in either the standard or halo-independent formalisms.
Conseils de détection directe de la matière noire ont été présentés par les DAMA, CoGeNT, et CRESST collaborations, malgré un certain nombre de résultats nuls qui semblent contredire ces allégations. Bien que la norme matière noire indépendante du spin n'est pas capable de concilier la résultats, la matière noire modèles contenant couplages de isospin-violation ont montré des résultats prometteurs dans résolution des problèmes de détection directe de la matière noire. Diffusion inélastique ou dynamique dépendant de la matière noire a également été démontré que aider à atténuer ces tensions. À la lumière des observations XENON100 2012, analyse actualisée de la contamination de l' événement de surface à CoGeNT, la révision de la résolution de l'énergie utilisée par XENON10, et de nouveaux résultats provenant des détecteurs de silicium CDMS-II, nous étudier la mesure dans laquelle indépendante du spin, dépendant du spin, et des modèles combinés de la matière noire isospin-violation sont capables d'expliquer les données de détection directs actuels. De plus, nous explorons l'effet d'une trempe de sodium dépendant de l'énergie facteur $Q_{\rm Na}$ pour le montage des observations DAMA, et de donner une prévision de isospin-violation de XENON1T. En plus de l'analyse habituelle impliquant des parcelles de l'espace de phase, nous étudions un modèle de halo-indépendant de la matière noire dans l'espace des vitesses minimales requises pour une particule de matière noire se disperser hors d'un noyau donné. Pour la première fois, une telle analyse est effectuée pour les modèles de matière noire qui embrassent les deux couplages élastiques et isospin-violation, ainsi que de la matière noire avec des interactions dépendant du dynamique et spin. En ce qui concerne les modèles considérés ici, nos résultats ne soutiennent pas une question d'interprétation sombre de données de détection directe soit dans la norme ou formalismes halo-indépendant.
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Bücher zum Thema "Dark Matter and Energy"

1

Matarrese, Sabino, Monica Colpi, Vittorio Gorini und Ugo Moschella, Hrsg. Dark Matter and Dark Energy. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-90-481-8685-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Ginzburg, Vladimir B. Prime elements of ordinary matter, dark matter, & dark energy. Pittsburgh, PA: Helicola Press, 2007.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Dark energy: Observational and theoretical approaches. Cambridge, UK: Cambridge University Press, 2010.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Papantonopoulos, E. The invisible universe: Dark matter and dark energy. [New York]: Springer-Verlag Berlin Heidelberg, 2010.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Paths to dark energy: Theory and observation. Berlin: De Gruyter, 2012.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

P, Ruiz-Lapuente, Hrsg. Dark energy: Observational and theoretical approaches. New York: Cambridge University Press, 2010.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Dark side of the universe: Dark matter, dark energy, and the fate of the cosmos. Bristol: Canopus, 2007.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Papantonopoulos, Lefteris, Hrsg. The Invisible Universe: Dark Matter and Dark Energy. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-71013-4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Cenkner, August A. A dark energy theory correlated with laboratory simulations and astronomical observations. Bloomington, Ind: Author House, 2005.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Prime elements of ordinary matter, dark matter & dark energy: Beyond standard model & string theory. 2. Aufl. Boca Raton, FL: Universal Publishers, 2007.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Buchteile zum Thema "Dark Matter and Energy"

1

D’Amico, Guido, Marc Kamionkowski und Kris Sigurdson. „Dark Matter Astrophysics“. In Dark Matter and Dark Energy, 241–72. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-90-481-8685-3_5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Tsujikawa, Shinji. „Dark Energy: Investigation and Modeling“. In Dark Matter and Dark Energy, 331–402. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-90-481-8685-3_8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Perlov, Delia, und Alex Vilenkin. „Dark Matter and Dark Energy“. In Cosmology for the Curious, 131–41. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-57040-2_9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Manoukian, E. B. „Dark Matter and Dark Energy“. In 100 Years of Fundamental Theoretical Physics in the Palm of Your Hand, 535–39. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-51081-7_92.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Köhler, Nicolas Maximilian. „Dark Matter and Dark Energy“. In Springer Theses, 17–25. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-25988-4_3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Grupen, Claus. „Dark Energy and Dark Matter“. In Astroparticle Physics, 401–34. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-27339-2_13.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Jacquart, Melissa. „Dark Matter And Dark Energy“. In The Routledge Companion to Philosophy of Physics, 731–43. New York: Routledge, 2021. http://dx.doi.org/10.4324/9781315623818-68.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Straumann, Norbert. „Relativistic Cosmology“. In Dark Matter and Dark Energy, 3–131. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-90-481-8685-3_1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Verde, Licia. „Cosmology with Cosmic Microwave Background and Large-Scale Structure Observations“. In Dark Matter and Dark Energy, 133–76. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-90-481-8685-3_2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Heavens, Alan. „Cosmology with Gravitational Lensing“. In Dark Matter and Dark Energy, 177–216. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-90-481-8685-3_3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "Dark Matter and Energy"

1

Žulj, Tim. „Dark Energy and Dark Matter“. In Socratic lectures 10. University of Lubljana Press, 2024. http://dx.doi.org/10.55295/psl.2024.ii11.

Der volle Inhalt der Quelle
Annotation:
Abstract: Study of space is never ending quest of humanity. An emerging question regards dark energy and dark matter which are the subjects of this contribution. We will consider the difference between the dark energy and dark matter, history of matter and contemporary efforts to find experimental evidence on dark energy and dark matter. We will briefly consider galaxy rotation curves, gravitational lensing and cosmic microwave background. Keywords: Dark matter, Dark energy, Universe
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

de la Macorra, A., und T. Matos. „Dark Energy and Dark Matter“. In PARTICLES AND FIELDS: X Mexican Workshop on Particles and Fields. AIP, 2006. http://dx.doi.org/10.1063/1.2359404.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

ULLIO, P. „DARK MATTER AND DARK ENERGY“. In Proceedings of the 7th School. WORLD SCIENTIFIC, 2005. http://dx.doi.org/10.1142/9789812701893_0007.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Kolb, Edward W. „Inflation, Dark Matter, Dark Energy“. In Proceedings of the International School of Subnuclear Physics. WORLD SCIENTIFIC, 2005. http://dx.doi.org/10.1142/9789812701794_0006.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Riess, Adam. „Seeing Dark Energy“. In Identification of dark matter 2008. Trieste, Italy: Sissa Medialab, 2009. http://dx.doi.org/10.22323/1.064.0043.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

MATHEWS, GRANT J., NGUYEN Q. LAN und JAMES R. WILSON. „DARK ENERGY AND DECAYING DARK MATTER“. In Proceedings of the MG11 Meeting on General Relativity. World Scientific Publishing Company, 2008. http://dx.doi.org/10.1142/9789812834300_0253.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

DAVIDSON, AHARON, YOAV LEDERER und DAVID KARASIK. „DARK ENERGY/MATTER UNIFICATION“. In Proceedings of the Fourth International Workshop. WORLD SCIENTIFIC, 2003. http://dx.doi.org/10.1142/9789812791313_0005.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Bettini, Alessandro. „Dark Matter Searches“. In International Europhysics Conference on High Energy Physics. Trieste, Italy: Sissa Medialab, 2007. http://dx.doi.org/10.22323/1.021.0412.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Bergstrom, Lars. „Dark matter theory“. In XXIst International Europhysics Conference on High Energy Physics. Trieste, Italy: Sissa Medialab, 2012. http://dx.doi.org/10.22323/1.134.0012.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Drees, Manuel. „Dark Matter Theory“. In The 39th International Conference on High Energy Physics. Trieste, Italy: Sissa Medialab, 2019. http://dx.doi.org/10.22323/1.340.0730.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Berichte der Organisationen zum Thema "Dark Matter and Energy"

1

Brown, Benjamin. Special Gravity #1 - Dark Energy and Dark Matter. ResearchHub Technologies, Inc., September 2023. http://dx.doi.org/10.55277/researchhub.idocddli.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Scherrer, Robert. Theoretical Studies in Dark Energy and Dark Matter. Office of Scientific and Technical Information (OSTI), Mai 2023. http://dx.doi.org/10.2172/1972343.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Miller, Jonah Maxwell. A Universe of Unknowns: Dark Matter and Dark Energy. Office of Scientific and Technical Information (OSTI), Februar 2020. http://dx.doi.org/10.2172/1602719.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Lewis, Ian. Searching for the Nature of Dark Matter and Dark Energy. Office of Scientific and Technical Information (OSTI), Januar 2024. http://dx.doi.org/10.2172/2282501.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Palmese, Antonella. Unveiling the unseen with the Dark Energy Survey: gravitational waves and dark matter. Office of Scientific and Technical Information (OSTI), Januar 2018. http://dx.doi.org/10.2172/1497090.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Crotty, Patrick R. High-energy neutrino fluxes from the supermassive dark matter. Office of Scientific and Technical Information (OSTI), Januar 2002. http://dx.doi.org/10.2172/1420932.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Chen, Yu. High-Energy Neutron Backgrounds for Underground Dark Matter Experiments. Office of Scientific and Technical Information (OSTI), Januar 2016. http://dx.doi.org/10.2172/1350521.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Baltz, Edward A., Marco Battaglia, Michael E. Peskin und Tommer Wizansky. Determination of Dark Matter Properties at High-Energy Collider. Office of Scientific and Technical Information (OSTI), Februar 2006. http://dx.doi.org/10.2172/876594.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Witherell, Michael. Experimental High Energy Physics Research: Direct Detection of Dark Matter. Office of Scientific and Technical Information (OSTI), Oktober 2014. http://dx.doi.org/10.2172/1158940.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Ellis, Richard, S. Understanding the Fundamental Properties of Dark Matter & Dark Energy in Structure formation and Cosmology. Office of Scientific and Technical Information (OSTI), Februar 2008. http://dx.doi.org/10.2172/923329.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie