Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Dark Matter and Energy“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Dark Matter and Energy" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Dark Matter and Energy"
R K Dubey, R. K. Dubey, Pratima Ojha und Anil Saini. „Cosmological Model with Dark Energy and Dark Matter“. International Journal of Scientific Research 2, Nr. 5 (01.06.2012): 400–401. http://dx.doi.org/10.15373/22778179/may2013/135.
Der volle Inhalt der QuelleNadar, Arun Kumar Koottharasan. „Exploring the Nature of Dark Matter and Dark Energy“. International Journal of Research Publication and Reviews 5, Nr. 1 (24.01.2024): 4640–46. http://dx.doi.org/10.55248/gengpi.5.0124.0341.
Der volle Inhalt der QuellePerković, Dalibor, und Hrvoje Štefančić. „Dark sector unifications: Dark matter-phantom energy, dark matter - constant w dark energy, dark matter-dark energy-dark matter“. Physics Letters B 797 (Oktober 2019): 134806. http://dx.doi.org/10.1016/j.physletb.2019.134806.
Der volle Inhalt der QuelleBattersby, Stephen. „Dark matter, dark energy, dark… magnetism?“ New Scientist 214, Nr. 2867 (Juni 2012): 36–39. http://dx.doi.org/10.1016/s0262-4079(12)61430-4.
Der volle Inhalt der QuelleRegmi, Jeevan. „Dark Energy and Dark Matter“. Himalayan Physics 4 (23.12.2013): 91–94. http://dx.doi.org/10.3126/hj.v4i0.9436.
Der volle Inhalt der QuelleCaldwell, Robert, und Marc Kamionkowski. „Dark matter and dark energy“. Nature 458, Nr. 7238 (April 2009): 587–89. http://dx.doi.org/10.1038/458587a.
Der volle Inhalt der QuelleComelli, D., M. Pietroni und A. Riotto. „Dark energy and dark matter“. Physics Letters B 571, Nr. 3-4 (Oktober 2003): 115–20. http://dx.doi.org/10.1016/j.physletb.2003.05.006.
Der volle Inhalt der QuelleKhuri, Ramzi R. „Dark matter as dark energy“. Physics Letters B 568, Nr. 1-2 (August 2003): 8–10. http://dx.doi.org/10.1016/j.physletb.2003.06.051.
Der volle Inhalt der QuelleEdmonds, Douglas, Duncan Farrah, Djordje Minic, Y. Jack Ng und Tatsu Takeuchi. „Modified dark matter: Relating dark energy, dark matter and baryonic matter“. International Journal of Modern Physics D 27, Nr. 02 (Januar 2018): 1830001. http://dx.doi.org/10.1142/s021827181830001x.
Der volle Inhalt der QuelleWu, Yumiao. „The dark matter and dark energy“. SHS Web of Conferences 174 (2023): 03014. http://dx.doi.org/10.1051/shsconf/202317403014.
Der volle Inhalt der QuelleDissertationen zum Thema "Dark Matter and Energy"
Baldi, Marco. „Interactions between Dark Energy and Dark Matter“. Diss., lmu, 2009. http://nbn-resolving.de/urn:nbn:de:bvb:19-101617.
Der volle Inhalt der QuelleCiocia, Giuseppe. „Emerging dark matter from corpuscular dark energy“. Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amslaurea.unibo.it/23294/.
Der volle Inhalt der QuelleMcEwen, Joseph Eugene McEwen. „The Hidden Universe: Dark Energy, Dark Matter, Baryons“. The Ohio State University, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=osu1471877488.
Der volle Inhalt der QuelleCosta, André Alencar da. „Observational Constraints on Models with an Interaction between Dark Energy and Dark Matter“. Universidade de São Paulo, 2014. http://www.teses.usp.br/teses/disponiveis/43/43134/tde-20012015-123002/.
Der volle Inhalt der QuelleNesta tese vamos além do modelo cosmológico padrão, o LCDM, e estudamos o efeito de uma interação entre a matéria e a energia escuras. Embora o modelo LCDM esteja de acordo com as observações, ele sofre sérios problemas teóricos. Com o objetivo de resolver tais problemas, nós primeiro consideramos um modelo alternativo, onde ambas, a matéria e a energia escuras, são descritas por fluidos com uma interação fenomenológica dada como uma combinação das densidades de energia. Além desse modelo, propomos um modelo mais realista baseado em uma densidade Lagrangiana com uma interação tipo Yukawa. Para vincular os parâmetros cosmológicos usamos dados cosmológicos recentes como as medidas da CMB feitas pelo satélite Planck, bem como medidas de BAO, SNIa, H0 e Lookback time.
Mishra-Sharma, Siddharth. „Extragalactic Searches for Dark Matter Annihilation“. Thesis, Princeton University, 2018. http://pqdtopen.proquest.com/#viewpdf?dispub=10928813.
Der volle Inhalt der QuelleWe are at the dawn of a data-driven era in astrophysics and cosmology. A large number of ongoing and forthcoming experiments combined with an increasingly open approach to data availability offer great potential in unlocking some of the deepest mysteries of the Universe. Among these is understanding the nature of dark matter (DM)—one of the major unsolved problems in particle physics. Characterizing DM through its astrophysical signatures will require a robust understanding of its distribution in the sky and the use of novel statistical methods.
The first part of this thesis describes the implementation of a novel statistical technique which leverages the “clumpiness” of photons originating from point sources (PSs) to derive the properties of PS populations hidden in astrophysical datasets. This is applied to data from the Fermi satellite at high latitudes (|b| ≥ 30°) to characterize the contribution of PSs of extragalactic origin. We find that the majority of extragalactic gamma-ray emission can be ascribed to unresolved PSs having properties consistent with known sources such as active galactic nuclei. This leaves considerably less room for significant dark matter contribution.
The second part of this thesis poses the question: “what is the best way to look for annihilating dark matter in extragalactic sources?” and attempts to answer it by constructing a pipeline to robustly map out the distribution of dark matter outside the Milky Way using galaxy group catalogs. This framework is then applied to Fermi data and existing group catalogs to search for annihilating dark matter in extragalactic galaxies and clusters.
Alles, Alexandre. „Inhomogeneous cosmology : an answer to the Dark Matter and Dark Energy problems?“ Thesis, Lyon 1, 2014. http://www.theses.fr/2014LYO10165/document.
Der volle Inhalt der QuelleThe standard model of cosmology describes the formation of large scale structures in the late Universe within a quasi–Newtonian theory. This model requires the presence of unknown compounds of the Universe, Dark Matter and Dark Energy, to properly fit the observations. These two quantities, according to the Standard Model, represent almost 95% of the content of the Universe. Although the dark components are searched for by the scientific community, there exist several alternatives which try to deal with the problem of the large scale structures. Inhomogeneous theories describe the impact of the kinematical fluctuations on the global behaviour of the Universe. Or some theories proposed to go beyond general relativity. During my Ph.D. thesis, I developed key–elements of a fully relativistic Lagrangian theory of structure formation. Assuming a specific space–time slicing, I solved the first order system of equations to obtain solutions which describe the matter evolution within the perturbed geometry, and I developed higher order schemes and their correspondences with the Lagrangian perturbation solutions in the Newtonian approach. I also worked on some applications of these results like the description of a silent Universe or the Weyl curvature hypothesis and the problem of gravitational entropy. Further objectives are the description of physical observables and the development of direct applications. Next step of the development is an interaction between theoretical and numerical approaches, a study which would require strong cooperation with observers
Zsembinszki, Gabriel. „Light scalar fields in a dark universe: models of inflation, dark energy and dark matter“. Doctoral thesis, Universitat Autònoma de Barcelona, 2007. http://hdl.handle.net/10803/3390.
Der volle Inhalt der QuelleSegún la cosmología estándar del Big Bang, el universo primitivo consistía en un plasma muy caliente y denso que se expandió y se enfrió continuamente hasta el presente, dando paso a una serie de transiciones de fase cosmológicas, donde las teorías que describen el universo en cada fase son distintas. Dado que las energías del universo primitivo fueron mucho más altas que las alcanzadas en experimentos terrestres, el estudio del universo primitivo podría ofrecernos importantes informaciones sobre nuevas interacciones y nuevas partículas, abriendo nuevas direcciones para la extensión del Modelo Estándar de la física de partículas.
Como ya he mencionado anteriormente, durante la expansión del universo ocurrieron varias transiciones de fase que dejaron su huella sobre el estado presente del universo. Las observaciones sugieren que durante una de estas transiciones de fase, el universo primitivo sufrió un periodo de expansión acelerada, conocido como inflación. Aunque no forma parte de la cosmología estándar, la inflación es capaz de solucionar de una manera simple y elegante casi todos los problemas relacionados con el modelo estándar del Big Bang, y debería tenerse en cuenta en cualquier extensión posible de la teoría. Las observaciones también revelan la existencia de dos formas de energía desconocidas, a saber, materia oscura y energía oscura. La materia oscura es una forma de materia no relativista y no bariónica, que solamente puede ser detectada indirectamente, mediante su interacción con la materia normal. La energía oscura es un tipo de sustancia con presión negativa, que empezó a dominar recientemente y que es la causa de la aceleración de la expansión del universo.
En esta tesis doctoral presento varios modelos originales propuestos para resolver algunos de los problemas de la cosmología estándar, como posibles extensiones del modelo del Big Bang. Algunos de estos modelos introducen nuevas simetrías y partículas con el fin de explicar la inflación y la energía oscura y/o la materia oscura en una descripción unificada. Uno de los modelos es propuesto para explicar la energía oscura del universo, a través de un nuevo campo escalar que oscila en un potencial.
The most successful scientific theory today about the origin and evolution of the universe is known as the standard Big Bang model, which is one of the most ambitious intellectual constructions of the humanity. It is based on two consolidated branches of theoretical physics, namely, the theory of General Relativity and the Standard Model of particle physics, and is able to make robust predictions, such as the expansion of the universe, the existence of the cosmic microwave background radiation and the relative primordial abundance of light elements. Some of the theoretical predictions have already been confirmed by very precise observations.
According to the standard Big Bang cosmology, the early universe consisted of a very hot and dense plasma that continuously expanded and cooled up to the present, giving place to a series of cosmological phase transitions, where the theories describing the universe in each phase are different. Given that the energies of the early universe were much higher than those reached in terrestrial experiments, the study of the early universe might give us important information about new interactions and new particles, opening new directions for extending the Standard Model of particle physics.
As already mentioned above, during the expansion of the universe, different phase transitions occurred, which left their imprint on the present state of the universe. Observations suggest that during a very early phase transition the universe suffered a stage of accelerated expansion, known as inflation. Although inflation is not included in the standard cosmology, it is able to solve in a simple and elegant manner almost all of the shortcomings related to the standard Big Bang model, and should be taken into account in any possible extension of the theory. Observations also reveal evidence of the existence of two unknown forms of energy, i.e., dark matter and dark energy. Dark matter is a form of non-relativistic and non-baryonic matter, which can only be detected indirectly, by its gravitational interactions with normal matter. Dark energy is a kind of substance with negative pressure, which started to dominate recently and causes the accelerated expansion of the universe.
In this PhD Thesis, I present a few original models proposed to solve some of the shortcomings of the standard cosmology, as possible extensions of the Big Bang model. Some of these models introduce new symmetries and particles in order to explain inflation and dark energy and/or dark matter in a unified description. One of the models is proposed for explaining the dark energy of the universe, by means of a new scalar field oscillating in a potential.
The most successful scientific theory today about the origin and evolution of the universe is known as the standard Big Bang model, which is one of the most ambitious intellectual constructions of the humanity. It is based on two consolidated branches of theoretical physics, namely, the theory of General Relativity and the Standard Model of particle physics, and is able to make robust predictions, such as the expansion of the universe, the existence of the cosmic microwave background radiation and the relative primordial abundance of light elements. Some of the theoretical predictions have already been confirmed by very precise observations.
According to the standard Big Bang cosmology, the early universe consisted of a very hot and dense plasma that continuously expanded and cooled up to the present, giving place to a series of cosmological phase transitions, where the theories describing the universe in each phase are different. Given that the energies of the early universe were much higher than those reached in terrestrial experiments, the study of the early universe might give us important information about new interactions and new particles, opening new directions for extending the Standard Model of particle physics.
As already mentioned above, during the expansion of the universe, different phase transitions occurred, which left their imprint on the present state of the universe. Observations suggest that during a very early phase transition the universe suffered a stage of accelerated expansion, known as inflation. Although inflation is not included in the standard cosmology, it is able to solve in a simple and elegant manner almost all of the shortcomings related to the standard Big Bang model, and should be taken into account in any possible extension of the theory. Observations also reveal evidence of the existence of two unknown forms of energy, i.e., dark matter and dark energy. Dark matter is a form of non-relativistic and non-baryonic matter, which can only be detected indirectly, by its gravitational interactions with normal matter. Dark energy is a kind of substance with negative pressure, which started to dominate recently and causes the accelerated expansion of the universe.
In this PhD Thesis, I present a few original models proposed to solve some of the shortcomings of the standard cosmology, as possible extensions of the Big Bang model. Some of these models introduce new symmetries and particles in order to explain inflation and dark energy and/or dark matter in a unified description. One of the models is proposed for explaining the dark energy of the universe, by means of a new scalar field oscillating in a potential.
Laycock, Thomas Daniel. „Dark matter excitations via massive vector bosons“. Thesis, McGill University, 2008. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=21959.
Der volle Inhalt der QuelleUn model d'excitations matière sombre est etudié dans une tentative d'explication de la ligne d'emission anormalement large observé par le spectrographe SPI sur INTEGRAL originaire du bulbe galactique de la Voie Lactée. La matière sombre WIMP proposée possède un partenaire ayant une masse de quelques MeV supplémentaires. La diffusion entre les particules de matière sombre mène aux excitations et à la désintégration ultérieure en une paire électron-positron. De cette façon, l'énergie cinétique des particules de matière sombre peut être convertie en paires électron-positron se déplaçant suffisement lentement pour produire l'étroite ligne d'annihilation observée. Avec un espacement en masse suffisement grand, les considérations cinématique et un profil de densité de la matière sombre cuspy contraignent les excitations au bulbe galactique, où la vitesse d'échappement, et donc la fraction de particules matière sombre au-dessus du seuil cinétique, est grande.
Palmese, Antonella. „Unveiling the unseen with the Dark Energy Survey : gravitational waves and dark matter“. Thesis, University College London (University of London), 2018. http://discovery.ucl.ac.uk/10055879/.
Der volle Inhalt der QuelleWhittamore, Zakary. „Isospin-violating dark matter and direct detection experiments“. Thesis, McGill University, 2014. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=123143.
Der volle Inhalt der QuelleConseils de détection directe de la matière noire ont été présentés par les DAMA, CoGeNT, et CRESST collaborations, malgré un certain nombre de résultats nuls qui semblent contredire ces allégations. Bien que la norme matière noire indépendante du spin n'est pas capable de concilier la résultats, la matière noire modèles contenant couplages de isospin-violation ont montré des résultats prometteurs dans résolution des problèmes de détection directe de la matière noire. Diffusion inélastique ou dynamique dépendant de la matière noire a également été démontré que aider à atténuer ces tensions. À la lumière des observations XENON100 2012, analyse actualisée de la contamination de l' événement de surface à CoGeNT, la révision de la résolution de l'énergie utilisée par XENON10, et de nouveaux résultats provenant des détecteurs de silicium CDMS-II, nous étudier la mesure dans laquelle indépendante du spin, dépendant du spin, et des modèles combinés de la matière noire isospin-violation sont capables d'expliquer les données de détection directs actuels. De plus, nous explorons l'effet d'une trempe de sodium dépendant de l'énergie facteur $Q_{\rm Na}$ pour le montage des observations DAMA, et de donner une prévision de isospin-violation de XENON1T. En plus de l'analyse habituelle impliquant des parcelles de l'espace de phase, nous étudions un modèle de halo-indépendant de la matière noire dans l'espace des vitesses minimales requises pour une particule de matière noire se disperser hors d'un noyau donné. Pour la première fois, une telle analyse est effectuée pour les modèles de matière noire qui embrassent les deux couplages élastiques et isospin-violation, ainsi que de la matière noire avec des interactions dépendant du dynamique et spin. En ce qui concerne les modèles considérés ici, nos résultats ne soutiennent pas une question d'interprétation sombre de données de détection directe soit dans la norme ou formalismes halo-indépendant.
Bücher zum Thema "Dark Matter and Energy"
Matarrese, Sabino, Monica Colpi, Vittorio Gorini und Ugo Moschella, Hrsg. Dark Matter and Dark Energy. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-90-481-8685-3.
Der volle Inhalt der QuelleGinzburg, Vladimir B. Prime elements of ordinary matter, dark matter, & dark energy. Pittsburgh, PA: Helicola Press, 2007.
Den vollen Inhalt der Quelle findenDark energy: Observational and theoretical approaches. Cambridge, UK: Cambridge University Press, 2010.
Den vollen Inhalt der Quelle findenPapantonopoulos, E. The invisible universe: Dark matter and dark energy. [New York]: Springer-Verlag Berlin Heidelberg, 2010.
Den vollen Inhalt der Quelle findenPaths to dark energy: Theory and observation. Berlin: De Gruyter, 2012.
Den vollen Inhalt der Quelle findenP, Ruiz-Lapuente, Hrsg. Dark energy: Observational and theoretical approaches. New York: Cambridge University Press, 2010.
Den vollen Inhalt der Quelle findenDark side of the universe: Dark matter, dark energy, and the fate of the cosmos. Bristol: Canopus, 2007.
Den vollen Inhalt der Quelle findenPapantonopoulos, Lefteris, Hrsg. The Invisible Universe: Dark Matter and Dark Energy. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-71013-4.
Der volle Inhalt der QuelleCenkner, August A. A dark energy theory correlated with laboratory simulations and astronomical observations. Bloomington, Ind: Author House, 2005.
Den vollen Inhalt der Quelle findenPrime elements of ordinary matter, dark matter & dark energy: Beyond standard model & string theory. 2. Aufl. Boca Raton, FL: Universal Publishers, 2007.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Dark Matter and Energy"
D’Amico, Guido, Marc Kamionkowski und Kris Sigurdson. „Dark Matter Astrophysics“. In Dark Matter and Dark Energy, 241–72. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-90-481-8685-3_5.
Der volle Inhalt der QuelleTsujikawa, Shinji. „Dark Energy: Investigation and Modeling“. In Dark Matter and Dark Energy, 331–402. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-90-481-8685-3_8.
Der volle Inhalt der QuellePerlov, Delia, und Alex Vilenkin. „Dark Matter and Dark Energy“. In Cosmology for the Curious, 131–41. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-57040-2_9.
Der volle Inhalt der QuelleManoukian, E. B. „Dark Matter and Dark Energy“. In 100 Years of Fundamental Theoretical Physics in the Palm of Your Hand, 535–39. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-51081-7_92.
Der volle Inhalt der QuelleKöhler, Nicolas Maximilian. „Dark Matter and Dark Energy“. In Springer Theses, 17–25. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-25988-4_3.
Der volle Inhalt der QuelleGrupen, Claus. „Dark Energy and Dark Matter“. In Astroparticle Physics, 401–34. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-27339-2_13.
Der volle Inhalt der QuelleJacquart, Melissa. „Dark Matter And Dark Energy“. In The Routledge Companion to Philosophy of Physics, 731–43. New York: Routledge, 2021. http://dx.doi.org/10.4324/9781315623818-68.
Der volle Inhalt der QuelleStraumann, Norbert. „Relativistic Cosmology“. In Dark Matter and Dark Energy, 3–131. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-90-481-8685-3_1.
Der volle Inhalt der QuelleVerde, Licia. „Cosmology with Cosmic Microwave Background and Large-Scale Structure Observations“. In Dark Matter and Dark Energy, 133–76. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-90-481-8685-3_2.
Der volle Inhalt der QuelleHeavens, Alan. „Cosmology with Gravitational Lensing“. In Dark Matter and Dark Energy, 177–216. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-90-481-8685-3_3.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Dark Matter and Energy"
Žulj, Tim. „Dark Energy and Dark Matter“. In Socratic lectures 10. University of Lubljana Press, 2024. http://dx.doi.org/10.55295/psl.2024.ii11.
Der volle Inhalt der Quellede la Macorra, A., und T. Matos. „Dark Energy and Dark Matter“. In PARTICLES AND FIELDS: X Mexican Workshop on Particles and Fields. AIP, 2006. http://dx.doi.org/10.1063/1.2359404.
Der volle Inhalt der QuelleULLIO, P. „DARK MATTER AND DARK ENERGY“. In Proceedings of the 7th School. WORLD SCIENTIFIC, 2005. http://dx.doi.org/10.1142/9789812701893_0007.
Der volle Inhalt der QuelleKolb, Edward W. „Inflation, Dark Matter, Dark Energy“. In Proceedings of the International School of Subnuclear Physics. WORLD SCIENTIFIC, 2005. http://dx.doi.org/10.1142/9789812701794_0006.
Der volle Inhalt der QuelleRiess, Adam. „Seeing Dark Energy“. In Identification of dark matter 2008. Trieste, Italy: Sissa Medialab, 2009. http://dx.doi.org/10.22323/1.064.0043.
Der volle Inhalt der QuelleMATHEWS, GRANT J., NGUYEN Q. LAN und JAMES R. WILSON. „DARK ENERGY AND DECAYING DARK MATTER“. In Proceedings of the MG11 Meeting on General Relativity. World Scientific Publishing Company, 2008. http://dx.doi.org/10.1142/9789812834300_0253.
Der volle Inhalt der QuelleDAVIDSON, AHARON, YOAV LEDERER und DAVID KARASIK. „DARK ENERGY/MATTER UNIFICATION“. In Proceedings of the Fourth International Workshop. WORLD SCIENTIFIC, 2003. http://dx.doi.org/10.1142/9789812791313_0005.
Der volle Inhalt der QuelleBettini, Alessandro. „Dark Matter Searches“. In International Europhysics Conference on High Energy Physics. Trieste, Italy: Sissa Medialab, 2007. http://dx.doi.org/10.22323/1.021.0412.
Der volle Inhalt der QuelleBergstrom, Lars. „Dark matter theory“. In XXIst International Europhysics Conference on High Energy Physics. Trieste, Italy: Sissa Medialab, 2012. http://dx.doi.org/10.22323/1.134.0012.
Der volle Inhalt der QuelleDrees, Manuel. „Dark Matter Theory“. In The 39th International Conference on High Energy Physics. Trieste, Italy: Sissa Medialab, 2019. http://dx.doi.org/10.22323/1.340.0730.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Dark Matter and Energy"
Brown, Benjamin. Special Gravity #1 - Dark Energy and Dark Matter. ResearchHub Technologies, Inc., September 2023. http://dx.doi.org/10.55277/researchhub.idocddli.
Der volle Inhalt der QuelleScherrer, Robert. Theoretical Studies in Dark Energy and Dark Matter. Office of Scientific and Technical Information (OSTI), Mai 2023. http://dx.doi.org/10.2172/1972343.
Der volle Inhalt der QuelleMiller, Jonah Maxwell. A Universe of Unknowns: Dark Matter and Dark Energy. Office of Scientific and Technical Information (OSTI), Februar 2020. http://dx.doi.org/10.2172/1602719.
Der volle Inhalt der QuelleLewis, Ian. Searching for the Nature of Dark Matter and Dark Energy. Office of Scientific and Technical Information (OSTI), Januar 2024. http://dx.doi.org/10.2172/2282501.
Der volle Inhalt der QuellePalmese, Antonella. Unveiling the unseen with the Dark Energy Survey: gravitational waves and dark matter. Office of Scientific and Technical Information (OSTI), Januar 2018. http://dx.doi.org/10.2172/1497090.
Der volle Inhalt der QuelleCrotty, Patrick R. High-energy neutrino fluxes from the supermassive dark matter. Office of Scientific and Technical Information (OSTI), Januar 2002. http://dx.doi.org/10.2172/1420932.
Der volle Inhalt der QuelleChen, Yu. High-Energy Neutron Backgrounds for Underground Dark Matter Experiments. Office of Scientific and Technical Information (OSTI), Januar 2016. http://dx.doi.org/10.2172/1350521.
Der volle Inhalt der QuelleBaltz, Edward A., Marco Battaglia, Michael E. Peskin und Tommer Wizansky. Determination of Dark Matter Properties at High-Energy Collider. Office of Scientific and Technical Information (OSTI), Februar 2006. http://dx.doi.org/10.2172/876594.
Der volle Inhalt der QuelleWitherell, Michael. Experimental High Energy Physics Research: Direct Detection of Dark Matter. Office of Scientific and Technical Information (OSTI), Oktober 2014. http://dx.doi.org/10.2172/1158940.
Der volle Inhalt der QuelleEllis, Richard, S. Understanding the Fundamental Properties of Dark Matter & Dark Energy in Structure formation and Cosmology. Office of Scientific and Technical Information (OSTI), Februar 2008. http://dx.doi.org/10.2172/923329.
Der volle Inhalt der Quelle