Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Dark energy models.

Zeitschriftenartikel zum Thema „Dark energy models“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Dark energy models" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

POLARSKI, DAVID. „DARK ENERGY“. International Journal of Modern Physics D 22, Nr. 14 (Dezember 2013): 1330027. http://dx.doi.org/10.1142/s0218271813300279.

Der volle Inhalt der Quelle
Annotation:
Dark energy models account for the present accelerated expansion of the universe. Many models were suggested and investigated, based on very different physical principles. We will review some representative models emphasizing similarities and differences between these various approaches.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Motta, Verónica, Miguel A. García-Aspeitia, Alberto Hernández-Almada, Juan Magaña und Tomás Verdugo. „Taxonomy of Dark Energy Models“. Universe 7, Nr. 6 (26.05.2021): 163. http://dx.doi.org/10.3390/universe7060163.

Der volle Inhalt der Quelle
Annotation:
The accelerated expansion of the Universe is one of the main discoveries of the past decades, indicating the presence of an unknown component: the dark energy. Evidence of its presence is being gathered by a succession of observational experiments with increasing precision in its measurements. However, the most accepted model for explaining the dynamic of our Universe, the so-called Lambda cold dark matter, faces several problems related to the nature of such energy component. This has led to a growing exploration of alternative models attempting to solve those drawbacks. In this review, we briefly summarize the characteristics of a (non-exhaustive) list of dark energy models as well as some of the most used cosmological samples. Next, we discuss how to constrain each model’s parameters using observational data. Finally, we summarize the status of dark energy modeling.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Khurshudyan, Martiros, und Asatur Khurshudyan. „Some Interacting Dark Energy Models“. Symmetry 10, Nr. 11 (02.11.2018): 577. http://dx.doi.org/10.3390/sym10110577.

Der volle Inhalt der Quelle
Annotation:
In this paper, we study various cosmological models involving new nonlinear forms of interaction between cold dark matter (DM) and dark energy (DE) assuming that DE is a barotropic fluid. The interactions are nonlinear either due to log ( ρ d e / ρ d m ) or log ( ρ d m / ρ d e ) parameterizations, respectively. The main purpose of this paper is to demonstrate the applicability of the forms of suggested interactions to the problem of modern cosmology known as accelerated expansion of the Universe. Using the differential age of old galaxies expressed in terms of H ( z ) data, the peak position of baryonic acoustic oscillations (known as BAO data), the SN Ia data with strong gravitational lensing data, we obtain the best fit values of the model parameters for each case. Besides, using O m analysis and S 3 parameter from the statefinder hierarchy analysis, we also demonstrate that the considered models are clearly different from the Λ CDM model. We obtain that the models predict Hubble parameter values consistent to the estimations from gravitational lensing, which probes the expansion out to z ≤ 1.7 . We show that, with considered models, we can also explain PLANCK 2015 and PLANCK 2018 experiment results.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Tawfik, Abdel Nasser, und Eiman Abou El Dahab. „Review on Dark Energy Models“. Gravitation and Cosmology 25, Nr. 2 (April 2019): 103–15. http://dx.doi.org/10.1134/s0202289319020154.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Sahni, Varun, und Yuri Shtanov. „Braneworld models of dark energy“. Journal of Cosmology and Astroparticle Physics 2003, Nr. 11 (24.11.2003): 014. http://dx.doi.org/10.1088/1475-7516/2003/11/014.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Sahni, Varun. „Theoretical models of dark energy“. Chaos, Solitons & Fractals 16, Nr. 4 (Mai 2003): 527–37. http://dx.doi.org/10.1016/s0960-0779(02)00221-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

YOO, JAEWON, und YUKI WATANABE. „THEORETICAL MODELS OF DARK ENERGY“. International Journal of Modern Physics D 21, Nr. 12 (November 2012): 1230002. http://dx.doi.org/10.1142/s0218271812300029.

Der volle Inhalt der Quelle
Annotation:
Mounting observational data confirm that about 73% of the energy density consists of dark energy which is responsible for the current accelerated expansion of the Universe. We present observational evidences and dark energy projects. We then review various theoretical ideas that have been proposed to explain the origin of dark energy; they contain the cosmological constant, modified matter models, modified gravity models and the inhomogeneous model. The cosmological constant suffers from two major problems: one regarding fine-tuning and the other regarding coincidence. To solve them there arose modified matter models such as quintessence, k-essence, coupled dark energy and unified dark energy. We compare those models by presenting attractive aspects, new rising problems and possible solutions. Furthermore, we review modified gravity models that lead to late-time accelerated expansion without invoking a new form of dark energy; they contain f(R) gravity and the Dvali–Gabadadze–Porrati (DGP) model. We also discuss observational constraints on those models and on future modified gravity theories. Finally we review the inhomogeneous Lemaître–Tolman–Bondi (LTB) model that drops an assumption of the spatial homogeneity of the Universe. We also present basics of cosmology and scalar field theory, which are useful especially for students and novices to understand dark energy models.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Chan, R., M. F. A. da Silva und Jaime F. Villas da Rocha. „Star models with dark energy“. General Relativity and Gravitation 41, Nr. 8 (29.01.2009): 1835–51. http://dx.doi.org/10.1007/s10714-008-0755-9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Arun, Kenath, S. B. Gudennavar, A. Prasad und C. Sivaram. „Alternate models to dark energy“. Advances in Space Research 61, Nr. 1 (Januar 2018): 567–70. http://dx.doi.org/10.1016/j.asr.2017.08.006.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Pearson, Jonathan A. „Material models of dark energy“. Annalen der Physik 526, Nr. 7-8 (10.06.2014): 318–39. http://dx.doi.org/10.1002/andp.201400052.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

QIU, TAOTAO, YI-FU CAI und XINMIN ZHANG. „NULL ENERGY CONDITION AND DARK ENERGY MODELS“. Modern Physics Letters A 23, Nr. 32 (20.10.2008): 2787–98. http://dx.doi.org/10.1142/s0217732308026194.

Der volle Inhalt der Quelle
Annotation:
Null Energy Condition (NEC) requires the equation of state (EoS) of the universe wu satisfy wu ≥ -1, which implies, for instance in a universe with matter and dark energy dominating wu = w m Ω m + w de Ω de = w de Ω de ≥ -1. In this paper we study constraints on the dark energy models from the requirement of the NEC. We will show that with Ω de ~ 0.7, w de < -1 at present epoch is possible. However, NEC excludes the possibility of w de < -1 forever as happened in the Phantom model, but if w de < -1 stays for a short period of time as predicted in the Quintom theory, NEC can be satisfied. We take three examples of Quintom models of dark energy, namely the phenomenological EoS, the two-scalar-field model and the single scalar model with a modified Dirac–Born–Infeld (DBI) Lagrangian to show how this happens.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Avelino, P. P., und H. M. R. da Silva. „Effective dark energy equation of state in interacting dark energy models“. Physics Letters B 714, Nr. 1 (Juli 2012): 6–10. http://dx.doi.org/10.1016/j.physletb.2012.06.063.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Boyle, Latham A., Robert R. Caldwell und Marc Kamionkowski. „Spintessence! New models for dark matter and dark energy“. Physics Letters B 545, Nr. 1-2 (Oktober 2002): 17–22. http://dx.doi.org/10.1016/s0370-2693(02)02590-x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Sussman, Roberto A., Israel Quiros und Osmel Martín González. „Inhomogeneous models of interacting dark matter and dark energy“. General Relativity and Gravitation 37, Nr. 12 (23.11.2005): 2117–43. http://dx.doi.org/10.1007/s10714-005-0199-4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Arun, Kenath, S. B. Gudennavar und C. Sivaram. „Dark matter, dark energy, and alternate models: A review“. Advances in Space Research 60, Nr. 1 (Juli 2017): 166–86. http://dx.doi.org/10.1016/j.asr.2017.03.043.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Feng, Haoyang. „Integrated study of dark matter and dark energy models“. Theoretical and Natural Science 34, Nr. 1 (29.04.2024): 162–71. http://dx.doi.org/10.54254/2753-8818/34/20241173.

Der volle Inhalt der Quelle
Annotation:
Dark matter and dark energy are used as two important concepts in cosmology to explain some of the observed phenomena in the universe. Dark matter is one of the most dominant constituents of the Universe, and it influences the structural formation of the Universe through gravity, including the formation and evolution of galaxies, clusters, and the large-scale structure of the Universe. Dark energy is believed to be one of the causes of the accelerated expansion of the Universe, and its presence explains the observed phenomenon of the accelerating rate of expansion of the Universe. Although their existence has not been directly observed, people understand through the study of the structure and evolution of the universe that they play an important role in the universe. This paper first introduces the background knowledge of dark matter and its related properties and explains the reasons why three types of models, namely WIMP, axion, and sterile neutrino, are candidates for dark matter in the light of existing observations. The paper then discusses the relevant properties of dark energy and analyses the mainstream dark energy models. For the cosmological constant mode, the fine-tuning problem and cosmic coincidence problem it faces are analysed in detail. The evolution of the dark energy equation of state from the past >-1 to the present <-1 is then explained, and this is used to introduce the scalar field model involving dynamic, the Chaplygin gas model, the holographic dark energy model, and the interacting dark energy model.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Lima, J. A. S. „Alternative dark energy models: an overview“. Brazilian Journal of Physics 34, Nr. 1a (März 2004): 194–200. http://dx.doi.org/10.1590/s0103-97332004000200009.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Bag, Satadru, Swagat S. Mishra und Varun Sahni. „New tracker models of dark energy“. Journal of Cosmology and Astroparticle Physics 2018, Nr. 08 (08.08.2018): 009. http://dx.doi.org/10.1088/1475-7516/2018/08/009.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Pignol, Guillaume. „Probing Dark Energy models with neutrons“. International Journal of Modern Physics A 30, Nr. 24 (28.08.2015): 1530048. http://dx.doi.org/10.1142/s0217751x15300483.

Der volle Inhalt der Quelle
Annotation:
There is a deep connection between cosmology — the science of the infinitely large — and particle physics — the science of the infinitely small. This connection is particularly manifest in neutron particle physics. Basic properties of the neutron — its Electric Dipole Moment and its lifetime — are intertwined with baryogenesis and nucleosynthesis in the early Universe. I will cover this topic in the first part, that will also serve as an introduction (or rather a quick recap) of neutron physics and Big Bang cosmology. Then, the rest of the paper will be devoted to a new idea: using neutrons to probe models of Dark Energy. In the second part, I will present the chameleon theory: a light scalar field accounting for the late accelerated expansion of the Universe, which interacts with matter in such a way that it does not mediate a fifth force between macroscopic bodies. However, neutrons can alleviate the chameleon mechanism and reveal the presence of the scalar field with properly designed experiments. In the third part, I will describe a recent experiment performed with a neutron interferometer at the Institut Laue Langevin that sets already interesting constraints on the chameleon theory. Last, the chameleon field can be probed by measuring the quantum states of neutrons bouncing over a mirror. In the fourth part, I will present the status and prospects of the GRANIT experiment at the ILL.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Paul, Prasenjit, und Rikpratik Sengupta. „Generalized Phenomenological Models of Dark Energy“. Advances in High Energy Physics 2020 (20.02.2020): 1–8. http://dx.doi.org/10.1155/2020/5249839.

Der volle Inhalt der Quelle
Annotation:
It was first observed at the end of the last century that the universe is presently accelerating. Ever since, there have been several attempts to explain this observation theoretically. There are two possible approaches. The more conventional one is to modify the matter part of the Einstein field equations, and the second one is to modify the geometry part. We shall consider two phenomenological models based on the former, more conventional approach within the context of general relativity. The phenomenological models in this paper consider a Λ term firstly a function of a¨/a and secondly a function of ρ, where a and ρ are the scale factor and matter energy density, respectively. Constraining the free parameters of the models with the latest observational data gives satisfactory values of parameters as considered by us initially. Without any field theoretic interpretation, we explain the recent observations with a dynamical cosmological constant.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Saha, Bijan. „Isotropic and anisotropic dark energy models“. Physics of Particles and Nuclei 45, Nr. 2 (März 2014): 349–96. http://dx.doi.org/10.1134/s1063779614020026.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Frampton, Paul H., Kevin J. Ludwick, Shinʼichi Nojiri, Sergei D. Odintsov und Robert J. Scherrer. „Models for little rip dark energy“. Physics Letters B 708, Nr. 1-2 (Februar 2012): 204–11. http://dx.doi.org/10.1016/j.physletb.2012.01.048.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

CAI, RONG-GEN. „SOME REMARKS ON DARK ENERGY MODELS“. International Journal of Modern Physics D 20, Nr. 08 (15.08.2011): 1313–25. http://dx.doi.org/10.1142/s0218271811019499.

Der volle Inhalt der Quelle
Annotation:
In this talk I classify dark energy models existing in the literatures into three classes. The first one is to ascribe the cosmic acceleration to modifications of general relativity at cosmological scales. The second one is due to the backreaction of perturbations, or say, the effect of inhomogeneity of the universe. The third one is some exotic component in the universe, which appears in the right hand side of Einstein's field equations. For each class I demonstrate some examples.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Myung, Yun Soo, und Min-Gyun Seo. „Origin of holographic dark energy models“. Physics Letters B 671, Nr. 4-5 (Februar 2009): 435–39. http://dx.doi.org/10.1016/j.physletb.2009.01.001.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Horvat, R. „Entanglement in holographic dark energy models“. Physics Letters B 693, Nr. 5 (Oktober 2010): 596–99. http://dx.doi.org/10.1016/j.physletb.2010.09.014.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Myung, Yun Soo. „Instability of holographic dark energy models“. Physics Letters B 652, Nr. 5-6 (September 2007): 223–27. http://dx.doi.org/10.1016/j.physletb.2007.07.033.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Kurek, Aleksandra, Orest Hrycyna und Marek Szydłowski. „Constraints on oscillating dark energy models“. Physics Letters B 659, Nr. 1-2 (Januar 2008): 14–25. http://dx.doi.org/10.1016/j.physletb.2007.10.074.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Kim, Kyoung Yee, Hyung Won Lee und Yun Soo Myung. „Instability of agegraphic dark energy models“. Physics Letters B 660, Nr. 3 (Februar 2008): 118–24. http://dx.doi.org/10.1016/j.physletb.2007.12.045.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

CHEN, CHIEN-WEN, JE-AN GU und PISIN CHEN. „CONSISTENCY TEST OF DARK ENERGY MODELS“. Modern Physics Letters A 24, Nr. 21 (10.07.2009): 1649–57. http://dx.doi.org/10.1142/s0217732309031028.

Der volle Inhalt der Quelle
Annotation:
Recently we proposed a new approach to test dark energy models based on the observational data. In that work we focused particularly on quintessence models for demonstration and invoked a widely used parametrization of the dark energy equation of state. In this paper we take the more recent SN Ia , CMB and BAO data, invoke the same parametrization, and apply this method of consistency test to five dark energy models, including the ΛCDM model, the generalized Chaplygin gas, and three quintessence models: exponential, power-law and inverse-exponential potentials. We find that the exponential potential of quintessence is ruled out at the 95.4% confidence level, while the other four models are consistent with data. This consistency test can be efficiently performed since for all models it requires the constraint of only a single parameter space that by choice can be easily accessed.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Khurshudyan, M., E. Chubaryan und B. Pourhassan. „Interacting Quintessence Models of Dark Energy“. International Journal of Theoretical Physics 53, Nr. 7 (01.03.2014): 2370–78. http://dx.doi.org/10.1007/s10773-014-2036-6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Mishra, Shruti, und Dr Avinash Singh. „Background Constraints on Dark Energy Models“. Journal of Physics: Conference Series 2576, Nr. 1 (01.09.2023): 012016. http://dx.doi.org/10.1088/1742-6596/2576/1/012016.

Der volle Inhalt der Quelle
Annotation:
Abstract Due to the gravitational attraction of all the matter in the universe, the expansion rate of the cosmos has changed over time, decreasing (decelerating) in past, and more recently speeding up (accelerating). The hypothesis that the Universe is expanding quickly and is spatially nearing its limit now has a lot of cosmological evidence to back it up (assuming the density is at least somewhat time-independent). The majority of cosmologists believe that “dark energy” is to blame for the accelerated cosmological expansion that has been witnessed. The cosmological constant, an additional constant to the Einstein field equation, can be used to explain why the universe is expanding faster than before. The ΛCDM model is the simplest and most common model in use. Besides this, there are also dark energy models like the Barotropic fluid model, canonical scalar field model, and non-canonical scalar field model. We analyse the background constraints on dark energy models using current cosmological data available. We also present the comparison between dark energy models using Bayesian statistics.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Astashenok, Artyom V. „Effective dark energy models and dark energy models with bounce in frames of F(T) gravity“. Astrophysics and Space Science 351, Nr. 1 (19.02.2014): 377–83. http://dx.doi.org/10.1007/s10509-014-1846-6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Dil, Emre. „Couplingq-Deformed Dark Energy to Dark Matter“. Advances in High Energy Physics 2016 (2016): 1–20. http://dx.doi.org/10.1155/2016/9753208.

Der volle Inhalt der Quelle
Annotation:
We propose a novel coupled dark energy model which is assumed to occur as aq-deformed scalar field and investigate whether it will provide an expanding universe phase. We consider theq-deformed dark energy as coupled to dark matter inhomogeneities. We perform the phase-space analysis of the model by numerical methods and find the late-time accelerated attractor solutions. The attractor solutions imply that the coupledq-deformed dark energy model is consistent with the conventional dark energy models satisfying an acceleration phase of universe. At the end, we compare the cosmological parameters of deformed and standard dark energy models and interpret the implications.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

COPELAND, EDMUND J., M. SAMI und SHINJI TSUJIKAWA. „DYNAMICS OF DARK ENERGY“. International Journal of Modern Physics D 15, Nr. 11 (November 2006): 1753–935. http://dx.doi.org/10.1142/s021827180600942x.

Der volle Inhalt der Quelle
Annotation:
We review in detail a number of approaches that have been adopted to try and explain the remarkable observation of our accelerating universe. In particular we discuss the arguments for and recent progress made towards understanding the nature of dark energy. We review the observational evidence for the current accelerated expansion of the universe and present a number of dark energy models in addition to the conventional cosmological constant, paying particular attention to scalar field models such as quintessence, K-essence, tachyon, phantom and dilatonic models. The importance of cosmological scaling solutions is emphasized when studying the dynamical system of scalar fields including coupled dark energy. We study the evolution of cosmological perturbations allowing us to confront them with the observation of the Cosmic Microwave Background and Large Scale Structure and demonstrate how it is possible in principle to reconstruct the equation of state of dark energy by also using Supernovae Ia observational data. We also discuss in detail the nature of tracking solutions in cosmology, particle physics and braneworld models of dark energy, the nature of possible future singularities, the effect of higher order curvature terms to avoid a Big Rip singularity, and approaches to modifying gravity which leads to a late-time accelerated expansion without recourse to a new form of dark energy.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Mena, Olga. „Low redshift probes and coupled dark matter-dark energy models“. Journal of Physics: Conference Series 259 (01.11.2010): 012084. http://dx.doi.org/10.1088/1742-6596/259/1/012084.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

ONO, HIROYUKI, und HIDEYUKI SUZUKI. „DARK ENERGY MODELS AND SUPERNOVA RELIC NEUTRINOS“. Modern Physics Letters A 22, Nr. 12 (20.04.2007): 867–82. http://dx.doi.org/10.1142/s0217732307022876.

Der volle Inhalt der Quelle
Annotation:
Recent cosmological observations show that the unknown energy element called dark energy dominates in the universe. In this letter, we investigate to what extent dark energy models influence supernova relic neutrino (SRN) spectra when the supernova rate could be determined by direct counting and discuss the possibility to distinguish dark energy models using future observation of SRN. We found that the total number of SRN events in GCG model will be larger than those in ΛCDM and holographic dark energy models by 20%. As a result, we find a possibility to distinguish GCG model from ΛCDM and holographic dark energy models using observation of SRN. SRN should be a unique probe into dark energy models and will play complementary roles to other observables.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

TSUJIKAWA, SHINJI. „RECENT STATUS OF DARK ENERGY“. Modern Physics Letters A 25, Nr. 11n12 (20.04.2010): 843–58. http://dx.doi.org/10.1142/s0217732310000010.

Der volle Inhalt der Quelle
Annotation:
We review a number of approaches that have been adopted to explain the origin of dark energy responsible for the late-time cosmic acceleration. This includes the cosmological constant and dynamical dark energy models such as quintessence, k -essence, Chaplygin gas, f(R) gravity, scalar-tensor theories, and braneworld models. We also discuss observational and local gravity constraints on those models and clarify which models are favored or ruled out in current observations.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

SUN, CHENG-YI, und YU SONG. „INCONSISTENCES IN INTERACTING AGEGRAPHIC DARK ENERGY MODELS“. Modern Physics Letters A 26, Nr. 40 (28.12.2011): 3055–66. http://dx.doi.org/10.1142/s0217732311037285.

Der volle Inhalt der Quelle
Annotation:
It is found that the origin agegraphic dark energy tracks the matter in the matter-dominated epoch and then the subsequent dark-energy-dominated epoch becomes impossible. It is argued that the difficulty can be removed when the interaction between the agegraphic dark energy and dark matter is considered. In the note, by discussing three different interacting models, we find that the difficulty still stands even in the interacting models. Furthermore, we find that in the interacting models, there exists the other serious inconsistence that the existence of the radiation/matter-dominated epoch contradicts the ability of agegraphic dark energy in driving the accelerated expansion. The contradiction can be avoided in one of the three models if some constraints on the parameters hold.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

LING, YI, und WEN-JIAN PAN. „(m, n)-TYPE HOLOGRAPHIC DARK ENERGY MODELS“. Modern Physics Letters A 28, Nr. 31 (25.09.2013): 1350128. http://dx.doi.org/10.1142/s0217732313501289.

Der volle Inhalt der Quelle
Annotation:
We construct (m, n)-type holographic dark energy models at a phenomenological level, which can be viewed as a generalization of agegraphic models with the conformal-like age as the holographic characteristic size. For some values of (m, n) the holographic dark energy can automatically evolve across ω = -1 into a phantom phase even without introducing an interaction between the dark energy and background matter. Our construction is also applicable to the holographic dark energy with generalized future event horizon as the characteristic size. Finally, we address the issue on the stability of our model and show that they are generally stable under the scalar perturbation.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Pace, Francesco, und Carlo Schimd. „Tidal virialization of dark matter haloes with clustering dark energy“. Journal of Cosmology and Astroparticle Physics 2022, Nr. 03 (01.03.2022): 014. http://dx.doi.org/10.1088/1475-7516/2022/03/014.

Der volle Inhalt der Quelle
Annotation:
Abstract We extend the analysis of Pace et al. [1] by considering the virialization process in the extended spherical collapse model for clustering dark-energy models, i.e., accounting for dark-energy fluctuations. Differently from the standard approach, here virialization is naturally achieved by properly modelling deviations from sphericity due to shear and rotation induced by tidal interactions. We investigate the time evolution of the virial overdensity Δvir in seven clustering dynamical dark energy models and compare the results to the ΛCDM model and to the corresponding smooth dark-energy models. Taking into account all the appropriate corrections, we deduce the abundance of convergence peaks for Rubin Observatory-LSST and Euclid-like weak-lensing surveys, of Sunyaev-Zel'dovich peaks for a Simon Observatory-like CMB survey, and of X-ray peaks for an eROSITA-like survey. Despite the tiny differences in Δvir between clustering and smooth dark-energy models, owing to the large volumes covered by these surveys, five out of seven clustering dark-energy models can be statistically distinguished from ΛCDM. The contribution of dark-energy fluctuation cannot be neglected, especially for the Chevallier-Polarski-Limber and Albrecht-Skordis models, provided the instrumental configurations provide high signal-to-noise ratio. These results are almost independent of the tidal virialization model.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Bolotin, Yuri L., Alexander Kostenko, Oleg A. Lemets und Danylo A. Yerokhin. „Cosmological evolution with interaction between dark energy and dark matter“. International Journal of Modern Physics D 24, Nr. 03 (23.02.2015): 1530007. http://dx.doi.org/10.1142/s0218271815300074.

Der volle Inhalt der Quelle
Annotation:
In this review we consider in detail different theoretical topics associated with interaction in the dark sector. We study linear and nonlinear interactions which depend on the dark matter and dark energy densities. We consider a number of different models (including the holographic dark energy and dark energy in a fractal universe), with interacting dark energy and dark matter, have done a thorough analysis of these models. The main task of this review was not only to give an idea about the modern set of different models of dark energy, but to show how much can be diverse dynamics of the universe in these models. We find that the dynamics of a universe that contains interaction in the dark sector can differ significantly from the Standard Cosmological Model.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Edmonds, Douglas, Djordje Minic und Tatsu Takeuchi. „Dark matter, dark energy and fundamental acceleration“. International Journal of Modern Physics D 29, Nr. 14 (Oktober 2020): 2043030. http://dx.doi.org/10.1142/s0218271820430300.

Der volle Inhalt der Quelle
Annotation:
We discuss the existence of an acceleration scale in galaxies and galaxy clusters and its relevance for the nature of dark matter. The presence of the same acceleration scale found at very different length scales, and in very different astrophysical objects, strongly supports the existence of a fundamental acceleration scale governing the observed gravitational physics. We comment on the implications of such a fundamental acceleration scale for constraining cold dark matter models as well as its relevance for structure formation to be explored in future numerical simulations.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Albarran, Imanol, Mariam Bouhmadi-López und João Morais. „Cosmological Perturbations in Phantom Dark Energy Models“. Universe 3, Nr. 1 (06.03.2017): 22. http://dx.doi.org/10.3390/universe3010022.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Linton, Mark S., Robert Crittenden und Alkistis Pourtsidou. „Momentum transfer models of interacting dark energy“. Journal of Cosmology and Astroparticle Physics 2022, Nr. 08 (01.08.2022): 075. http://dx.doi.org/10.1088/1475-7516/2022/08/075.

Der volle Inhalt der Quelle
Annotation:
Abstract We consider two models of interacting dark energy, both of which interact only through momentum exchange. One is a phenomenological one-parameter extension to wCDM, and the other is a coupled quintessence model described by a Lagrangian formalism. Using a variety of high and low redshift data sets, we perform a global fitting of cosmological parameters and compare to ΛCDM, uncoupled quintessence, and wCDM. We find that the models are competitive with ΛCDM, even obtaining a better fit when certain data sets are included.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Khalifeh, Ali Rida, und Raul Jimenez. „Distinguishing Dark Energy models with neutrino oscillations“. Physics of the Dark Universe 34 (Dezember 2021): 100897. http://dx.doi.org/10.1016/j.dark.2021.100897.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Szydłowski, Marek. „Cosmological zoo—accelerating models with dark energy“. Journal of Cosmology and Astroparticle Physics 2007, Nr. 09 (07.09.2007): 007. http://dx.doi.org/10.1088/1475-7516/2007/09/007.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Vereshchagin, G. V., und G. Yegorian. „Cosmological models with Gurzadyan–Xue dark energy“. Classical and Quantum Gravity 23, Nr. 15 (19.07.2006): 5049–61. http://dx.doi.org/10.1088/0264-9381/23/15/020.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Gong, Yungui, und Chang-Kui Duan. „Constraints on alternative models to dark energy“. Classical and Quantum Gravity 21, Nr. 15 (10.07.2004): 3655–63. http://dx.doi.org/10.1088/0264-9381/21/15/003.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Jawad, Abdul, Shamaila Rani, Ines G. Salako und Faiza Gulshan. „Pilgrim dark energy models in fractal universe“. International Journal of Modern Physics D 26, Nr. 06 (22.11.2016): 1750049. http://dx.doi.org/10.1142/s0218271817500493.

Der volle Inhalt der Quelle
Annotation:
We discuss the cosmological implications of interacting pilgrim dark energy (PDE) models (with Hubble, Granda–Oliveros and generalized ghost cutoffs) with cold dark matter ([Formula: see text]CDM) in fractal cosmology by assuming the flat universe. We observe that the Hubble parameter lies within observational suggested ranges while deceleration parameter represents the accelerated expansion behavior of the universe. The equation of state (EoS) parameter ([Formula: see text]) corresponds to the quintessence region and phantom region for different cases of [Formula: see text]. Further, we can see that [Formula: see text]–[Formula: see text] (where prime indicates the derivative with respect to natural logarithmic of scale factor) plane describes the freezing and thawing regions and also corresponds to [Formula: see text] limit for some cases of [Formula: see text] (PDE parameter). It is also noted that the [Formula: see text]–[Formula: see text] (state-finder parameters) plane corresponds to [Formula: see text] limit and also shows the Chaplygin as well as phantom/quintessence behavior. It is observed that pilgrim dark energy models in fractal cosmology expressed the consistent behavior with recent observational schemes.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Paliathanasis, Andronikos, Supriya Pan und Weiqiang Yang. „Dynamics of nonlinear interacting dark energy models“. International Journal of Modern Physics D 28, Nr. 12 (September 2019): 1950161. http://dx.doi.org/10.1142/s021827181950161x.

Der volle Inhalt der Quelle
Annotation:
We investigate the cosmological dynamics of interacting dark energy models in which the interaction function is nonlinear in terms of the energy densities. Considering explicitly the interaction between a pressureless dark matter and a scalar field, minimally coupled to Einstein gravity, we explore the dynamics of the spatially flat FLRW universe for the exponential potential of the scalar field. We perform the stability analysis for three nonlinear interaction models of our consideration through the analysis of critical points and we investigate the cosmological parameters and discuss the physical behavior at the critical points. From the analysis of the critical points we find a number of possibilities that include the stable late-time accelerated solution, [Formula: see text]CDM-like solution, radiation-like solution and moreover the unstable inflationary solution.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie