Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Daphnia hyalina.

Zeitschriftenartikel zum Thema „Daphnia hyalina“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-38 Zeitschriftenartikel für die Forschung zum Thema "Daphnia hyalina" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Brzeziński, Tomasz, Jan Fronk, Joanna Trzcińska-Danielewicz und Piotr Dawidowicz. „Interspecific hybridization in sympatric species of Daphnia inhabiting lakes in northeastern Poland“. Oceanological and Hydrobiological Studies 41, Nr. 2 (01.01.2012): 1–6. http://dx.doi.org/10.2478/s13545-012-0011-5.

Der volle Inhalt der Quelle
Annotation:
AbstractPopulations of three sympatric species (Daphnia cucullata, Daphnia galeata, and Daphnia hyalina (Daphnia longispina complex)) inhabiting three lakes in northeastern Poland (Roś, Mikołajskie, Wigry) were checked for interspecific hybrids. Hybrid Daphnia coexisting with parental individuals were detected in each of the investigated lakes. Several classes of hybrids (F1, F2, backcrosses), including D. cucullata×galeata×hyalina individuals, have been detected. Hybrids constituted a substantial (13%–38%) part of the total abundance of individuals of the D. longispina complex. Deficiency of heterozygotes (hybrids) detected may indicate the existence of barriers for gene flow between the sympatric Daphnia taxa.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Luning-Krizan, Julia. „Neck-teeth induction in Daphnia hyalina under natural and laboratory conditions“. Fundamental and Applied Limnology 140, Nr. 3 (10.11.1997): 367–72. http://dx.doi.org/10.1127/archiv-hydrobiol/140/1997/367.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Keller, Barbara, Justyna Wolinska, Marina Manca und Piet Spaak. „Spatial, environmental and anthropogenic effects on the taxon composition of hybridizing Daphnia“. Philosophical Transactions of the Royal Society B: Biological Sciences 363, Nr. 1505 (02.06.2008): 2943–52. http://dx.doi.org/10.1098/rstb.2008.0044.

Der volle Inhalt der Quelle
Annotation:
The competitive ability of hybrids, compared with their parental taxa, can cover a wide fitness range from poor to superior. For example communities of the Daphnia galeata – hyalina – cucullata species complex often show hybrid dominance. We tested whether taxa composition of 43 European lakes inhabited by this species complex can be explained by habitat characteristics (e.g. size descriptors, trophy level) or geography. We found that D. galeata occurs more frequently south of the Alps, whereas D. hyalina and D. cucullata are found more in the north. Lakes with D. galeata dominance had higher temperatures whereas D. hyalina dominance could be attributed to low phosphorus loads. The dominance of F 1 -hybrids, however, was not explainable with current environmental variables. In a subset of 28 lakes, we studied the impact of eutrophication history on F 1 -hybrid success. Lakes with the highest trophic state in the past tended to be dominated by F 1 -hybrids. Our data demonstrate that human-mediated habitat disturbance (eutrophication) has facilitated hybrid success and altered the Daphnia taxon composition across lakes. At the same time, specific habitat conditions might provide a refuge from hybridization for native genotypes.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Davies, J. „Evidence for a diurnal horizontal migration in Daphnia hyalina lacustris Sars“. Hydrobiologia 120, Nr. 2 (Januar 1985): 103–5. http://dx.doi.org/10.1007/bf00032130.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Petrusek, Adam, Jaromír Seda, Jiří Macháček, Štěpánka Ruthová und Petr Šmilauer. „Daphnia hybridization along ecological gradients in pelagic environments: the potential for the presence of hybrid zones in plankton“. Philosophical Transactions of the Royal Society B: Biological Sciences 363, Nr. 1505 (02.06.2008): 2931–41. http://dx.doi.org/10.1098/rstb.2008.0026.

Der volle Inhalt der Quelle
Annotation:
The relative homogeneity of pelagic environments has been regarded as the reason for the absence of hybrid zones for hybridizing planktonic Daphnia (Crustacea: Cladocera); occasional dominance of interspecific hybrids over parental species was explained by their temporal superiority in fluctuating environments. However, water bodies with spatially varying environmental conditions might facilitate the formation of hybrid zones in plankton. We studied the distribution of species and hybrids of the Daphnia longispina complex in 11 canyon-shaped reservoirs, localities characterized by horizontal environmental gradients (particularly of food supply and size-selective predation); we also analysed patterns of carapace size and fecundity among coexisting taxa. Spatial distribution of taxa agreed with their ecological characteristics; those showing different affinities along longitudinal reservoir profiles differed in size according to the presumed fish predation gradient. Only hybrids of Daphnia galeata with Daphnia cucullata and D. longispina (= hyalina ) were recorded. The latter two species preferred opposite ends of gradients, such spatial segregation probably explaining the absence of their hybrids. Distributional patterns were relatively stable in two consecutive summers, apart from a substantial decline of D. galeata × cucullata in the second year. The observed pattern of a hybrid-dominated zone in intermediate conditions suggests that local Daphnia hybrid zones may indeed form within reservoirs.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Lammens, Eddy H. R. R., Henrik W. de Nie, Jacobus Vijverberg und Wim L. T. van Densen. „Resource Partitioning and Niche Shifts of Bream (Abramis brama) and Eel (Anguilla anguilla) Mediated by Predation of Smelt (Osmerus eperlanus) on Daphnia hyalina“. Canadian Journal of Fisheries and Aquatic Sciences 42, Nr. 8 (01.08.1985): 1342–51. http://dx.doi.org/10.1139/f85-169.

Der volle Inhalt der Quelle
Annotation:
The resource partitioning of the bream (Abramis brama) and eel (Anguilla anguilla) populations in Lake Tjeukemeer, The Netherlands, was related to the variation in abundance of their most important food organisms, Daphnia hyalina and larval chironomids. Niche shifts of both bream and eel populations were related to the abundance of young planktivorous fish, particularly smelt (Osmerus eperlanus). When these fish were abundant the D. hyalina population was dominated by small individuals and bream switched from a planktivorous to a benthivorous diet, the condition of mature bream deteriorated, and its gonads developed poorly. Under these circumstances the eel population switched from a diet of chironomid pupae and molluscs to one of predominantly fish. The condition of eels smaller than 35 cm decreased and the chironomid population decreased in numbers and biomass. Conversely, when the recruitment of planktivorous fish was poor, the size of D. hyalina was large and diets and conditions of bream and eel populations changed again. Because of the hydrological regime the stock of the young planktivorous fish is determined to a great extent by the immigration of allochthonous larval smelt and varies markedly, but the biomass of the bream and eel populations is comparatively stable.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Manca, Marina, und Anna Galli Tognota. „Seasonal changes in morphology and size of Daphnia hyalina Leydig in Lago Maggiore“. Hydrobiologia 264, Nr. 3 (Juli 1993): 159–67. http://dx.doi.org/10.1007/bf00007286.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Ringelberg, J. „A mechanism of predator-mediated induction of diel vertical migration in Daphnia hyalina“. Journal of Plankton Research 13, Nr. 1 (1991): 83–89. http://dx.doi.org/10.1093/plankt/13.1.83.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Lüning, Julia, und Herwig Stibor. „Indirect effects of size-selective predation on the life-history of Daphnia hyalina“. SIL Proceedings, 1922-2010 25, Nr. 4 (Oktober 1994): 2395. http://dx.doi.org/10.1080/03680770.1992.11900650.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Ringelberg, J. „The relation between ultimate and proximate aspects of diel vertical migration in Daphnia hyalina“. SIL Proceedings, 1922-2010 24, Nr. 5 (Dezember 1991): 2804–7. http://dx.doi.org/10.1080/03680770.1989.11899166.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Christie, P. „A taxonomic reappraisal of the Daphnia hyalina complex (Crustacea: Cladocera): an experimental and ecological approach“. Journal of Zoology 199, Nr. 1 (20.08.2009): 75–100. http://dx.doi.org/10.1111/j.1469-7998.1983.tb06118.x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Reede, Tineke, und Joop Ringelberg. „The influence of a fish exudate on two clones of the hybrid Daphnia galeata � hyalina“. Hydrobiologia 307, Nr. 1-3 (Juli 1995): 207–12. http://dx.doi.org/10.1007/bf00032014.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

MASON, C. F., und M. M. ABDUL-HUSSEIN. „Population dynamics and production of Daphnia hyalina and Bosmina longirostris in a shallow, eutrophic reservoir“. Freshwater Biology 25, Nr. 2 (April 1991): 243–60. http://dx.doi.org/10.1111/j.1365-2427.1991.tb00489.x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

De Meester, Luc, und Lawrence J. Weider. „Depth selection behavior, fish kairomones, and the life histories of Daphnia hyalina × galeata hybrid clones“. Limnology and Oceanography 44, Nr. 5 (Juli 1999): 1248–58. http://dx.doi.org/10.4319/lo.1999.44.5.1248.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Boersma, Maarten, Claudia Schöps und Edward McCauley. „Nutritional quality of seston for the freshwater herbivore Daphnia galeata × hyalina: biochemical versus mineral limitations“. Oecologia 129, Nr. 3 (November 2001): 342–48. http://dx.doi.org/10.1007/s004420100728.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Rellstab, Christian, und Piet Spaak. „Starving with a full gut? Effect of suspended particles on the fitness of Daphnia hyalina“. Hydrobiologia 594, Nr. 1 (23.10.2007): 131–39. http://dx.doi.org/10.1007/s10750-007-9089-y.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Stibor, H., und J. Luning. „Predator-Induced Phenotypic Variation in the Pattern of Growth and Reproduction in Daphnia hyalina (Crustacea: Cladocera)“. Functional Ecology 8, Nr. 1 (Februar 1994): 97. http://dx.doi.org/10.2307/2390117.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Bec, A., C. Desvilettes, A. Véra, C. Lemarchand, D. Fontvieille und G. Bourdier. „Nutritional quality of a freshwater heterotrophic flagellate: trophic upgrading of its microalgal diet for Daphnia hyalina“. Aquatic Microbial Ecology 32 (2003): 203–7. http://dx.doi.org/10.3354/ame032203.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Gili, Massimiliano, Michael T. Monaghan und Piet Spaak. „Amplified Fragment Length Polymorphism (AFLP) Reveals Species-Specific Markers in the Daphnia Galeata–Hyalina Species Complex“. Hydrobiologia 526, Nr. 1 (September 2004): 63–71. http://dx.doi.org/10.1023/b:hydr.0000041613.30678.56.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Boersma, M., W. L. T. van Densen und J. Vijverberg. „The effect of predation by smelt (Osmerus eperlanus) on Daphnia hyalina in a shallow eutrophic lake“. SIL Proceedings, 1922-2010 24, Nr. 4 (September 1991): 2438–42. http://dx.doi.org/10.1080/03680770.1989.11899983.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Sakwińska, Olga, und Piotr Dawidowicz. „Life history strategy and depth selection behavior as alternative antipredator defenses among natural Daphnia hyalina populations“. Limnology and Oceanography 50, Nr. 4 (Juli 2005): 1284–89. http://dx.doi.org/10.4319/lo.2005.50.4.1284.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Caramujo, Maria-JosÉ, und Maria-JosÉ Boavida. „Induction and costs of tail spine elongation in Daphnia hyalina ×galeata : reduction of susceptibility to copepod predation“. Freshwater Biology 45, Nr. 4 (Dezember 2000): 413–23. http://dx.doi.org/10.1046/j.1365-2427.2000.00642.x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Ringelberg, J. „Enhancement of the phototactic reaction in Daphnia hyalina by a chemical mediated by juvenile perch (Perca fluviatilis)“. Journal of Plankton Research 13, Nr. 1 (1991): 17–25. http://dx.doi.org/10.1093/plankt/13.1.17.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Brancelj, Anton, Tanja Čelhar und Milijan Šiško. „Four different head shapes in Daphnia hyalina (Leydig) induced by the presence of larvae of Chaoborus flavicans (Meigen)“. Hydrobiologia 339, Nr. 1-3 (November 1996): 37–45. http://dx.doi.org/10.1007/bf00008911.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Manca, Marina, Teresa Spagnuolo und Patrizia Comoli. „Variations in carbon and nitrogen content with body length of Daphnia hyalina-galeata s.l. from laboratory and field observations“. Journal of Plankton Research 16, Nr. 10 (1994): 1303–14. http://dx.doi.org/10.1093/plankt/16.10.1303.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

PINKHAUS, OLAF, SUSANNE SCHWERIN, RALPH PIROW, BETTINA ZEIS, INA BUCHEN, ULRIKE GIGENGACK, MARITA KOCH, WOLFGANG HORN und RÜDIGER J. PAUL. „Temporal environmental change, clonal physiology and the genetic structure of a Daphnia assemblage (D. galeata?hyalina hybrid species complex)“. Freshwater Biology 52, Nr. 8 (August 2007): 1537–54. http://dx.doi.org/10.1111/j.1365-2427.2007.01786.x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Stibor, Herwig, und Winfried Lampert. „Components of additive variance in life-history traits of Daphnia hyalina: seasonal differences in the response to predator signals“. Oikos 88, Nr. 1 (Januar 2000): 129–38. http://dx.doi.org/10.1034/j.1600-0706.2000.880115.x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Manca, Marina, Claudio Ramoni und Patrizia Comoli. „The decline of Daphnia hyalina galeata in Lago Maggiore: a comparison of the population dynamics before and after oligotrophication“. Aquatic Sciences 62, Nr. 2 (August 2000): 142–53. http://dx.doi.org/10.1007/pl00001328.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Flik, Ben J. G., und J. Vijverberg. „Contrasting migration behaviour of Daphnia pulicaria and D. galeata \boldsymbol× hyalina, in avoidance of predation by 0+perch (Perca fluviatilis)“. Hydrobiologia 491, Nr. 1-3 (Januar 2003): 289–99. http://dx.doi.org/10.1023/a:1024459006027.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Brancelj, Anton, und Andrej Blejec. „Diurnal vertical migration of Daphnia hyalina Leydig, 1860 (Crustacea: Cladocera) in Lake Bled (Slovenia) in relation to temperature and predation“. Hydrobiologia 284, Nr. 2 (Mai 1994): 125–36. http://dx.doi.org/10.1007/bf00006884.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

RICCARDI, Nicoletta, Gianluigi GIUSSANI und Laurence LAGORIO. „Morphological variation and life history changes of a Daphnia hyalina population exposed to Chaoborus flavicans larvae predation (L. Candia, Northern Italy)“. Journal of Limnology 61, Nr. 1 (01.02.2002): 41. http://dx.doi.org/10.4081/jlimnol.2002.41.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Schwerin, Susanne, Bettina Zeis, Wolfgang Horn, Heidemarie Horn und Rüdiger J. Paul. „Hemoglobin concentration in Daphnia (D. galeata–hyalina) from the epilimnion is related to the state of nutrition and the degree of protein homeostasis“. Limnology and Oceanography 55, Nr. 2 (2010): 639–52. http://dx.doi.org/10.4319/lo.2009.55.2.0639.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Schwerin, Susanne, Bettina Zeis, Wolfgang Horn, Heidemarie Horn und Rüdiger J. Paul. „Hemoglobin concentration in Daphnia (D. galeata -hyalina ) from the epilimnion is related to the state of nutrition and the degree of protein homeostasis“. Limnology and Oceanography 55, Nr. 2 (01.02.2010): 639–52. http://dx.doi.org/10.4319/lo.2010.55.2.0639.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Jankowski, Thomas, und Dietmar Straile. „A comparison of egg-bank and long-term plankton dynamics of two Daphnia species, D. hyalina and D. galeata : Potentials and limits of reconstruction“. Limnology and Oceanography 48, Nr. 5 (September 2003): 1948–55. http://dx.doi.org/10.4319/lo.2003.48.5.1948.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

REEDE, TINEKE. „Effects of neonate size and food concentration on the life history responses of a clone of the hybrid Daphnia hyalina × galeata to fish kairomones“. Freshwater Biology 37, Nr. 2 (April 1997): 389–96. http://dx.doi.org/10.1046/j.1365-2427.1997.00167.x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Chishty, Nadim, Anil Tripathi und Madhusudan Sharma. „Evaluation of acute toxicity of zinc, lead and cadmium to zooplanktonic community in upper Berach river system, Rajasthan, India“. South Asian Journal of Experimental Biology 2, Nr. 1 (19.03.2012): 20–26. http://dx.doi.org/10.38150/sajeb.2(1).p20-26.

Der volle Inhalt der Quelle
Annotation:
Current study investigated through static bioassay, the acute toxicity of Zinc,Lead and Cadmium to fresh water zooplankters in the upper Berach riversystem which is a part of Gangetic river system. The river basin stretchesfrom Madar tank to Sarjana tank with a total length of 46 Km, including ninewater bodies i.e. Bada madar tank (73‹36f0ffE and 24‹38f0hN ), Chhotamadar tank, Fateh sagar lake, Udaisagar lake, Up]stream pond (Bichhdi]I),Down]stream pond(Bichhdi]II), Gadwa, Daroli and Sarjana tank (73‹ 57f10hEand 24‹14f30h N). Whole zooplanktonic communities were exposed to different heavy metal stresses. Exposed zooplanktonic community included nine planktonic forms i.e. Heliodiaptomus viduus, Mesocyclops hyalinus, Heterocypris, Daphnia lumholtzi, Moina, Brachionus, Monostyla, Filinia. Cadmium was found to be most toxic and Zinc was least toxic to zooplankton. Ostracods and Cyclops were resistant forms and rotifers were sensitive forms in relation to metallic exposure. Sensitivity pattern observed during laboratory experiments was found to be in accordance with biodiversity variation of zooplankton in different ponds of Berach river system.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Fernandez-Triana, Jose, Mark R. Shaw, Caroline Boudreault, Melanie Beaudin und Gavin R. Broad. „Annotated and illustrated world checklist of Microgastrinae parasitoid wasps (Hymenoptera, Braconidae)“. ZooKeys 920 (23.03.2020): 1–1089. http://dx.doi.org/10.3897/zookeys.920.39128.

Der volle Inhalt der Quelle
Annotation:
A checklist of world species of Microgastrinae parasitoid wasps (Hymenoptera: Braconidae) is provided. A total of 81 genera and 2,999 extant species are recognized as valid, including 36 nominal species that are currently considered as species inquirendae. Two genera are synonymized under Apanteles. Nine lectotypes are designated. A total of 318 new combinations, three new replacement names, three species name amendments, and seven species status revised are proposed. Additionally, three species names are treated as nomina dubia, and 52 species names are considered as unavailable names (including 14 as nomina nuda). A total of three extinct genera and 12 extinct species are also listed. Unlike in many previous treatments of the subfamily, tribal concepts are judged to be inadequate, so genera are listed alphabetically. Brief diagnoses of all Microgastrinae genera, as understood in this paper, are presented. Illustrations of all extant genera (at least one species per genus, usually more) are included to showcase morphological diversity. Primary types of Microgastrinae are deposited in 108 institutions worldwide, although 76% are concentrated in 17 collections. Localities of primary types, in 138 countries, are reported. Recorded species distributions are listed by biogeographical region and by country. Microgastrine wasps are recorded from all continents except Antarctica; specimens can be found in all major terrestrial ecosystems, from 82°N to 55°S, and from sea level up to at least 4,500 m a.s.l. The Oriental (46) and Neotropical (43) regions have the largest number of genera recorded, whereas the Palaearctic region (28) is the least diverse. Currently, the highest species richness is in the Palearctic region (827), due to more historical study there, followed by the Neotropical (768) and Oriental (752) regions, which are expected to be the most species rich. Based on ratios of Lepidoptera and Microgastrinae species from several areas, the actual world diversity of Microgastrinae is expected to be between 30,000–50,000 species; although these ratios were mostly based on data from temperate areas and thus must be treated with caution, the single tropical area included had a similar ratio to the temperate ones. Almost 45,000 specimens of Microgastrinae from 67 different genera (83% of microgastrine genera) have complete or partial DNA barcode sequences deposited in the Barcode of Life Data System; the DNA barcodes represent 3,545 putative species or Barcode Index Numbers (BINs), as estimated from the molecular data. Information on the number of sequences and BINs per genus are detailed in the checklist. Microgastrinae hosts are here considered to be restricted to Eulepidoptera, i.e., most of the Lepidoptera except for the four most basal superfamilies (Micropterigoidea, Eriocranioidea, Hepialoidea and Nepticuloidea), with all previous literature records of other insect orders and those primitive Lepidoptera lineages being considered incorrect. The following nomenclatural acts are proposed: 1) Two genera are synonymyzed under Apanteles: Cecidobracon Kieffer & Jörgensen, 1910, new synonym and Holcapanteles Cameron, 1905, new synonym; 2) Nine lectotype designations are made for Alphomelon disputabile (Ashmead, 1900), Alphomelon nigriceps (Ashmead, 1900), Cotesia salebrosa (Marshall, 1885), Diolcogaster xanthaspis (Ashmead, 1900), Dolichogenidea ononidis (Marshall, 1889), Glyptapanteles acraeae (Wilkinson, 1932), Glyptapanteles guyanensis (Cameron, 1911), Glyptapanteles militaris (Walsh, 1861), and Pseudapanteles annulicornis Ashmead, 1900; 3) Three new replacement names are a) Diolcogaster aurangabadensis Fernandez-Triana, replacing Diolcogaster indicus (Rao & Chalikwar, 1970) [nec Diolcogaster indicus (Wilkinson, 1927)], b) Dolichogenidea incystatae Fernandez-Triana, replacing Dolichogenidea lobesia Liu & Chen, 2019 [nec Dolichogenidea lobesia Fagan-Jeffries & Austin, 2019], and c) Microplitis vitobiasi Fernandez-Triana, replacing Microplitis variicolor Tobias, 1964 [nec Microplitis varicolor Viereck, 1917]; 4) Three names amended are Apanteles irenecarrilloae Fernandez-Triana, 2014, Cotesia ayerzai (Brèthes, 1920), and Cotesia riverai (Porter, 1916); 5) Seven species have their status revised: Cotesia arctica (Thomson, 1895), Cotesia okamotoi (Watanabe, 1921), Cotesia ukrainica (Tobias, 1986), Dolichogenidea appellator (Telenga, 1949), Dolichogenidea murinanae (Capek & Zwölfer, 1957), Hypomicrogaster acarnas Nixon, 1965, and Nyereria nigricoxis (Wilkinson, 1932); 6) New combinations are given for 318 species: Alloplitis congensis, Alloplitis detractus, Apanteles asphondyliae, Apanteles braziliensis, Apanteles sulciscutis, Choeras aper, Choeras apollion, Choeras daphne, Choeras fomes, Choeras gerontius, Choeras helle, Choeras irates, Choeras libanius, Choeras longiterebrus, Choeras loretta, Choeras recusans, Choeras sordidus, Choeras stenoterga, Choeras superbus, Choeras sylleptae, Choeras vacillatrix, Choeras vacillatropsis, Choeras venilia, Cotesia asavari, Cotesia bactriana, Cotesia bambeytripla, Cotesia berberidis, Cotesia bhairavi, Cotesia biezankoi, Cotesia bifida, Cotesia caligophagus, Cotesia cheesmanae, Cotesia compressithorax, Cotesia delphinensis, Cotesia effrena, Cotesia euphobetri, Cotesia elaeodes, Cotesia endii, Cotesia euthaliae, Cotesia exelastisae, Cotesia hiberniae, Cotesia hyperion, Cotesia hypopygialis, Cotesia hypsipylae, Cotesia jujubae, Cotesia lesbiae, Cotesia levigaster, Cotesia lizeri, Cotesia malevola, Cotesia malshri, Cotesia menezesi, Cotesia muzaffarensis, Cotesia neptisis, Cotesia nycteus, Cotesia oeceticola, Cotesia oppidicola, Cotesia opsiphanis, Cotesia pachkuriae, Cotesia paludicolae, Cotesia parbhanii, Cotesia parvicornis, Cotesia pratapae, Cotesia prozorovi, Cotesia pterophoriphagus, Cotesia radiarytensis, Cotesia rangii, Cotesia riverai, Cotesia ruficoxis, Cotesia senegalensis, Cotesia seyali, Cotesia sphenarchi, Cotesia sphingivora, Cotesia transuta, Cotesia turkestanica, Diolcogaster abengouroui, Diolcogaster agama, Diolcogaster ambositrensis, Diolcogaster anandra, Diolcogaster annulata, Diolcogaster bambeyi, Diolcogaster bicolorina, Diolcogaster cariniger, Diolcogaster cincticornis, Diolcogaster cingulata, Diolcogaster coronata, Diolcogaster coxalis, Diolcogaster dipika, Diolcogaster earina, Diolcogaster epectina, Diolcogaster epectinopsis, Diolcogaster grangeri, Diolcogaster heterocera, Diolcogaster homocera, Diolcogaster indica, Diolcogaster insularis, Diolcogaster kivuana, Diolcogaster mediosulcata, Diolcogaster megaulax, Diolcogaster neglecta, Diolcogaster nigromacula, Diolcogaster palpicolor, Diolcogaster persimilis, Diolcogaster plecopterae, Diolcogaster plutocongoensis, Diolcogaster psilocnema, Diolcogaster rufithorax, Diolcogaster semirufa, Diolcogaster seyrigi, Diolcogaster subtorquata, Diolcogaster sulcata, Diolcogaster torquatiger, Diolcogaster tristiculus, Diolcogaster turneri, Diolcogaster vulcana, Diolcogaster wittei, Distatrix anthedon, Distatrix cerales, Distatrix cuspidalis, Distatrix euproctidis, Distatrix flava, Distatrix geometrivora, Distatrix maia, Distatrix tookei, Distatrix termina, Distatrix simulissima, Dolichogenidea agamedes, Dolichogenidea aluella, Dolichogenidea argiope, Dolichogenidea atreus, Dolichogenidea bakeri, Dolichogenidea basiflava, Dolichogenidea bersa, Dolichogenidea biplagae, Dolichogenidea bisulcata, Dolichogenidea catonix, Dolichogenidea chrysis, Dolichogenidea coffea, Dolichogenidea coretas, Dolichogenidea cyane, Dolichogenidea diaphantus, Dolichogenidea diparopsidis, Dolichogenidea dryas, Dolichogenidea earterus, Dolichogenidea ensiger, Dolichogenidea eros, Dolichogenidea evadne, Dolichogenidea falcator, Dolichogenidea gelechiidivoris, Dolichogenidea gobica, Dolichogenidea hyalinis, Dolichogenidea iriarte, Dolichogenidea lakhaensis, Dolichogenidea lampe, Dolichogenidea laspeyresiella, Dolichogenidea latistigma, Dolichogenidea lebene, Dolichogenidea lucidinervis, Dolichogenidea malacosomae, Dolichogenidea maro, Dolichogenidea mendosae, Dolichogenidea monticola, Dolichogenidea nigra, Dolichogenidea olivierellae, Dolichogenidea parallelis, Dolichogenidea pelopea, Dolichogenidea pelops, Dolichogenidea phaenna, Dolichogenidea pisenor, Dolichogenidea roepkei, Dolichogenidea scabra, Dolichogenidea statius, Dolichogenidea stenotelas, Dolichogenidea striata, Dolichogenidea wittei, Exoryza asotae, Exoryza belippicola, Exoryza hylas, Exoryza megagaster, Exoryza oryzae, Glyptapanteles aggestus, Glyptapanteles agynus, Glyptapanteles aithos, Glyptapanteles amenophis, Glyptapanteles antarctiae, Glyptapanteles anubis, Glyptapanteles arginae, Glyptapanteles argus, Glyptapanteles atylana, Glyptapanteles badgleyi, Glyptapanteles bataviensis, Glyptapanteles bistonis, Glyptapanteles borocerae, Glyptapanteles cacao, Glyptapanteles cadei, Glyptapanteles cinyras, Glyptapanteles eryphanidis, Glyptapanteles euproctisiphagus, Glyptapanteles eutelus, Glyptapanteles fabiae, Glyptapanteles fulvigaster, Glyptapanteles fuscinervis, Glyptapanteles gahinga, Glyptapanteles globatus, Glyptapanteles glyphodes, Glyptapanteles guierae, Glyptapanteles horus, Glyptapanteles intricatus, Glyptapanteles lamprosemae, Glyptapanteles lefevrei, Glyptapanteles leucotretae, Glyptapanteles lissopleurus, Glyptapanteles madecassus, Glyptapanteles marquesi, Glyptapanteles melanotus, Glyptapanteles melissus, Glyptapanteles merope, Glyptapanteles naromae, Glyptapanteles nepitae, Glyptapanteles nigrescens, Glyptapanteles ninus, Glyptapanteles nkuli, Glyptapanteles parasundanus, Glyptapanteles penelope, Glyptapanteles penthocratus, Glyptapanteles philippinensis, Glyptapanteles philocampus, Glyptapanteles phoebe, Glyptapanteles phytometraduplus, Glyptapanteles propylae, Glyptapanteles puera, Glyptapanteles seydeli, Glyptapanteles siderion, Glyptapanteles simus, Glyptapanteles speciosissimus, Glyptapanteles spilosomae, Glyptapanteles subpunctatus, Glyptapanteles thespis, Glyptapanteles thoseae, Glyptapanteles venustus, Glyptapanteles wilkinsoni, Hypomicrogaster samarshalli, Iconella cajani, Iconella detrectans, Iconella jason, Iconella lynceus, Iconella pyrene, Iconella tedanius, Illidops azamgarhensis, Illidops lamprosemae, Illidops trabea, Keylimepie striatus, Microplitis adisurae, Microplitis mexicanus, Neoclarkinella ariadne, Neoclarkinella curvinervus, Neoclarkinella sundana, Nyereria ituriensis, Nyereria nioro, Nyereria proagynus, Nyereria taoi, Nyereria vallatae, Parapanteles aethiopicus, Parapanteles alternatus, Parapanteles aso, Parapanteles atellae, Parapanteles bagicha, Parapanteles cleo, Parapanteles cyclorhaphus, Parapanteles demades, Parapanteles endymion, Parapanteles epiplemicidus, Parapanteles expulsus, Parapanteles fallax, Parapanteles folia, Parapanteles furax, Parapanteles hemitheae, Parapanteles hyposidrae, Parapanteles indicus, Parapanteles javensis, Parapanteles jhaverii, Parapanteles maculipalpis, Parapanteles maynei, Parapanteles neocajani, Parapanteles neohyblaeae, Parapanteles nydia, Parapanteles prosper, Parapanteles prosymna, Parapanteles punctatissimus, Parapanteles regalis, Parapanteles sarpedon, Parapanteles sartamus, Parapanteles scultena, Parapanteles transvaalensis, Parapanteles turri, Parapanteles xanthopholis, Pholetesor acutus, Pholetesor brevivalvatus, Pholetesor extentus, Pholetesor ingenuoides, Pholetesor kuwayamai, Promicrogaster apidanus, Promicrogaster briareus, Promicrogaster conopiae, Promicrogaster emesa, Promicrogaster grandicula, Promicrogaster orsedice, Promicrogaster repleta, Promicrogaster typhon, Sathon bekilyensis, Sathon flavofacialis, Sathon laurae, Sathon mikeno, Sathon ruandanus, Sathon rufotestaceus, Venanides astydamia, Venanides demeter, Venanides parmula, and Venanides symmysta.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Bernatowicz, Piotr, Piotr Dawidowicz und Joanna Pijanowska. „Phenotypic plasticity and developmental noise in hybrid and parental clones of Daphnia longispina complex“. Aquatic Ecology, 08.09.2021. http://dx.doi.org/10.1007/s10452-021-09898-7.

Der volle Inhalt der Quelle
Annotation:
AbstractAccording to the “temporal hybrid superiority hypothesis”, seasonal variability in environmental factors in temperate lakes gives hybrid clones within the D. longispina complex a temporary fitness advantage, thus allowing long-term, dynamic coexistence of hybrids and maternal taxa. However, the maintenance of hybrids would not require their superiority under any given set of environmental conditions if their average fitness over longer periods surpassed that of more specialized and less flexible parental clones. Phenotypic plasticity and developmental noise of several hybrid and maternal clones of Daphnia (Daphnia galeata, Daphnia hyalina, their hybrids and backcrosses) were compared in a series of laboratory experiments. Changes in depth selection and body size at first reproduction were scored in Daphnia exposed to predator (planktivorous fish) threat, to the presence of filamentous cyanobacteria (Cylindrospermopsis raciborskii), and to the presence of toxic compounds (PCB52 and PCB153). The hybrid clones were found to exhibit the broadest phenotypic plasticity of the studied traits in response to the different stress factors. Developmental noise in depth selection behaviour was the lowest in Daphnia galeata, the highest in Daphnia hyalina, and intermediate in hybrid and backcross clones. This diversity of reaction norms might permit the coexistence of closely related Daphnia clones in the variable and often unpredictable lake environment.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie