Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Damage calculation“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Damage calculation" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Damage calculation"
Blikharskyy, Yaroslav. „Calculation of damage RC constructions according to deformation model“. Theory and Building Practice 2020, Nr. 2 (20.11.2020): 99–106. http://dx.doi.org/10.23939/jtbp2020.02.099.
Der volle Inhalt der QuelleTang, Song Hua, Ying She Luo, Shui Ping Yin, Yong Hong Li, Chao Chen und Fang Tian. „Fire Response Calculation Based on Damage Mechanics“. Advanced Materials Research 639-640 (Januar 2013): 1193–99. http://dx.doi.org/10.4028/www.scientific.net/amr.639-640.1193.
Der volle Inhalt der QuelleCrocombette, Jean-Paul, und Christian Van Wambeke. „Quick calculation of damage for ion irradiation: implementation in Iradina and comparisons to SRIM“. EPJ Nuclear Sciences & Technologies 5 (2019): 7. http://dx.doi.org/10.1051/epjn/2019003.
Der volle Inhalt der QuelleKOSICHENKO, YU М. „UNIVERSAL METHOD FOR CALCULATING WATER PERMEABILITY OF ANTIFILTRATION LININGS WITH POLYMER GEOMEMBRANES“. Prirodoobustrojstvo, Nr. 4 (2020): 6–13. http://dx.doi.org/10.26897/1997-6011-2020-4-6-13.
Der volle Inhalt der QuelleNikitin, Aleksandr, Nikolay Burago, Ilia Nikitin und Boris Stratula. „Algorithms for calculation damage processes“. Frattura ed Integrità Strutturale 13, Nr. 49 (26.06.2019): 212–24. http://dx.doi.org/10.3221/igf-esis.49.22.
Der volle Inhalt der QuelleKos, Zeljko, Yevhenii Klymenko, Kostiantyn Polianskyi und Andjelko Crnoja. „Research of the Residual Bearing Capacity and the Work of Damaged Reinforced Concrete Beams’ Inclined Sections“. Tehnički glasnik 14, Nr. 4 (09.12.2020): 466–72. http://dx.doi.org/10.31803/tg-20191125075359.
Der volle Inhalt der QuelleQueral, C., J. Gonzalez-Cadelo, J. Montero und L. Ibanez. „ICONE19-43892 CALCULATION OF DAMAGE EXCEEDANCE FREQUENCIES IN COLD LEG MBLOCA SEQUENCES“. Proceedings of the International Conference on Nuclear Engineering (ICONE) 2011.19 (2011): _ICONE1943. http://dx.doi.org/10.1299/jsmeicone.2011.19._icone1943_335.
Der volle Inhalt der QuelleBatarlienė, Nijolė. „Risk and Damage Assessment for Transportation of Dangerous Freight“. Transport and Telecommunication Journal 19, Nr. 4 (01.12.2018): 356–63. http://dx.doi.org/10.2478/ttj-2018-0030.
Der volle Inhalt der QuelleNikitin, I. S., N. G. Burago, A. D. Nikitin und B. A. Stratula. „Through calculation method of fatigue damage“. IOP Conference Series: Materials Science and Engineering 927 (26.09.2020): 012019. http://dx.doi.org/10.1088/1757-899x/927/1/012019.
Der volle Inhalt der QuelleLei, Chun Xu, Qin Pu, Yong Qing Yang und Ji Jian Jiang. „Research on Damage Detection and Calculation for Reinforced Concrete Bridge Piers“. Applied Mechanics and Materials 361-363 (August 2013): 1110–14. http://dx.doi.org/10.4028/www.scientific.net/amm.361-363.1110.
Der volle Inhalt der QuelleDissertationen zum Thema "Damage calculation"
FERREIRA, JORGE LUIZ DE ALMEIDA. „SIMULATION OF RANDOM LOADING FOR FATIGUE DAMAGE CALCULATION“. PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 1993. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=24834@1.
Der volle Inhalt der QuelleExtending Yang s [1] studies of fatigue damage determination in structures under stochastic loading, this study was developed using the same philosophy, besides incorporate a FFT routine to the power spectral determination, the Coffin-Manson method and Miner s rule, to structure damage determination. Two software were developed to apply this method. The first one realizes three basics functions: Data Acquisition: Recording real loading processes Analysis: Determination the statistical and spectral properties of the loading processes Random loading Process Simulation: Using Gaussian simulation method. The second software contain the routines necessary to life estimation using the Coffin-Manson method: peak and valley counting, rain-flow rule, damage and cumulative damage calculation. A computational processes were applied on loading processes found on correlated studies, and the numerical results were compared with their experimental one. At last, it was objected to studying the influence os spectral resolution and the number of iteration on life prediction, to find the best parameters to a good simulation.
FERREIRA, JORGE LUIZ DE ALMEIDA. „A MODEL TO PREDICT UNCERTAINTY FOR FATIGUE DAMAGE CALCULATION“. PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 1997. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=24799@1.
Der volle Inhalt der QuelleThe present work is concerned with the development and the validation of a model to evaluate the average and the variance of the fatigue damage in structures subjected to random loading. The technique of the approximation of these statistics through of the expansion into Taylor series was applied to the set of equations that describe the epsilon-N method and the Palmgren-Miner rule. The proposed model allows the evaluation of the statistical behavior of the notch stress ranges, of the notch strain ranges and of the cumulative fatigue damage. The developed model allows the combination of random factors associated to loading histories and to the behavior of the material. In other words, the model estimates the dispersion of the fatigue damage under an extensive aspect, quatifying separately the contributions derives from the dispersion associated to sources of variation of the material behavior and the loading histories. In order to evaluate the proposed model, 20 random loading histories were combined to two levels of dispersion of the material properties. The combination allowed the study of the model under several situations. The performance of the model was evaluated by comparisons with the Monte Carlo technique. The agreement of the proposed model with the Monte Carlo technique was considered good. An extensive study was realized concerning the influence of the random loading on the dispersion of the damage prediction. It was observed that the dispersion is strongly associated to sample s size. From the cases studied it was observed that sample s blocks with less than 3000 peak might conduct to dispersions larger than 10 per cent, for strictly stationary processes, and larger than 20 per cent, for wide-sense stationary processes. After studying the statistical behavior of the cumulative fatigue damage and of its critical value to initiate a fatigue crack, two analytical model for fatigue reliability analysis were presented. These models are developed under the assumption that cumulative fatigue damage and its critical value follow a lognormal or a Weibull distribution. To verify the predicted results the Monte Carlo analysis was used. From this analysis it was verified tha the interference statistical model, based on a lognormal distribution, describes better the behavior of the fatigue s reliability.
Li, Jiale. „ANALYTICAL FATIGUE DAMAGE CALCULATION FOR WIND TURBINE SUPPORT STRUCTURE“. Case Western Reserve University School of Graduate Studies / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=case1364832753.
Der volle Inhalt der QuelleZhao, Ziguang. „Calculation of fatigue damage for tensioned risers from vortex induced vibrations“. Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for marin teknikk, 2011. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-15783.
Der volle Inhalt der QuelleElzbergas, Tadas. „Pacientų teisių gynimo galimybės ir ribos nacionaliniame ir tarptautiniame lygmenyse“. Master's thesis, Lithuanian Academic Libraries Network (LABT), 2006. http://vddb.library.lt/obj/LT-eLABa-0001:E.02~2006~D_20060314_103422-40016.
Der volle Inhalt der QuelleDuchoň, Peter. „Analýza spoje křídlo-trup letounu L 410 NG z hlediska filozofie konstrukce s přípustným poškozením“. Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2014. http://www.nusl.cz/ntk/nusl-231189.
Der volle Inhalt der QuelleHolck-Clausen, Jens, und Karin Mattisson. „Fuktstudie om uteluftsventilerade vindar med beräkningsprogrammet Simple Cold Attic Model från Annex 55“. Thesis, KTH, Byggteknik och design, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-149297.
Der volle Inhalt der QuelleMoisture Damage in outdoor air ventilated attics is a growing problem in the more environmentally conscious Sweden. Thick ceiling insulation reduces both energy loss through the soffit and the need for heating in the house, but how many people are thinking about what happens to the changing climate on the wind and how it can affect moisture conditions in deprived parts of the structure.Studies from Chalmers University of Technology have resulted in a moisture calculation program for outdoor air ventilated attics named Simple Cold Attic Model. The program's performance and potential have been examined in this report, through a calculation analysis of an outdoor air ventilated attic construction. Attempts to improve the moisture safety in the construction have been carried out and are presented in this report.The study has demonstrated that the studied structure is not moisture-proof if it is built in the Stockholm area. It also shows that an active choice in the design can prevent moisture damage. The study has shown the importance of not calculating with an average year for climate and how it affects the calculation result of mold growth. This emphasizes the importance of having a calculation tool as Simple Cold Attic Model, that significantly reduces the amount of calculations in the assessment of moisture related damage. The recommendation for AK Konsult is to apply the calculation program when it is fully developed.
Ortiz, Carlos. „First Principles Calculations of Electron Transport and Structural Damage by Intense Irradiation“. Doctoral thesis, Uppsala : Acta Universitatis Upsaliensis, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-102376.
Der volle Inhalt der QuelleHubáček, Jan. „Vyšetřování bezpečného únavového života křídla víceúčelového jednomotorového turbovrtulového letounu“. Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2021. http://www.nusl.cz/ntk/nusl-443732.
Der volle Inhalt der QuelleForshaw, Timothy James. „An investigation into the validity of life tables used for the calculation of personal injury damages“. Thesis, Rhodes University, 2013. http://hdl.handle.net/10962/d1008371.
Der volle Inhalt der QuelleKMBT_363
Adobe Acrobat 9.54 Paper Capture Plug-in
Bücher zum Thema "Damage calculation"
Zhuan li qin quan yao jian ji sun hai pei chang ji suan: Elements for patent infringement and damage calculation. [Taibei Shi]: Jing ji bu zhi hui cai chan ju, 2007.
Den vollen Inhalt der Quelle findenAlbers, John. Results of the Monte Carlo calculation of one-and two-dimensional distributions of particles and damage: Ion implanteddopants in silicon. Washington, D.C: National Bureau of Standards, 1987.
Den vollen Inhalt der Quelle findenAlbers, John. Results of the Monte Carlo calculation of one- and two-dimensional distributions of particles and damage: Ion implanted dopants in silicon. Gaithersburg, MD: U.S. Dept. of Commerce, National Bureau of Standards, 1987.
Den vollen Inhalt der Quelle finden1964-, McNamara John J., und Hoffar Julian F, Hrsg. Calculating construction damages. New York: Wiley Law Publications, 1992.
Den vollen Inhalt der Quelle finden1964-, McNamara John J., Hrsg. Calculating construction damages. 2. Aufl. Gaithersburg [Md.]: Aspen Law & Business, 2001.
Den vollen Inhalt der Quelle findenAmerican Bar Association. Section of Litigation, Hrsg. Formulas for calculating damages. Chicago, Ill: American Bar Association, 2012.
Den vollen Inhalt der Quelle findenBoushie, Kristopher A. Calculating and proving damages. New York: Law Journal Press, 2011.
Den vollen Inhalt der Quelle findenL, Jackson Daniel. Calculating intellectual property infringement damages. New York: American Institute of Certified Public Accountants, 2006.
Den vollen Inhalt der Quelle findenPersonal injury schedules: Calculating damages. 3. Aufl. Haywards Heath, West Sussex: Bloomsbury Professional, 2010.
Den vollen Inhalt der Quelle findenAssociation, Professional Negligence Bar, Hrsg. Facts & figures 2010/11: Tables for the calculation of damages. London: Sweet & Maxwell, 2010.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Damage calculation"
Lalanne, Christian. „Fatigue Damage using Other Calculation Assumptions“. In Fatigue Damage, 267–87. Chichester, UK: John Wiley & Sons, Ltd, 2014. http://dx.doi.org/10.1002/9781118931189.ch6.
Der volle Inhalt der QuelleZhang, Jun, Xu Chen und Xin Li Wei. „Numerical Calculation of Peeling Strength in Anisotropic Conducive Adhesive Bonding“. In Fracture and Damage Mechanics V, 471–74. Stafa: Trans Tech Publications Ltd., 2006. http://dx.doi.org/10.4028/0-87849-413-8.471.
Der volle Inhalt der QuelleWang, Xiang Dong, Dao Yuan Xu, Wei Xuan Zhu, Ai Ming Deng und Zhen Bo Wang. „Damage of Concrete Dams and Its Simulation Calculation“. In Environmental Ecology and Technology of Concrete, 624–29. Stafa: Trans Tech Publications Ltd., 2006. http://dx.doi.org/10.4028/0-87849-983-0.624.
Der volle Inhalt der QuelleSauer, Stephan P. A., Jens Oddershede und John R. Sabin. „Theory and Calculation of Stopping Cross Sections of Nucleobases for Swift Ions“. In Radiation Damage in Biomolecular Systems, 191–200. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-2564-5_12.
Der volle Inhalt der QuelleLa Gattuta, K. J. „Fission-Fragment Induced Damage of Surfaces: A Quasiclassical Trajectory Calculation“. In Strongly Coupled Coulomb Systems, 323–26. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/0-306-47086-1_54.
Der volle Inhalt der QuelleLiu, Henry. „Calculation of wind speeds required to damage or destroy buildings“. In Geophysical Monograph Series, 535–41. Washington, D. C.: American Geophysical Union, 1993. http://dx.doi.org/10.1029/gm079p0535.
Der volle Inhalt der QuelleTang, Song Hua, Ying She Luo, Ming Zhe Ning und Zhi Chao Wang. „Calculation and Analysis on the Thermal Damage at High Temperature“. In Key Engineering Materials, 1191–94. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-456-1.1191.
Der volle Inhalt der QuelleNikitin, Ilia S., Nikolay G. Burago, Alexander D. Nikitin und Boris A. Stratula. „Multi-mode Model and Calculation Method for Fatigue Damage Development“. In Applied Mathematics and Computational Mechanics for Smart Applications, 157–70. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-4826-4_12.
Der volle Inhalt der QuelleSavaidis, G., A. Savaidis, O. Hertel und M. Vormwald. „A Unified Fatigue Life Calculation Model for Notched Components Based on Elastic-Plastic Fracture Mechanics“. In Advances in Fracture and Damage Mechanics VI, 525–28. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-448-0.525.
Der volle Inhalt der QuelleBorghetti, Fabio, Paolo Cerean, Marco Derudi und Alessio Frassoldati. „Calculation of the F-N Curve and the Expected Damage Value“. In SpringerBriefs in Applied Sciences and Technology, 81–83. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-00569-6_9.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Damage calculation"
Arenberg, Jonathan W. „Calculation of relative damage thresholds for coated or contaminated total internal reflection surfaces“. In Boulder Damage, herausgegeben von Gregory J. Exarhos, Arthur H. Guenther, Keith L. Lewis, M. J. Soileau und Christopher J. Stolz. SPIE, 2002. http://dx.doi.org/10.1117/12.461699.
Der volle Inhalt der QuelleYildiz, T., und J. P. Langlinais. „Calculation of Pressure Losses Across Gravel Packs“. In SPE Formation Damage Control Symposium. Society of Petroleum Engineers, 1988. http://dx.doi.org/10.2118/17167-ms.
Der volle Inhalt der QuelleLanier, Thomas E., und Jeremy R. Gulley. „Calculation of nonlinear optical damage from space-time-tailored pulses in dielectrics“. In SPIE Laser Damage, herausgegeben von Gregory J. Exarhos, Vitaly E. Gruzdev, Joseph A. Menapace, Detlev Ristau und MJ Soileau. SPIE, 2015. http://dx.doi.org/10.1117/12.2195299.
Der volle Inhalt der QuelleZorila, Alexandru, Aurel Stratan, Ioana Dumitrache, Laurentiu Rusen und George Nemes. „Analysis of cumulative versus ISO-recommended calculation of damage probability using a database of real S-on-1 tests“. In SPIE Laser Damage, herausgegeben von Gregory J. Exarhos, Vitaly E. Gruzdev, Joseph A. Menapace, Detlev Ristau und MJ Soileau. SPIE, 2015. http://dx.doi.org/10.1117/12.2194303.
Der volle Inhalt der QuelleArenberg, Jonathan W. „Calculation of error bars for laser damage observations“. In Boulder Damage Symposium XL Annual Symposium on Optical Materials for High Power Lasers, herausgegeben von Gregory J. Exarhos, Detlev Ristau, M. J. Soileau und Christopher J. Stolz. SPIE, 2008. http://dx.doi.org/10.1117/12.804247.
Der volle Inhalt der QuelleSosnovskiy, Leonid A. „The Method of Strength Calculation in Volume Fracture and Surface Damage“. In World Tribology Congress III. ASMEDC, 2005. http://dx.doi.org/10.1115/wtc2005-63056.
Der volle Inhalt der QuelleYong-tao, Lin, Tan Zhi-liang und Li-gang. „The Damage Voltage Calculation of ESD based on Damage Parameters of Square wave“. In The 2006 4th Asia-Pacific Conference on Environmental Electromagnetics. IEEE, 2006. http://dx.doi.org/10.1109/ceem.2006.257956.
Der volle Inhalt der QuelleArenberg, Jonathan W. „Calculation of relative damage thresholds for total internal reflection surfaces“. In Laser-Induced Damage in Optical Materials: 2000, herausgegeben von Gregory J. Exarhos, Arthur H. Guenther, Mark R. Kozlowski, Keith L. Lewis und M. J. Soileau. SPIE, 2001. http://dx.doi.org/10.1117/12.425065.
Der volle Inhalt der QuelleJamiolahmady, Mahmoud, D. H. Tehrani, Ali Danesh, Rahim Ataei und Ahmad Rezaei. „Calculation Of Productivity Of A Gas-Condensate Well: Application Of Skin With Rate Dependent Pseudo-Pressure“. In SPE European Formation Damage Conference. Society of Petroleum Engineers, 2005. http://dx.doi.org/10.2118/94718-ms.
Der volle Inhalt der QuelleKrüger, Stefan, und Hendrik Dankowski. „A Monte Carlo Based Simulation Method for Damage Stability Problems“. In ASME 2019 38th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/omae2019-95295.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Damage calculation"
Wirth, B., P. Monasterio und W. Stein. Calculation of Radiation Damage in SLAC Targets. Office of Scientific and Technical Information (OSTI), April 2008. http://dx.doi.org/10.2172/945152.
Der volle Inhalt der QuelleMarian, J. Calculation of damage, He and H production using SPECTER. Office of Scientific and Technical Information (OSTI), August 2009. http://dx.doi.org/10.2172/965461.
Der volle Inhalt der QuelleGreenwood, L. R., und R. T. Ratner. Neutron dosimetry and damage calculation for the JP-10, 11, 13, and 16 experiments in HFIR. Office of Scientific and Technical Information (OSTI), April 1996. http://dx.doi.org/10.2172/270463.
Der volle Inhalt der QuelleAlbers, John. Results of the Monte Carlo calculation of one- and two-dimensional distributions of particles and damage. Gaithersburg, MD: National Bureau of Standards, 1987. http://dx.doi.org/10.6028/nbs.sp.400-79.
Der volle Inhalt der QuelleGreenwood, L. R., und R. K. Smither. SPECTER: neutron damage calculations for materials irradiations. Office of Scientific and Technical Information (OSTI), Januar 1985. http://dx.doi.org/10.2172/6022143.
Der volle Inhalt der QuelleGreenwood, L. R., und R. T. Ratner. Neutron dosimetry and radiation damage calculations for HFBR. Office of Scientific and Technical Information (OSTI), März 1998. http://dx.doi.org/10.2172/335413.
Der volle Inhalt der QuelleMata Cruz, Angelica, und Micah D. Gale. Evaluation of the NSUF Reactor Activation and Damage (RAD) Calculator damage component. Office of Scientific and Technical Information (OSTI), Mai 2020. http://dx.doi.org/10.2172/1631819.
Der volle Inhalt der QuelleGreenwood, L. R., und R. T. Ratner. Neutron dosimetry and damage calculations for the ATR-A1 irradiation. Office of Scientific and Technical Information (OSTI), September 1998. http://dx.doi.org/10.2172/330632.
Der volle Inhalt der QuelleGreenwood, L. R., und C. A. Baldwin. Neutron dosimetry and damage calculations for the HFIR-JP-20 irradiation. Office of Scientific and Technical Information (OSTI), März 1998. http://dx.doi.org/10.2172/335412.
Der volle Inhalt der QuelleGreenwood, L. R., und R. T. Ratner. Neutron dosimetry and damage calculations for the HFIR-JP-23 irradiations. Office of Scientific and Technical Information (OSTI), Oktober 1996. http://dx.doi.org/10.2172/414891.
Der volle Inhalt der Quelle