Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Damage and detection“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Damage and detection" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Damage and detection"
Vafaei, Mohammadreza, Azlan bin Adnan und Mohammadreza Yadollahi. „Seismic Damage Detection Using Pushover Analysis“. Advanced Materials Research 255-260 (Mai 2011): 2496–99. http://dx.doi.org/10.4028/www.scientific.net/amr.255-260.2496.
Der volle Inhalt der QuelleCarminati, M., und S. Ricci. „Structural Damage Detection Using Nonlinear Vibrations“. International Journal of Aerospace Engineering 2018 (25.09.2018): 1–21. http://dx.doi.org/10.1155/2018/1901362.
Der volle Inhalt der QuelleStoykov, Stanislav, Emil Manoach und Maosen Cao. „Vibration Based Damage Detection of Rotating Beams“. MATEC Web of Conferences 148 (2018): 14008. http://dx.doi.org/10.1051/matecconf/201814814008.
Der volle Inhalt der QuelleRiddihough, G. „Damage Detection“. Science Signaling 1, Nr. 24 (17.06.2008): ec227-ec227. http://dx.doi.org/10.1126/scisignal.124ec227.
Der volle Inhalt der QuelleZhang, Yu, Xin Feng, Zhe Fan, Shuang Hou, Tong Zhu und Jing Zhou. „Experimental investigations on seismic damage monitoring of concrete dams using distributed lead zirconate titanate sensor network“. Advances in Structural Engineering 20, Nr. 2 (28.07.2016): 170–79. http://dx.doi.org/10.1177/1369433216660002.
Der volle Inhalt der QuelleNASERALAVI, S. S., S. GERIST, E. SALAJEGHEH und J. SALAJEGHEH. „ELABORATE STRUCTURAL DAMAGE DETECTION USING AN IMPROVED GENETIC ALGORITHM AND MODAL DATA“. International Journal of Structural Stability and Dynamics 13, Nr. 06 (02.07.2013): 1350024. http://dx.doi.org/10.1142/s0219455413500247.
Der volle Inhalt der QuellePark, Sang-Eun, und Yoon Taek Jung. „Detection of Earthquake-Induced Building Damages Using Polarimetric SAR Data“. Remote Sensing 12, Nr. 1 (01.01.2020): 137. http://dx.doi.org/10.3390/rs12010137.
Der volle Inhalt der QuelleDuarte, D., F. Nex, N. Kerle und G. Vosselman. „DAMAGE DETECTION ON BUILDING FAÇADES USING MULTI-TEMPORAL AERIAL OBLIQUE IMAGERY“. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences IV-2/W5 (29.05.2019): 29–36. http://dx.doi.org/10.5194/isprs-annals-iv-2-w5-29-2019.
Der volle Inhalt der QuelleTiturus, Branislav, Michael I. Friswell und Ladislav Starek. „Damage detection using generic elements: Part II. Damage detection“. Computers & Structures 81, Nr. 24-25 (September 2003): 2287–99. http://dx.doi.org/10.1016/s0045-7949(03)00318-3.
Der volle Inhalt der QuelleHuang, Ming-Chih, Yen-Po Wang und Ming-Lian Chang. „Damage Detection of Structures Identified with Deterministic-Stochastic Models Using Seismic Data“. Scientific World Journal 2014 (2014): 1–14. http://dx.doi.org/10.1155/2014/879341.
Der volle Inhalt der QuelleDissertationen zum Thema "Damage and detection"
Cockerill, Aaron. „Damage detection of rotating machinery“. Thesis, Cardiff University, 2017. http://orca.cf.ac.uk/105671/.
Der volle Inhalt der QuelleAl, Jailawi Samer Saadi Hussein. „Damage detection using angular velocity“. Diss., University of Iowa, 2018. https://ir.uiowa.edu/etd/6539.
Der volle Inhalt der QuelleDissanayake, Amal S. „Electrostatic discharge damage detection method“. Thesis, Kansas State University, 1997. http://hdl.handle.net/2097/13512.
Der volle Inhalt der QuelleGharibnezhad, Fahit. „Robust damage detection in smart structures“. Doctoral thesis, Universitat Politècnica de Catalunya, 2014. http://hdl.handle.net/10803/277544.
Der volle Inhalt der QuelleLa presente tesis doctoral se dedica a la exploración y presentación de técnicas novedosas para la Monitorización y detección de defectos en estructuras (Structural Health Monitoring -SHM-) SHM es un campo actualmente en desarrollo que pretende asegurarse que las estructuras permanecen en su condición deseada para evitar cualquier catástrofe. En SHM se presentan diferentes niveles de diagnóstico, Este trabajo se concentra en el primer nivel, que se considera el más importante, la detección de los defectos. Las nuevas técnicas presentadas en esta tesis se basan en diferentes métodos estadísticos y de procesamiento de señales tales como el Análisis de Componentes Princpales (PCA) y sus variaciones robustas, Transformada wavelets, lógica difusa, gráficas de Andrew, etc. Estas técnicas de aplican sobre las ondas de vibración que se generan y se miden en la estructura utilizando trasductores apropiados. Dispositivos piezocerámicos (PZT's) se han escogido para este trabajo ya que presentan características especiales tales como: alto rendimiento, bajo consumo de energia y bajo costo. Para garantizar la eficacia de la metodología propuesta,se ha validado en diferentes laboratorios y estructuras a escala real: placas de aluminio y de material compuesto, fuselage de un avión, revestimiento del ala de un avóin, tubería, etc. Debido a la gran variedad de estructuras utilizadas, su aplicación en la industria aeroespacial y/o petrolera es prometedora. Por otra parte, los cambios ambientales pueden afectar al rendimiento de la detección de daños y propagación de la onda significativamente . En este trabajo , se estudia el efecto de las variaciones de temperatura ya que es uno de los principales factores de fluctuación del medio ambiente . Para examinar su efecto en la detección de daños, en primer lugar, todos los métodos propuestos se prueban para comprobar si son sensibles a los cambios de temperatura o no. Finalmente , se aplica un método de compensación de temperatura para garantizar que los métodos propuestos son estables y robustos incluso cuando las estructuras se someten a condiciones ambientales variantes
Matlack, Kathryn H. „Nonlinear ultrasound for radiation damage detection“. Diss., Georgia Institute of Technology, 2014. http://hdl.handle.net/1853/51965.
Der volle Inhalt der QuelleHuethwohl, Philipp Karl. „Bridge damage detection and BIM mapping“. Thesis, University of Cambridge, 2019. https://www.repository.cam.ac.uk/handle/1810/285562.
Der volle Inhalt der QuelleMalik, Shoaib Ahmad. „Damage detection using self-sensing composites“. Thesis, University of Birmingham, 2011. http://etheses.bham.ac.uk//id/eprint/1750/.
Der volle Inhalt der QuelleAsnaashari, Erfan. „Vibration-based damage detection in structures“. Thesis, University of Manchester, 2014. https://www.research.manchester.ac.uk/portal/en/theses/vibrationbased-damage-detection-in-structures(09061582-55fb-4fba-846e-2156dd4ef172).html.
Der volle Inhalt der QuelleTadros, Nader Nabil Aziz. „Structural damage detection using ambient vibrations“. Thesis, Kansas State University, 2014. http://hdl.handle.net/2097/18178.
Der volle Inhalt der QuelleDepartment of Civil Engineering
Hani G. Melhem
The objective of this research is to use structure ambient random vibration response to detect damage level and location. The use of ambient vibration is advantageous because excitation is caused by service conditions such as normal vehicle traffic on a highway bridge, train passage on a railroad bridge, or wind loads on a tall building. This eliminates the need to apply a special impact or dynamic load, or interrupt traffic on a bridge in regular service. This research developed an approach in which free vibration of a structure is extracted from the response of this structure to a random excitation in the time domain (acceleration versus time) by averaging out the random component of the response. The result is the free vibration that includes all modes based on the sampling rate on time. Then this free vibration is transferred to the frequency domain using a Fast Fourier Transform (FFT). Variations in frequency response are a function of structural stiffness and member end-conditions. Such variations are used as a measure to identify the change in the structural dynamic properties, and ultimately detect damage. A physical model consisting of a 20 × 20 × 1670 -mm long steel square tube was used to validate this approach. The beam was tested under difference supports conditions varying from a single- to three-span continuous configuration. Random excitation was applied to the beam, and the dynamic response was measured by an accelerometer placed at various locations on the span. A numerical model was constructed in ABAQUS and the dynamic response was obtained from the finite element model subjected to similar excitation as in the physical model. Numerical results were correlated against results from the physical model, and comparison was made between the different span/support configurations. A subsequent step would be to induce damage that simulates loss of stiffness or cracking condition of the beam cross section, and that would be reflected as a change in the frequency and other dynamic properties of the structure. The approach achieved good results for a structure with a limited number of degrees of freedom. Further research is needed for structures with a larger number of degrees of freedom and structures with damage in symmetrical locations relative to the accelerometer position.
Dixit, Akash. „Damage modeling and damage detection for structures using a perturbation method“. Diss., Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/43575.
Der volle Inhalt der QuelleBücher zum Thema "Damage and detection"
Didenko, Vladimir V., Hrsg. Fast Detection of DNA Damage. New York, NY: Springer New York, 2017. http://dx.doi.org/10.1007/978-1-4939-7187-9.
Der volle Inhalt der QuelleMasters, JE, Hrsg. Damage Detection in Composite Materials. 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959: ASTM International, 1992. http://dx.doi.org/10.1520/stp1128-eb.
Der volle Inhalt der QuelleBaruch, Menahem. Damage detection based on reduced measurements. [Haifa]: Technion-Israel Institute of Technology, Faculty of Aerospace Engineering, 1995.
Den vollen Inhalt der Quelle findenDecker, Arthur J. Damage detection using holography and interferometry. Cleveland, Ohio: National Aeronautics and Space Administration, Glenn Research Center, 2003.
Den vollen Inhalt der Quelle findenEftekhar Azam, Saeed. Online Damage Detection in Structural Systems. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-02559-9.
Der volle Inhalt der QuelleDidenko, Vladimir V. In Situ Detection of DNA Damage. New Jersey: Humana Press, 2002. http://dx.doi.org/10.1385/1592591795.
Der volle Inhalt der QuelleMahall, Karl. Quality assessment of textiles: Damage detection bymicroscopy. Berlin: Springer-Verlag, 1993.
Den vollen Inhalt der Quelle findenMorassi, Antonino, und Fabrizio Vestroni, Hrsg. Dynamic Methods for Damage Detection in Structures. Vienna: Springer Vienna, 2008. http://dx.doi.org/10.1007/978-3-211-78777-9.
Der volle Inhalt der QuelleMahall, Karl. Quality assessment of textiles: Damage detection by microscopy. Berlin: Springer-Verlag, 1993.
Den vollen Inhalt der Quelle findenMahall, Karl. Quality Assessment of Textiles: Damage Detection by Microscopy. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Damage and detection"
Frangopol, Dan M., und Sunyong Kim. „Probabilistic Damage Detection“. In Life-Cycle of Structures Under Uncertainty, 51–71. Boca Raton, FL : CRC Press, 2019. | “A science publishers book.”: CRC Press, 2019. http://dx.doi.org/10.1201/9780429053283-3.
Der volle Inhalt der QuelleXu, You-Lin, und Jia He. „Structural damage detection“. In Smart Civil Structures, 333–88. Boca Raton : Taylor & Francis, CRC Press, 2017.: CRC Press, 2017. http://dx.doi.org/10.1201/9781315368917-15.
Der volle Inhalt der QuelleGhosh, Bidisha, Michael O’Byrne, Franck Schoefs und Vikram Pakrashi. „Surface damage detection“. In Image-Based Damage Assessment for Underwater Inspections, 97–126. Boca Raton : Taylor & Francis, a CRC title, part of the Taylor & Francis imprint, a member of the Taylor & Francis Group, the academic division of T&F Informa, plc, [2018]: CRC Press, 2018. http://dx.doi.org/10.1201/9781351052580-6.
Der volle Inhalt der QuelleHirao, Masahiko, und Hirotsugu Ogi. „Creep Damage Detection“. In Electromagnetic Acoustic Transducers, 337–45. Tokyo: Springer Japan, 2016. http://dx.doi.org/10.1007/978-4-431-56036-4_17.
Der volle Inhalt der QuelleLimongelli, Maria Pina, Emil Manoach, Said Quqa, Pier Francesco Giordano, Basuraj Bhowmik, Vikram Pakrashi und Alfredo Cigada. „Vibration Response-Based Damage Detection“. In Structural Health Monitoring Damage Detection Systems for Aerospace, 133–73. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-72192-3_6.
Der volle Inhalt der QuelleUhl, Tadeusz, Tadeusz Stepinski und Wieslaw Staszewski. „Introduction“. In Advanced Structural Damage Detection, 1–15. Chichester, UK: John Wiley & Sons, Ltd, 2013. http://dx.doi.org/10.1002/9781118536148.ch1.
Der volle Inhalt der QuelleKohut, Piotr, und Krzysztof Holak. „Vision-Based Monitoring System“. In Advanced Structural Damage Detection, 279–320. Chichester, UK: John Wiley & Sons, Ltd, 2013. http://dx.doi.org/10.1002/9781118536148.ch10.
Der volle Inhalt der QuellePaćko, Paweł. „Numerical Simulation of Elastic Wave Propagation“. In Advanced Structural Damage Detection, 17–56. Chichester, UK: John Wiley & Sons, Ltd, 2013. http://dx.doi.org/10.1002/9781118536148.ch2.
Der volle Inhalt der QuelleGallina, Alberto, Paweł Paćko und Łukasz Ambroziński. „Model Assisted Probability of Detection in Structural Health Monitoring“. In Advanced Structural Damage Detection, 57–72. Chichester, UK: John Wiley & Sons, Ltd, 2013. http://dx.doi.org/10.1002/9781118536148.ch3.
Der volle Inhalt der QuelleKlepka, Andrzej. „Nonlinear Acoustics“. In Advanced Structural Damage Detection, 73–107. Chichester, UK: John Wiley & Sons, Ltd, 2013. http://dx.doi.org/10.1002/9781118536148.ch4.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Damage and detection"
Gawronski, Wodek, und Jerzy T. Sawicki. „Structural Damage Detection Using Modal Norms“. In ASME 1999 Design Engineering Technical Conferences. American Society of Mechanical Engineers, 1999. http://dx.doi.org/10.1115/detc99/vib-8374.
Der volle Inhalt der QuelleGhazi, Reza Mohammadi, James Long und Oral Buyukozturk. „Structural Damage Detection Based on Energy Transfer Between Intrinsic Modes“. In ASME 2013 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/smasis2013-3022.
Der volle Inhalt der QuelleMyers, Oliver J., und Sourav Banerjee. „Coupled Damage Precursor Detection“. In ASME 2015 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/smasis2015-8950.
Der volle Inhalt der QuelleWimmer, Stephanie A., und Virginia G. DeGiorgi. „Damage detection using wavelets“. In NDE for Health Monitoring and Diagnostics, herausgegeben von Tribikram Kundu. SPIE, 2003. http://dx.doi.org/10.1117/12.483820.
Der volle Inhalt der QuelleZhong, Shuncong, und S. Olutunde Oyadiji. „Wavelet-Based Structural Damage Detection“. In ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/detc2007-35632.
Der volle Inhalt der QuelleFeng, Wei, Qiaofeng Li und Qiuhai Lu. „A Hierarchical Bayesian Method for Time Domain Structure Damage Detection“. In ASME 2019 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/detc2019-97026.
Der volle Inhalt der QuelleDouti, Dam-Bé L., Sherazade Aknoun, Serge Monneret, Christophe Hecquet, Mireille Commandré und Laurent Gallais. „In-line quantitative phase imaging for damage detection and analysis“. In SPIE Laser Damage, herausgegeben von Gregory J. Exarhos, Vitaly E. Gruzdev, Joseph A. Menapace, Detlev Ristau und MJ Soileau. SPIE, 2014. http://dx.doi.org/10.1117/12.2068178.
Der volle Inhalt der QuelleMedici, Ezequiel, Andres Cecchini, David Serrano und Frederick Just. „Damage Detection in Composite Beam Using the Temperature Distribution“. In ASME 2006 International Mechanical Engineering Congress and Exposition. ASMEDC, 2006. http://dx.doi.org/10.1115/imece2006-16073.
Der volle Inhalt der QuelleSoni, Sunilkumar, Santanu Das und Aditi Chattopadhyay. „Optimal Sensor Placement for Damage Detection in Complex Structures“. In ASME 2009 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. ASMEDC, 2009. http://dx.doi.org/10.1115/smasis2009-1419.
Der volle Inhalt der QuelleAdachi, Yukio, Shigeki Unjoh, Masuo Kondoh und Michio Ohsumi. „Nondestructive damage detection and evaluation technique for seismically damaged structures“. In Nondestructive Evaluation Techniques for Aging Infrastructures & Manufacturing, herausgegeben von Steven B. Chase. SPIE, 1999. http://dx.doi.org/10.1117/12.339935.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Damage and detection"
Farrar, Charles R., Keith Worden, Michael D. Todd, Gyuhae Park, Jonathon Nichols, Douglas E. Adams, Matthew T. Bement und Kevin Farinholt. Nonlinear System Identification for Damage Detection. Office of Scientific and Technical Information (OSTI), November 2007. http://dx.doi.org/10.2172/922532.
Der volle Inhalt der QuelleMiller, Tim, und R. Lasser. Composite Damage Detection Using Novel Experimental Methods. Fort Belvoir, VA: Defense Technical Information Center, September 2002. http://dx.doi.org/10.21236/ada407271.
Der volle Inhalt der QuelleHartman, George A. Infrared Damage Detection System (IDDS) for Real-Time, Small-Scale Damage Monitoring. Fort Belvoir, VA: Defense Technical Information Center, Januar 2007. http://dx.doi.org/10.21236/ada467885.
Der volle Inhalt der QuelleMiller, T. C., Bob Lasser und Burt VanderHeiden. Composite Damage Detection Using a Novel Ultrasonic Method. Fort Belvoir, VA: Defense Technical Information Center, Januar 2003. http://dx.doi.org/10.21236/ada410224.
Der volle Inhalt der QuelleHaworth, W. L. Fatigue Damage Detection in Steels by Optical Correlation. Fort Belvoir, VA: Defense Technical Information Center, März 1985. http://dx.doi.org/10.21236/ada155830.
Der volle Inhalt der QuelleMishra, Pranay, Asha Hall und Michael Coatney. Embedded Carbon Nanotube Networks for Damage Precursor Detection. Fort Belvoir, VA: Defense Technical Information Center, Januar 2014. http://dx.doi.org/10.21236/ada599174.
Der volle Inhalt der QuelleBily, Mollie A., Young W. Kwon und Randall D. Pollak. Damage Detection in Composite Interfaces through Carbon Nanotube Reinforcement. Fort Belvoir, VA: Defense Technical Information Center, Februar 2010. http://dx.doi.org/10.21236/ada516359.
Der volle Inhalt der QuelleClark, G., C. Robbins, K. Wade und P. Souza. Cable Damage Detection System and Algorithms Using Time Domain Reflectometry. Office of Scientific and Technical Information (OSTI), März 2009. http://dx.doi.org/10.2172/971773.
Der volle Inhalt der QuelleAlfred E. Crouch, Alan Dean, Carl Torres und Jeff Aron. DEVELOPMENT OF NONLINEAR HARMONIC SENSORS FOR DETECTION OF MECHANICAL DAMAGE. Office of Scientific and Technical Information (OSTI), März 2004. http://dx.doi.org/10.2172/825669.
Der volle Inhalt der QuelleIslam, Abu S., und Kevin Craig. Damage Detection and Mitigation of Composite Structures using Smart Materials. Fort Belvoir, VA: Defense Technical Information Center, Januar 1993. http://dx.doi.org/10.21236/ada261121.
Der volle Inhalt der Quelle