Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Cyclodextrin Molecules“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Cyclodextrin Molecules" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Cyclodextrin Molecules"
Cardoso, T., C. I. C. Galhano, M. F. Ferreira Marques und A. Moreira da Silva. „Thymoquinoneβ-Cyclodextrin Nanoparticles System: A Preliminary Study“. Spectroscopy: An International Journal 27 (2012): 329–36. http://dx.doi.org/10.1155/2012/902486.
Der volle Inhalt der QuellePereva, Stiliyana, Valya Nikolova, Silvia Angelova, Tony Spassov und Todor Dudev. „Water inside β-cyclodextrin cavity: amount, stability and mechanism of binding“. Beilstein Journal of Organic Chemistry 15 (17.07.2019): 1592–600. http://dx.doi.org/10.3762/bjoc.15.163.
Der volle Inhalt der QuelleBrown, SE, JH Coates, CJ Easton, SF Lincoln, Y. Luo und AKW Stephens. „Cyclodextrin Inclusion Complexes of Two Non-Steroidal Antiinflammatory Drugs and of an Analgesic Drug“. Australian Journal of Chemistry 44, Nr. 6 (1991): 855. http://dx.doi.org/10.1071/ch9910855.
Der volle Inhalt der QuelleBelyakova, L. A., A. M. Varvarin, D. Yu Lyashenko und O. V. Khora. „Designing Adsorption Centres for Biological Active Molecules on a Silica Surface“. Adsorption Science & Technology 23, Nr. 9 (November 2005): 703–19. http://dx.doi.org/10.1260/026361705776316596.
Der volle Inhalt der QuelleWang, Runmiao, Hui Zhou, Shirley W. I. Siu, Yong Gan, Yitao Wang und Defang Ouyang. „Comparison of Three Molecular Simulation Approaches for Cyclodextrin-Ibuprofen Complexation“. Journal of Nanomaterials 2015 (2015): 1–8. http://dx.doi.org/10.1155/2015/193049.
Der volle Inhalt der QuelleSzékely-Szentmiklósi, Blanka, und B. Tőkés. „Study of Cyclodextrin/Fluoroquinolone Inclusion Complexes by Capillary Electrophoresis“. Acta Medica Marisiensis 59, Nr. 2 (01.04.2013): 107–10. http://dx.doi.org/10.2478/amma-2013-0026.
Der volle Inhalt der QuelleSivakumar, Ponnurengam M., Shohreh Peimanfard, Ali Zarrabi, Arezoo Khosravi und Matin Islami. „Cyclodextrin-Based Nanosystems as Drug Carriers for Cancer Therapy“. Anti-Cancer Agents in Medicinal Chemistry 20, Nr. 11 (08.07.2020): 1327–39. http://dx.doi.org/10.2174/1871520619666190906160359.
Der volle Inhalt der QuelleBelyakova, L. A. „Encapsulation of benzene carboxylic acids using cyclodextrins“. Himia, Fizika ta Tehnologia Poverhni 12, Nr. 1 (30.03.2021): 40–51. http://dx.doi.org/10.15407/hftp12.01.040.
Der volle Inhalt der QuelleWelliver, Mark, und John P. McDonough. „Anesthetic Related Advances with Cyclodextrins“. Scientific World JOURNAL 7 (2007): 364–71. http://dx.doi.org/10.1100/tsw.2007.83.
Der volle Inhalt der QuelleBraga, Susana Santos. „Cyclodextrins as Multi-Functional Ingredients in Dentistry“. Pharmaceutics 15, Nr. 9 (31.08.2023): 2251. http://dx.doi.org/10.3390/pharmaceutics15092251.
Der volle Inhalt der QuelleDissertationen zum Thema "Cyclodextrin Molecules"
Huang, Tian He. „Investigation of cyclodextrin formulations by combined experimental and molecular modeling techniques“. Thesis, University of Macau, 2018. http://umaclib3.umac.mo/record=b3952153.
Der volle Inhalt der QuelleBinti, Mohtar Noratiqah. „Cyclodextrin-based formulations for pulmonary delivery of chemotherapeutic molecules“. Thesis, University College London (University of London), 2018. http://discovery.ucl.ac.uk/10054726/.
Der volle Inhalt der QuelleSala, Andrea. „Supramolecular derivatisation of bioactive molecules via co-crystallization and cyclodextrin inclusion complexation“. Master's thesis, University of Cape Town, 2018. http://hdl.handle.net/11427/29711.
Der volle Inhalt der QuelleMvula, Eino Natangwe. „Preparation and solid state properties of cyclodextrin complexes of selected drug molecules“. Master's thesis, University of Cape Town, 1999. http://hdl.handle.net/11427/17902.
Der volle Inhalt der QuelleA large number of pharmaceutically important drugs are poorly soluble in water. This study focuses on the 'smart' molecule that can enhance the solubility and hence increase the bioavailability of these drugs. This molecule is a cyclodextrin and is known to form inclusion compounds with various drug molecules. The preparation of β-cyclodextrin CP-CD), y-cyclodextrin (y-CD), heptakis(2,6-di-OJ, methyl)-β-cyclodextrin (Dimeb) and heptakis(2,3,6·tri-0-methyl)- β-cyclodextrin (Trimeb) 3, complexes with clofibric acid as well as the heptakis(2,3,6j·tri-O-methyl)- β-cyclodextrin (Trimeb) complex with clofibrate is reported. The complexes were characterised by thermogravimetric analysis (TG), differential scanning calorimetry (DSC), ultraviolet spectrophotometry (UV), infrared spectroscopy (IR), X-ray powder diffraction (XRD) and single crystal X-ray analysis.
Wandstrat, Michelle Marie. „MATERIALS AND MODIFICATION OF ELECTRODES FOR THE DETECTION OF BIOLOGICAL MOLECULES“. Miami University / OhioLINK, 2006. http://rave.ohiolink.edu/etdc/view?acc_num=miami1164817458.
Der volle Inhalt der QuelleDutta, Ashutosh. „Exploration of diversified interactions of some significant compounds prevalent in several environments by physicochemical contrivance“. Thesis, University of North Bengal, 2018. http://ir.nbu.ac.in/handle/123456789/2787.
Der volle Inhalt der QuelleWahlström, Anna. „NMR studies on interactions between the amyloid β peptide and selected molecules“. Doctoral thesis, Stockholms universitet, Institutionen för biokemi och biofysik, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-60346.
Der volle Inhalt der QuelleAt the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 4: Manuscript. Paper 5: Manuscript.
Brown, Susan Elizabeth. „Molecular recognition by cyclodextrins /“. Title page, contents and abstract only, 1994. http://web4.library.adelaide.edu.au/theses/09PH/09phb8798.pdf.
Der volle Inhalt der QuelleCherraben, Sawsen. „Machines moléculaires à base de cyclodextrines fonctionnalisées“. Thesis, Sorbonne université, 2019. https://accesdistant.sorbonne-universite.fr/login?url=http://theses-intra.upmc.fr/modules/resources/download/theses/2019SORUS633.pdf.
Der volle Inhalt der QuelleControlling motion and directionality at the molecular level is a major challenge. This thesis project focused on the development of a family of cyclodextrin (CDs) based molecular machines. The objective was to exploit the inherent asymmetry of CDs and to functionalize them selectively in order to be able to apply a stimulus directly to them. Hence, controlling their movements in supramolecular architectures becomes possible. In the first approach, we developed a pH-sensitive switch of the pseudo-rotaxane type based on CDs selectively functionalized by amines on the primary rim. A remarkable control of threading and dethreading by a pH stimulus were obtained, along with a modulation of the dethreading kinetics by variation in the number of amines. In a second approach, we designed a system using a chemical fuel to obtain unidirectional motion of a functionalized CD through its active transport. The key step is the cleavage of protective groups located on the axis by the catalytic function carried by the CD, which should preferably take place through the primary rim, ensuring its directed transport. For this purpose, a first three-station [2]rotaxane CDMe model was synthesized by a post-functionalization approach of a one-station [2]rotaxane with amide stoppers. Its study showed the formation of 3 mechano-isomers during the protective reaction with a non-statistical distribution indicating a probable kinetic bias. This promising work opens up longer-term perspectives on the development of chemically fueled molecular motors with active CD transport
Mansour, Ali Taher. „New enantioselective transformations induced by cyclodextrins : applications in the preparation of molecular building blocks of biological interest“. Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLS186/document.
Der volle Inhalt der QuelleThis work revolves around the synthesis of ennatiomerically pure cyclobutane derivatives of GABA, and their use in the preparation of hybrid γ/α-peptides that could adopt a well-defined three dimensional secondary structure. In this aim we developed two strategies. The first one employed native β-Cyclodextrin as a supramolecular chiral host to achieve enantiodifferentiating photochemical cyclizations. Attempting to perform an intramolecular [2+2] cyclization of N-allyl-N-(4-methoxyphenyl)acrylamide, we only obtained a δ-lactam resulting from a 6π electrocyclization, whereas the electrocyclization of 1,3-Dihydro‑2H‑azepin-2-one allowed access to a 45% enantiomerically enriched bicyclic γ-lactam precursor of (+)-cis-3,4CB-GABA. The second strategy was based on a racemic synthesis of N-Boc-cis-3,4CB-GABA followed by a separation of the two enantiomers using a semi-preparative HPLC fitted with a chiral column. This allowed access to optically pure (-) and (+)-cis-3,4CB-GABA, on a gram scale. Furthermore, the enantiomerically pure (-) and (+)-cis-3,4CB-GABA, were used to synthesize, and fully characterize two series [the (S,S/R) and the (R,R/R)] of short diasteriomeric hybrid γ/α-peptides composed of alternating cis-3,4CB-GABA and D-Alanine. Analysis of the conformational behavior of the dipeptides from both series by X-Ray diffraction on a single crystal, showed no intramolecular interactions but rather an array of intermolecular hydrogen bonding between the dipeptide molecules. On the other hand, a series of 1D and 2D NMR experiments showed that the tetrapeptide of the (S,S/R)-series could attain a 12/10 helical structuration, whereas its diasteriomeric analog of the (R,R/R)-series, displayed evidence of an unprecedented 7/9 folding pattern in solution
Bücher zum Thema "Cyclodextrin Molecules"
Ahern, Cormac. Dendrimeric cyclodextrins for molecular inclusion. Dublin: University College Dublin, 1997.
Den vollen Inhalt der Quelle findenHartwell, Edward Y. Chemically-modified and immobilised cyclodextrins as molecular reaction vessels. Birmingham: University of Birmingham, 1994.
Den vollen Inhalt der Quelle findenMareeswaran, Paulpandian Muthu, Palaniswamy Suresh und Seenivasan Rajagopal, Hrsg. Photophysics of Supramolecular Architectures. BENTHAM SCIENCE PUBLISHERS, 2022. http://dx.doi.org/10.2174/97898150491901220101.
Der volle Inhalt der Quelle(Editor), J. L. Atwood, J. E. Davies (Editor) und T. Osa (Editor), Hrsg. Clathrate Compounds, Molecular Inclusion Phenomena and Cyclodextrins (Advances in Inclusion Science). Springer, 1985.
Den vollen Inhalt der Quelle findenDavies, J. E., T. Osa und J. L. Atwood. Clathrate Compounds, Molecular Inclusion Phenomena, and Cyclodextrins: Proceedings of the Third International Symposium on Clathrate Compounds and Molecular Inclusion Phenomena and the Second International Symposium on Cyclodextrins, Tokyo, Japan, July 23-27 1984. Springer, 2012.
Den vollen Inhalt der Quelle findenDavies, J. E., T. Osa und J. L. Atwood. Clathrate Compounds, Molecular Inclusion Phenomena, and Cyclodextrins: Proceedings of the Third International Symposium on Clathrate Compounds and ... 23–27, 1984. Springer, 2011.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Cyclodextrin Molecules"
Harata, K., K. Uekama, M. Otagiri und F. Hirayama. „Crystal Structures of Cyclodextrin Complexes with Chiral Molecules“. In Clathrate Compounds, Molecular Inclusion Phenomena, and Cyclodextrins, 583–94. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-009-5376-5_62.
Der volle Inhalt der QuelleRibeiro-Claro, Paulo J. A., und Ana M. Amado. „Structural Rigidity Vs. Structural Disorder in α-Cyclodextrin Inclusion Compounds“. In Spectroscopy of Biological Molecules: Modern Trends, 269–70. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-011-5622-6_120.
Der volle Inhalt der QuelleSanz-Garcia, T., G. Gonzalez-Gaitano, N. Iza, A. Galvez-Garcia und G. Tardajos. „NMR Study of the Inclusion Complex Between β-Cyclodextrin and Propafenone“. In Spectroscopy of Biological Molecules: New Directions, 333–34. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-011-4479-7_149.
Der volle Inhalt der QuelleKonsta, A. A., und L. Apekis. „Investigation of β-Cyclodextrin Inclusion Complexes by Broad Band Dielectric Spectroscopy“. In Spectroscopy of Biological Molecules: Modern Trends, 273–74. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-011-5622-6_122.
Der volle Inhalt der QuelleBügler, Jürgen H., Menno de Jong, Johan F. J. Engbersen und David N. Reinhoudt. „Functionalized Cyclodextrin-Calix[4]Arene Host Molecules for Detection of Organic Analytes“. In Sensor Technology in the Netherlands: State of the Art, 305–9. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-011-5010-1_49.
Der volle Inhalt der QuelleJunquera, Elena, Oscar Pastor und Emilio Aicart. „Encapsulation of the Salicylic Acid/Salicylate System by Hydroxypropyl-β-Cyclodextrin at 25 °C. A Fluorescence Enhancement Study in Aqueous Solutions“. In Spectroscopy of Biological Molecules: Modern Trends, 397–98. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-011-5622-6_178.
Der volle Inhalt der QuelleBreslow, Ronald. „Cyclodextrins“. In Molecular Encapsulation, 43–69. Chichester, UK: John Wiley & Sons, Ltd, 2010. http://dx.doi.org/10.1002/9780470664872.ch2.
Der volle Inhalt der QuellePopova, E. I., I. N. Karpov, I. N. Topchieva und O. I. Mikhalev. „Molecular Necklaces Containing Reporter Molecules“. In Proceedings of the Ninth International Symposium on Cyclodextrins, 563–66. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-011-4681-4_134.
Der volle Inhalt der QuelleJicsinszky, L., H. Hashimoto, K. Mikuni, I. Bakó und L. Szente. „Molecular Mechanics Studies on Cyclodextrin Complexes: Interaction of Crocetin with Cyclodextrins“. In Proceedings of the Eighth International Symposium on Cyclodextrins, 263–66. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-011-5448-2_57.
Der volle Inhalt der QuelleTian, He, und Qiao-Chun Wang. „Cyclodextrin-Based Switches“. In Molecular Switches, 301–19. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2011. http://dx.doi.org/10.1002/9783527634408.ch9.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Cyclodextrin Molecules"
Nozawa, Ryo, Mohammad Ferdows, Kazuhiko Murakami und Masahiro Ota. „Effects of Cyclodextrin Solutions on Methane Hydrate Formation“. In ASME/JSME 2007 Thermal Engineering Heat Transfer Summer Conference collocated with the ASME 2007 InterPACK Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/ht2007-32987.
Der volle Inhalt der QuelleMic, Mihaela, Adrian Pı̂rnău, Mircea Bogdan und Ioan Turcu. „Inclusion complex of benzocaine and β-cyclodextrin: [sup 1]H NMR and isothermal titration calorimetry studies“. In PROCESSES IN ISOTOPES AND MOLECULES (PIM 2013). AIP, 2013. http://dx.doi.org/10.1063/1.4833697.
Der volle Inhalt der QuelleZavodnik, I. B., E. A. Lapshina, T. V. Ilyich, A. G. Veiko, T. A. Kovalenia und V. U. Buko. „REGULATORY, ANTIOXIDATIVE AND HEPATOPROTECTIVE EFFECTS OF PLANT POLYPHENOLS AND THEIR NANOSTRUCTURED COMPLEXES“. In SAKHAROV READINGS 2021: ENVIRONMENTAL PROBLEMS OF THE XXI CENTURY. International Sakharov Environmental Institute, 2021. http://dx.doi.org/10.46646/sakh-2021-1-255-258.
Der volle Inhalt der QuelleKim, Jin-Baek, Young-Gil Kwon, Hyo-Jin Yun und Jae-Hak Choi. „Novel molecular resists based on inclusion complex of cyclodextrin“. In SPIE's 27th Annual International Symposium on Microlithography, herausgegeben von Theodore H. Fedynyshyn. SPIE, 2002. http://dx.doi.org/10.1117/12.474286.
Der volle Inhalt der QuelleKoudoumas, E., S. Couris, P. Seta, A. Rassat und S. Leach. „Optical Limiting Action of Methano Fullerenes and Fullerenes Incorporated in Cyclodextrins“. In The European Conference on Lasers and Electro-Optics. Washington, D.C.: Optica Publishing Group, 1998. http://dx.doi.org/10.1364/cleo_europe.1998.cthh45.
Der volle Inhalt der QuelleWANG, YING, und DAVID F. EATON. „Control of molecular nonlinear optical properties by inclusion complexation with cyclodextrin“. In Conference on Lasers and Electro-Optics. Washington, D.C.: OSA, 1985. http://dx.doi.org/10.1364/cleo.1985.thm44.
Der volle Inhalt der QuelleSuharyani, Ine, Cecep Suhandi, Yayan Rizkiyan, Didi Rohadi, Muchtaridi Muchtaridi, Nasrul Wathoni und Marline Abdassah. „Molecular docking in prediction of α-mangostin/cyclodextrin inclusion complex formation“. In 3RD INTERNATIONAL CONFERENCE OF BIO-BASED ECONOMY FOR APPLICATION AND UTILITY. AIP Publishing, 2023. http://dx.doi.org/10.1063/5.0120782.
Der volle Inhalt der QuelleTreetharnmathurot, Benjaporn, Chitchamai Ovatlarnporn, Juraithip Wungsinthaweekul und Ruedeekorn Wiwattanapatapee. „Chemical modification and thermal stability study of β-cyclodextrin- and PAMAM-trypsin conjugates“. In 2009 4th IEEE International Conference on Nano/Micro Engineered and Molecular Systems. IEEE, 2009. http://dx.doi.org/10.1109/nems.2009.5068732.
Der volle Inhalt der QuelleSrihakulung, Ornin, Luckhana Lawtrakul, Pisanu Toochinda, Waree Kongprawechnon, Apichart Intarapanich und Ryo Maezono. „Theoretical investigation of molecular calculations on inclusion complexes of plumbagin with β-cyclodextrins“. In 2017 Fourth Asian Conference on Defence Technology - Japan (ACDT). IEEE, 2017. http://dx.doi.org/10.1109/acdtj.2017.8259589.
Der volle Inhalt der QuelleBelosludov, Rodion V., Hiroshi Mizuseki, Kyoko Ichinoseki und Yoshiyuki Kawazoe. „Theoretical Study on Inclusion Complex of Polyaniline Covered by Cyclodextrins for Molecular Device“. In 2001 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 2001. http://dx.doi.org/10.7567/ssdm.2001.f-7-2.
Der volle Inhalt der Quelle