Auswahl der wissenschaftlichen Literatur zum Thema „Cyclin-dependent kinases“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Cyclin-dependent kinases" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Cyclin-dependent kinases":

1

Sclafani, Robert A. „Cyclin dependent kinase activating kinases“. Current Opinion in Cell Biology 8, Nr. 6 (Dezember 1996): 788–94. http://dx.doi.org/10.1016/s0955-0674(96)80079-2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Malumbres, Marcos. „Cyclin-dependent kinases“. Genome Biology 15, Nr. 6 (2014): 122. http://dx.doi.org/10.1186/gb4184.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Harper, J. W., und P. D. Adams. „Cyclin-Dependent Kinases“. Chemical Reviews 101, Nr. 8 (August 2001): 2511–26. http://dx.doi.org/10.1021/cr0001030.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Gitig, Diana M., und Andrew Koff. „Cdk Pathway: Cyclin-Dependent Kinases and Cyclin-Dependent Kinase Inhibitors“. Molecular Biotechnology 19, Nr. 2 (2001): 179–88. http://dx.doi.org/10.1385/mb:19:2:179.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Dynlacht, B. D., K. Moberg, J. A. Lees, E. Harlow und L. Zhu. „Specific regulation of E2F family members by cyclin-dependent kinases.“ Molecular and Cellular Biology 17, Nr. 7 (Juli 1997): 3867–75. http://dx.doi.org/10.1128/mcb.17.7.3867.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
The transcription factor E2F-1 interacts stably with cyclin A via a small domain near its amino terminus and is negatively regulated by the cyclin A-dependent kinases. Thus, the activities of E2F, a family of transcription factors involved in cell proliferation, are regulated by at least two types of cell growth regulators: the retinoblastoma protein family and the cyclin-dependent kinase family. To investigate further the regulation of E2F by cyclin-dependent kinases, we have extended our studies to include additional cyclins and E2F family members. Using purified components in an in vitro system, we show that the E2F-1-DP-1 heterodimer, the functionally active form of the E2F activity, is not a substrate for the active cyclin D-dependent kinases but is efficiently phosphorylated by the cyclin B-dependent kinases, which do not form stable complexes with the E2F-1-DP-1 heterodimer. Phosphorylation of the E2F-1-DP-1 heterodimer by cyclin B-dependent kinases, however, did not result in down-regulation of its DNA-binding activity, as is readily seen after phosphorylation by cyclin A-dependent kinases, suggesting that phosphorylation per se is not sufficient to regulate E2F DNA-binding activity. Furthermore, heterodimers containing E2F-4, a family member lacking the cyclin A binding domain found in E2F-1, are not efficiently phosphorylated or functionally down-regulated by cyclin A-dependent kinases. However, addition of the E2F-1 cyclin A binding domain to E2F-4 conferred cyclin A-dependent kinase-mediated down-regulation of the E2F-4-DP-1 heterodimer. Thus, both enzymatic phosphorylation and stable physical interaction are necessary for the specific regulation of E2F family members by cyclin-dependent kinases.
6

Malumbres, Marcos, und Mariano Barbacid. „Mammalian cyclin-dependent kinases“. Trends in Biochemical Sciences 30, Nr. 11 (November 2005): 630–41. http://dx.doi.org/10.1016/j.tibs.2005.09.005.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Clarke, Paul R. „Cyclin-Dependent Kinases: CAK-handed kinase activation“. Current Biology 5, Nr. 1 (Januar 1995): 40–42. http://dx.doi.org/10.1016/s0960-9822(95)00013-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Canavese, Miriam, Loredana Santo und Noopur Raje. „Cyclin dependent kinases in cancer“. Cancer Biology & Therapy 13, Nr. 7 (Mai 2012): 451–57. http://dx.doi.org/10.4161/cbt.19589.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Park, David S., Fuhu Wang und Michael J. O’Hare. „Cyclin-dependent kinases and stroke“. Expert Opinion on Therapeutic Targets 5, Nr. 5 (Oktober 2001): 557–67. http://dx.doi.org/10.1517/14728222.5.5.557.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Harper, J. W., und P. D. Adams. „ChemInform Abstract: Cyclin-Dependent Kinases“. ChemInform 32, Nr. 41 (24.05.2010): no. http://dx.doi.org/10.1002/chin.200141284.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Dissertationen zum Thema "Cyclin-dependent kinases":

1

Kitsios, Georgios. „Characterization of Arabidopsis cyclin dependent kinases“. Thesis, University of East Anglia, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.426634.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Miller, Matthew P. Ph D. (Matthew Paul) Massachusetts Institute of Technology. „Meiotic regulation of cyclin-dependent kinases“. Thesis, Massachusetts Institute of Technology, 2013. http://hdl.handle.net/1721.1/79185.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Biology, 2013.
Cataloged from PDF version of thesis.
Includes bibliographical references.
During meiosis, a single round of DNA replication is followed by two consecutive rounds of nuclear divisions called meiosis I and meiosis II. In meiosis I, homologous chromosomes segregate, while sister chromatids remain together. Determining how this unusual chromosome segregation behavior is established is central to understanding germ cell development. Here we show that preventing microtubule-kinetochore interactions during premeiotic S phase and prophase I is essential for establishing the meiosis I chromosome segregation pattern. Premature interactions of kinetochores with microtubules transform meiosis I into a mitosis-like division by disrupting two key meiosis I events: coorientation of sister kinetochores and protection of centromeric cohesin removal from chromosomes. Furthermore we find that restricting outer kinetochore assembly contributes to preventing premature engagement of microtubules with kinetochores. We propose that inhibition of microtubule-kinetochore interactions during premeiotic S phase and prophase I is central to establishing the unique meiosis I chromosome segregation pattern.
by Matthew P. Miller.
Ph.D.
3

Gomes, Felipe Campelo. „Analysis of cyclin dependent kinases in Leishmania“. Thesis, University of Glasgow, 2007. http://theses.gla.ac.uk/32/.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
The results obtained from the experiments presented in this study aimed to further explore the role of cyclin dependent kinases and cyclins in the protozoan parasite Leishmania major. Cdks in kinetoplastids, CRKs, are the key regulators that allow cells to progress through different cell cycle phases and promote parasite proliferation during infection. In chapter 3 of this study, the results presented showed that L. major CYCA is capable of activating CRK3 in an in vitro kinase assay using histone H1 as substrate. The CRK3/CYCA active complex was then used to analyse the effect of the phosphorylation at the CRK3 activation threonine using a kinase activating kinase (yeast CAK or Civ-1). Phosphorylated CRK3 activity was compared to non-phosphorylated CRK3 and it was found that the phosphorylation promotes a 5-fold increase in kinase activity of the complex. The accessory protein Cks1 was assayed in vitro with the active CRK3/CYCA complex and it was shown that Cks1 might have an inhibitory effect when histone H1 substrate is used. The IC50 for two different kinase inhibitors (Flavopiridol and Indirubin) was determined for the in vitro CRK3/CYCA complex and compared with the values found for the in vivo purified CRK3. Similar values were obtained suggesting that the in vivo complex is indeed represented by the recombinant complex. In the following chapter 4, yeast Civ-1 purified from E. coli, was used to try to phosphorylate, in a similar manner, the activation of threonine/serine residues from other L. major CRKs. The kinases assessed were CRK1, CRK2, CRK4, CRK6 and CRK7. None of these were phosphorylated by Civ-1 suggesting that the only CRK under this type of regulation is CRK3. L. major CRK1-4 and CRK6-8 were tested in kinase assays by mixing under described conditions with L. major CYC9 and kinase activities towards three different substrates were assessed. L. major CYC9 was not able to activate the above kinases and the kinase subunit that interacts with this cyclin could not be identified. In chapter 5, the L. major CYCA was used to elucidate the characteristics of this cyclin in vivo. A gene disruption strategy aimed to replace the two genomic alleles of this protein gene by homologous recombination. Plasmids were developed with flanking regions of this gene placed in association with two different drug resistance genes, one for each of the allele’s disruption. These constructs were not able to produce the first allele knock out suggesting that not only this gene might be essential but the levels of expression may also be important. Tagging L. major CYCA was also attempted in vivo using two different strategies (i.e. two different tagging systems). The first tag employed was the TAP tag syste. Although drug resistant transfected cell lines were obtained, no tag detection could be observed by western blot using different tag-specific antibodies (α-protein-A and α-calmodulin antibodies). The second tag employed was HA, the 9-amino acid sequence YPYDVPDYA, derived from the human influenza hemagglutinin (HA) protein. Plasmids that contained C and N-terminal HA tagged L. major CYCA were used to transfect WT cells and cells extracts of resistant cell lines analysed by western blot. Both C and N-terminal HA tagged CYCA were detected by the α-HA antibody. Following the confirmation of the presence of the tagged CYCA in the cell extracts an affinity purification using an HA affinity matrix was attempted and the matrix binding material was used in in vitro kinase assays. The presence of kinase activity towards Histone H1 confirmed that CYCA was being succesfully immunoprecipitated in complex with a kinase partner. The identity of the co-eluted CRK could be confirmed using specific α-CRK3 antibody that detected CRK3 in the eluted material.
4

Secombe, Julie. „Identification of novel G1 to S phase regulators in Drosophila /“. Title page, contents and abstract only, 1999. http://web4.library.adelaide.edu.au/theses/09PH/09phs4448.pdf.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Crack, Donna. „Analysis of the function of Drosophila cyclin E isoforms and identification of interactors“. Title page, table of contents and abstract only, 2002. http://web4.library.adelaide.edu.au/theses/09PH/09phc8837.pdf.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
"August 2002." Bibliography: p. 157-169. Analysis of the expression of Drosophilia cyclin EII through development show that it was present during larval development and oogenesis, implying a role for DmcycEII outside of early embyogenesis. Ectopic expression analyses using full-length DmcycE proteins as well as N- and C-terminal deletions of DmcycEI, revealed that DmcycEII and N-terminal deletions were able to drive all G1 cells within the morphogenetic furrow of the eye imaginal disc into S phase, while a C-terminal deletion of DmcycEI could not. These results show the DmcycEII is more potent than DmcycEI in driving cells into S phase and that the N-terminal region of DmcycEI contains a negative regulatory domean., suggesting that an inhibitor is present in the posterior morphogenetic furrow that binds to DmcycEI N-terminus and inhibits DmcycEI function. To identify the DmcycEI specific inhibitor, genetic interaction and yeast-2 hybrid screens were undertaken, and an enhancer CG7394, encoding a MAGUK homologue was identified for further study.
6

Dixon-Clarke, Sarah. „Structure and inhibition of novel cyclin-dependent kinases“. Thesis, University of Oxford, 2015. https://ora.ox.ac.uk/objects/uuid:3c6955c9-469a-4f4b-9577-309ccb57b742.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Protein phosphorylation by members of the cyclin-dependent kinase (CDK) family determines the cell cycle and regulates gene transcription. CDK12 and CDK16 are relatively poorly characterised family members containing atypical domain extensions and represent novel targets for structural studies, as well as cancer drug discovery. In this thesis, I developed protocols to express and purify the human CDK12 kinase domain in complex with its obligate partner, CycK. I solved three distinct crystal structures of the complex providing insights into the structural mechanisms determining CycK assembly and kinase activation. These structures revealed a C-terminal kinase extension that folded flexibly across the active site of CDK12 to potentially gate the binding of the substrate ATP. My structures also identified Cys1039 in the C-terminal extension as the binding site for the first selective covalent inhibitor of CDK12, which has enormous potential as a pharmacological probe to investigate the functions of CDK12 in the DNA damage response and cancer. I also identified rebastinib and dabrafenib as potent, clinically-relevant inhibitors of CDK16 and solved a co-crystal structure that defined the extended type II binding mode of rebastinib. Preliminary trials using these relatively non-selective compounds to inhibit CDK16 in melanoma and medulloblastoma cancer cell lines revealed rebastinib as the more efficacious drug causing loss of cell proliferation in the 1-2 micromolar range. Use of the co-crystal structure to design more selective derivatives would be advantageous to further explore the specific role of CDK16. Finally, I identified a D-type viral cyclin from Kaposi's sarcoma-associated herpesvirus that could bind to the CDK16 kinase domain and interfere with its functional complex with human CycY causing loss of CDK16 activity. These studies provide novel insights into the structural and regulatory mechanisms of two underexplored CDK family subgroups and establish new opportunities for cancer drug development.
7

Sallam, Hatem. „Pharmacological and analytical studies of the cyclin dependent kinase inhibitors“. Stockholm, 2009. http://diss.kib.ki.se/2009/978-91-7409-706-1/.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Alexiou, Konstantinos G. „Cyclin-dependent kinases and nuclear functions in Arabidopsis thaliana“. Thesis, University of East Anglia, 2011. https://ueaeprints.uea.ac.uk/34236/.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Henderson, Andrew. „Isosteres of sulfonamide inhibitors of cyclin-dependent kinases (CDKs)“. Thesis, University of Newcastle Upon Tyne, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.512187.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Cheng, Kai. „Identification of Pctaire1 as a p35-interacting protein and a novel substrate for Cdk5 /“. View Abstract or Full-Text, 2003. http://library.ust.hk/cgi/db/thesis.pl?BICH%202003%20CHENG.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Thesis (Ph. D.)--Hong Kong University of Science and Technology, 2003.
Includes bibliographical references (leaves 153-177). Also available in electronic version. Access restricted to campus users.

Bücher zum Thema "Cyclin-dependent kinases":

1

Dyson, Nicholas, Johannes Walter und Orna Cohen-Fix. Abstracts of papers presented at the 2008 meeting on the cell cycle: May 14-May 18, 2008. Cold Spring Harbor, N.Y: Cold Spring Harbor Laboratory, 2008.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Musunuru, Kiran. Cell cycle regulators in cancer. Basel: Karger Landes Systems, 1997.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

D, Inzé, Hrsg. The cell cycle control and plant development. Oxford, UK: Blackwell Pub., 2007.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

B, Kastan M., und Imperial Cancer Research Fund (Great Britain), Hrsg. Checkpoint controls and cancer. Plainview, NY: Cold Spring Harbor Laboratory Press, 1997.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Vogt, Peter K., und Steven I. Reed, Hrsg. Cyclin Dependent Kinase (CDK) Inhibitors. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-642-71941-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Orzáez, Mar, Mónica Sancho Medina und Enrique Pérez-Payá, Hrsg. Cyclin-Dependent Kinase (CDK) Inhibitors. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4939-2926-9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Ip, Nancy Y., und Li-Huei Tsai, Hrsg. Cyclin Dependent Kinase 5 (Cdk5). Boston, MA: Springer US, 2008. http://dx.doi.org/10.1007/978-0-387-78887-6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Chen, Ginny. Analysis of Saccharomyces cerevisiae cyclin dependent kinase inhibitor Far1. Ottawa: National Library of Canada, 2003.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Su, Yi. Phosphorylation and Regulation of the Wnt co-Receptor LRP6 by Cyclin Dependent Kinase 14/Cyclin Y and Tyrosine Kinase Fer. [S.l: s.n.], 2014.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Logan, Angela Berti. Characterization of new alleles of PHO85, a cyclin-dependent kinase of Saccharomyces cerevisiae. Ottawa: National Library of Canada = Bibliothèque nationale du Canada, 1999.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Buchteile zum Thema "Cyclin-dependent kinases":

1

Golsteyn, Roy M. „Cyclin-Dependent Kinases“. In Encyclopedia of Cancer, 1–4. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-642-27841-9_1429-2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Golsteyn, Roy M. „Cyclin-Dependent Kinases“. In Encyclopedia of Cancer, 1269–73. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-46875-3_1429.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Malumbres, Marcos. „Cyclins and Cyclin-dependent Kinases“. In Encyclopedia of Systems Biology, 509–12. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4419-9863-7_10.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Meijer, Laurent. „Chemical inhibitors of cyclin-dependent kinases“. In Progress in Cell Cycle Research, 351–63. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4615-1809-9_29.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Law, Mary E., und Brian K. Law. „Cyclin-Dependent Kinases as Therapeutic Targets“. In Encyclopedia of Molecular Pharmacology, 505–7. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-57401-7_10043.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Law, Mary E., und Brian K. Law. „Cyclin-dependent kinases as therapeutic targets“. In Encyclopedia of Molecular Pharmacology, 1–3. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-21573-6_10043-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Koff, Andrew, und Kornelia Polyak. „p27KIP1, an inhibitor of cyclin-dependent kinases“. In Progress in Cell Cycle Research, 141–47. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4615-1809-9_11.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Li, Yan, Christopher W. Jenkins, Michael A. Nichols, Xiaoyu Wu, Kun-Liang Guan und Yue Xiong. „p16 Family Inhibitors of Cyclin-Dependent Kinases“. In Cancer Genes, 57–82. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4615-5895-8_4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Johnson, Neil, und Geoffrey I. Shapiro. „Targeting Cyclin-Dependent Kinases for Cancer Therapy“. In Cell Cycle Deregulation in Cancer, 167–85. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-1-4419-1770-6_11.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Boutros, Rose. „Regulation of Centrosomes by Cyclin-Dependent Kinases“. In The Centrosome, 187–97. Totowa, NJ: Humana Press, 2012. http://dx.doi.org/10.1007/978-1-62703-035-9_11.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "Cyclin-dependent kinases":

1

Surin, Svyatoslav Sergeevich, und G. L. Snigur. „Expression of cyclin-dependent kinases in pancreatic islets during experimental hyperglycemia“. In International Research Conference on Technology, Science, Engineering & Management. Seattle: Профессиональная наука, 2021. http://dx.doi.org/10.54092/9781365973192_35.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Surin, Svyatoslav Sergeevich, und G. L. Snigur. „Expression of cyclin-dependent kinases in pancreatic islets during experimental hyperglycemia“. In International Research Conference on Technology, Science, Engineering & Management. Seattle: Профессиональная наука, 2021. http://dx.doi.org/10.54092/9781365973192_35.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Денисова, Дарья Андреевна. „CYCLIN-DEPENDENT KINASES CDK8 / 19 AND THEIR INFLUENCE ON THE ORIGIN AND DEVELOPMENT OF TUMOR PROCESSES“. In Наука. Исследования. Практика: сборник избранных статей по материалам Международной научной конференции (Санкт-Петербург, Апрель 2020). Crossref, 2020. http://dx.doi.org/10.37539/srp290.2020.80.21.015.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Циклин-зависимая киназа CDK8 и её паралог, CDK19, являются ферментами, задействованными в развитии таких онкологических заболеваний, как рак молочной железы, колоректальный рак, рак простаты, острый миелоидный лейкоз и другие. The cyclin-dependent kinase CDK8 and its paralogue, CDK19, are enzymes involved in the development of oncological diseases such as breast cancer, colorectal cancer, prostate cancer, acute myeloid leukemia and others.
4

Kholmurodov, Kholmirzo T., Yu E. Penionzhkevich und E. A. Cherepanov. „Computer Molecular Dynamics Studies on Protein Structures (Visual Pigment Rhodopsin and Cyclin-Dependent Kinases)“. In INTERNATIONAL SYMPOSIUM ON EXOTIC NUCLEI. AIP, 2007. http://dx.doi.org/10.1063/1.2746628.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Kunadharaju, R., A. Saradna, M. Ahmad und G. Fuhrer. „Palbociclib (Cyclin-Dependent Kinases CDK4 and CDK6 Selective Inhibitor) Induced Grade 3 Interstitial Pneumonitis“. In American Thoracic Society 2021 International Conference, May 14-19, 2021 - San Diego, CA. American Thoracic Society, 2021. http://dx.doi.org/10.1164/ajrccm-conference.2021.203.1_meetingabstracts.a2118.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Sankaranarayanan, Ranjini, Rakesh Dachineni, Siddharth Kesharwani, Ramesh Kumar Dhandapani, Hemachand Tummala und Jayarama B. Gunaje. „Abstract 4411: Identification of novel natural compounds as potential inhibitors of cyclin dependent kinases“. In Proceedings: AACR Annual Meeting 2019; March 29-April 3, 2019; Atlanta, GA. American Association for Cancer Research, 2019. http://dx.doi.org/10.1158/1538-7445.sabcs18-4411.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Sankaranarayanan, Ranjini, Rakesh Dachineni, Siddharth Kesharwani, Ramesh Kumar Dhandapani, Hemachand Tummala und Jayarama B. Gunaje. „Abstract 4411: Identification of novel natural compounds as potential inhibitors of cyclin dependent kinases“. In Proceedings: AACR Annual Meeting 2019; March 29-April 3, 2019; Atlanta, GA. American Association for Cancer Research, 2019. http://dx.doi.org/10.1158/1538-7445.am2019-4411.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Fu, Wei, Le Ma, Baoky Chu, Xue Wang, Tapan K. Bagui, Marilyn M. Bui, Jennifer Gemmer, Soner Altiok, Douglas G. Letson und W. Jack Pledger. „Abstract 3596: SCH727965, a cyclin-dependent kinases inhibitor, induces apoptosis in sarcoma cells through caspase 3- dependent pathway“. In Proceedings: AACR 102nd Annual Meeting 2011‐‐ Apr 2‐6, 2011; Orlando, FL. American Association for Cancer Research, 2011. http://dx.doi.org/10.1158/1538-7445.am2011-3596.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Ramos Rodríguez, J., S. Hernández Rojas, I. González Perera, MM Viña Romero, GJ Nazco Casariego, FJ Merino Alonso, S. García Gil, B. Del Rosario García, L. Cantarelli und F. Gutiérrez Nicolás. „5PSQ-059 Cyclin dependent kinases 4/6 inhibitors: new options in hr+ her2- breast cancer“. In 24th EAHP Congress, 27th–29th March 2019, Barcelona, Spain. British Medical Journal Publishing Group, 2019. http://dx.doi.org/10.1136/ejhpharm-2019-eahpconf.492.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Tien, Amy H., Nasrin R. Mawji, Jun Wang und Marianne D. Sadar. „Abstract 1000: Targeting androgen receptors and cyclin-dependent kinases 4 and 6 in breast cancer“. In Proceedings: AACR Annual Meeting 2019; March 29-April 3, 2019; Atlanta, GA. American Association for Cancer Research, 2019. http://dx.doi.org/10.1158/1538-7445.am2019-1000.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Berichte der Organisationen zum Thema "Cyclin-dependent kinases":

1

Wohlschlegel, James, und Anindya Dutta. Development of Inhibitors That Selectively Disrupt Substrate Recognition by Cyclin-Dependent Kinases. Fort Belvoir, VA: Defense Technical Information Center, August 2002. http://dx.doi.org/10.21236/ada410428.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Donovan, Joseph. Development and Use of Novel Tools to Directly Screen for Substrates of Cyclin Dependent Kinases. Fort Belvoir, VA: Defense Technical Information Center, August 1999. http://dx.doi.org/10.21236/ada376126.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Donovan, Joseph. Development and Use of Novel Tools to Directly Screen for Substrates of Cyclin Dependent Kinases. Fort Belvoir, VA: Defense Technical Information Center, August 2000. http://dx.doi.org/10.21236/ada392561.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Williams, Stephen D. Cyclin Dependent Kinase Inhibitors as Targets in Ovarian Cancer. Fort Belvoir, VA: Defense Technical Information Center, Oktober 2005. http://dx.doi.org/10.21236/ada446399.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Williams, Stephen D. Cyclin Dependent Kinase Inhibitors as Targets in Ovarian Cancer. Fort Belvoir, VA: Defense Technical Information Center, Oktober 2002. http://dx.doi.org/10.21236/ada411751.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Williams, Stephen D. Cyclin Dependent Kinase Inhibitors as Targets in Ovarian Cancer. Fort Belvoir, VA: Defense Technical Information Center, Oktober 2003. http://dx.doi.org/10.21236/ada420941.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Harper, J. W. The Role of Cyclin Dependent Kinase Inhibitor, Cip1, in Breast Cancer. Fort Belvoir, VA: Defense Technical Information Center, Oktober 1998. http://dx.doi.org/10.21236/ada366917.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Harper, J. W. The Role of Cyclin Dependent Kinase Inhibitor, CIP1, in Breast Cancer. Fort Belvoir, VA: Defense Technical Information Center, Oktober 1995. http://dx.doi.org/10.21236/ada302399.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Harper, J. W. The Role of Cyclin Dependent Kinase Inhibitor, CIP1, in Breast Cancer. Fort Belvoir, VA: Defense Technical Information Center, Oktober 1997. http://dx.doi.org/10.21236/ada341520.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Harper, J. W. The Role of Cyclin Dependent Kinase Inhibitor, CIP1, in Breast Cancer. Fort Belvoir, VA: Defense Technical Information Center, Oktober 1999. http://dx.doi.org/10.21236/ada381538.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Zur Bibliographie