Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Curved block structure“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Curved block structure" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Curved block structure"
Huang, Tao, und Yi Liu. „The Analysis of Structure Deformation Using DDA with Third Order Displacement Function“. Advanced Materials Research 446-449 (Januar 2012): 906–16. http://dx.doi.org/10.4028/www.scientific.net/amr.446-449.906.
Der volle Inhalt der QuelleDong, Chang Zhou, und Chen Qu. „Analysis of Steel-Concrete Composite Structure Element“. Applied Mechanics and Materials 94-96 (September 2011): 402–5. http://dx.doi.org/10.4028/www.scientific.net/amm.94-96.402.
Der volle Inhalt der QuelleLin, Yu-Liang, Ming-Hsiang Cheng, Chun-Wei Chang, Chien-Wei Chu, Chih-Ting Liu und Jiun-Tai Chen. „Curved block copolymer nanodiscs: structure transformations in cylindrical nanopores using the nonsolvent-assisted template wetting method“. Soft Matter 15, Nr. 41 (2019): 8201–9. http://dx.doi.org/10.1039/c9sm01633c.
Der volle Inhalt der QuelleSaini, Paramdeep, Apoorv Pandhi und A. K. Darpe. „An Experimental Study on the Use of Active Constrained Layer Damping for Thin Curved Smart Shell Structures“. Advances in Science and Technology 56 (September 2008): 309–14. http://dx.doi.org/10.4028/www.scientific.net/ast.56.309.
Der volle Inhalt der QuelleYamashita, Minoru, und Toshio Hattori. „Onset of Progressive Buckling by Inertia Force in Axial Impact of Straight and S-Curved Square Tubes“. Advanced Materials Research 445 (Januar 2012): 847–52. http://dx.doi.org/10.4028/www.scientific.net/amr.445.847.
Der volle Inhalt der QuelleChan, Vincent W. S., Hugo Nova, Sherif Abbas, Colin J. L. McCartney, Anahi Perlas und Da Quan Xu. „Ultrasound Examination and Localization of the Sciatic Nerve“. Anesthesiology 104, Nr. 2 (01.02.2006): 309–14. http://dx.doi.org/10.1097/00000542-200602000-00017.
Der volle Inhalt der QuellePolyakov, V. A. „Automation of the Algorithm for Designing a Reinforcement Scheme for a Structure Made of Composite Materials“. LETI Transactions on Electrical Engineering & Computer Science 15, Nr. 7 (2022): 14–19. http://dx.doi.org/10.32603/2071-8985-2022-15-7-14-19.
Der volle Inhalt der QuelleKhlebnikov, Denis V. „Standard Units in Miniatures of the Manuscript no. 20 in Russian State Library, Fund 173.I“. Vestnik of Saint Petersburg University. Arts 13, Nr. 3 (2023): 508–34. http://dx.doi.org/10.21638/spbu15.2023.307.
Der volle Inhalt der QuelleLi, Peiyong, Zheng Tang, Yuwen Huang, Yunpeng Wang und Chong Wang. „Distortion Control and Prevention by Fabrication Techniques in Cold Bent Steel Frame with Perforated Web“. Journal of Ship Production and Design 37, Nr. 01 (17.02.2021): 37–44. http://dx.doi.org/10.5957/jspd.07190038.
Der volle Inhalt der QuelleRen, Yingying, Uday Kusupati, Julian Panetta, Florin Isvoranu, Davide Pellis, Tian Chen und Mark Pauly. „Umbrella meshes“. ACM Transactions on Graphics 41, Nr. 4 (Juli 2022): 1–15. http://dx.doi.org/10.1145/3528223.3530089.
Der volle Inhalt der QuelleDissertationen zum Thema "Curved block structure"
Roche, Claire. „Hexahedral curved block-structured mesh generation for atmospheric re-entry“. Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASG053.
Der volle Inhalt der QuelleThe French Alternative Energies and Atomic Energy Commission (CEA) studies Computational Fluid Dynamics (CFD) in the case of supersonic and hypersonic flows. To do so, a dedicated code is developed. To deal with strong constraints, this code only performs on block-structured meshes. This specific type of mesh is complicated to generate, and this generation is usually handled by hand using dedicated interactive software. In the case of industrial complex geometries, the mesh generation is highly time-consuming. Currently, automatic hexahedral mesh generation is a complex open research field.In this thesis work, we propose a method to generate block-structured hexahedral meshes on curved blocks of the fluid domain around vehicles, dedicated for the problems of interest. This method is first proposed in 2D and then extended to 3D. Here, it is presented in the generic nD case. This method is composed of several steps. First, a linear block structure is extruded from a first vehicle surface discretization. This work is an extension of the previous work of Ruiz-Girones et al.. Once this linear block structure is generated, we propose two different methods to curve the block structure to improve the vehicle surface representation and limit the smoothing on the final mesh. The first method is through an algorithm of mesh adaptation at fixed topology by solving an optimization problem to which a penalty term is added to align certain mesh edges to an implicit interface. Our global approach uses this method to align the block structure to the vehicle surface. This method remains time-consuming in 3D, so we proposed a second method to curve our block structure through polynomial Bézier curves. Considering our blocks as Bézier blocks, we apply geometric and local operations to align the high-order block structure to the vehicle surface. Then, considering we curved the block structure using Bézier elements, we generate a mesh on the curved blocks under constraints. Finally, the generated mesh quality is evaluated in two ways. The first one is through purely geometrical criteria analysis. The second one is through numerical simulations of flows around vehicles on our meshes, comparing the simulation results to experimental data, analytical results, and reference simulations
Riedel, Gårding Elias. „Quantum structure of holographic black holes“. Thesis, KTH, Fysik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-284694.
Der volle Inhalt der QuelleVi studerar ett fritt skalärt kvantfält i BTZ-rumtiden som en modell av AdS/CFT-dualiteten för svarta hål och visar huvudstegen i beräkningen av Bogolyubov-koefficienter mellan moder på olika sidor av maskhålet. Som bakgrund redogör vi för BTZ-geometrin i standard-, Kruskal- och Poincarékoordinater, holografisk renormering av den duala fältteorin och kanonisk kvantisering i krökt rumtid.
Constantin, Robert, und Denis Gerzic. „An Evaluation of Swedish Municipal Borrowing via Nikkei-linked Loans“. Thesis, Linköpings universitet, Produktionsekonomi, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-153259.
Der volle Inhalt der QuelleDeng, Jie. „Vibroacoustic modeling of acoustic blackhole applications in flat, curved andcomplex mechanical structures“. Doctoral thesis, Universitat Ramon Llull, 2020. http://hdl.handle.net/10803/670666.
Der volle Inhalt der QuelleLos agujeros negros acústicos en mecánica (conocidos por las siglas ABHs, del inglés Acoustic Black Holes) suelen estar formados por muescas en vigas y placas, el grueso de las cuales decae según una ley potencial. El efecto del ABH es el de ralentizar las velocidades de fase y de grupo de las ondas de flexión incidentes de tal modo que, en teoría, haría falta un tiempo infinito para que las ondas alcanzaran el centro del ABH, si el grueso de este último fuera exactamente cero. Sin embargo, en la práctica esto no es posible, aunque se puede conseguir una fuerte disipación colocando una capa de material amortiguador en el centro del ABH, donde se concentra la mayor parte de la energía de las ondas. En los últimos años, los ABHs no sólo se han explotado como método pasivo para reducir vibraciones estructurales y la consecuente emisión de ruido, sino que también se ha explorado su potencial para otras aplicaciones como la manipulación de ondas o la captación de energía. Esta tesis tiene tres objetivos principales. Así pues, tras una introducción general a los ABHs, el trabajo se ha dividido en tres grandes secciones. La primera aborda aplicaciones de los ABHs en vigas rectas y placas planas. Para empezar, se propone y analiza un voladizo piezoeléctrico con un acabado de ABH para capturar energía. A continuación, se presentan ABHs en forma de anillo para aislar puntos de excitación externos en placas planas y así evitar la transmisión de vibraciones. Finalmente, se contemplan configuraciones periódicas de matrices de ABHs para colimar haces de ondas de flexión y concentrar su energía en zonas predeterminadas de una placa. La segunda parte de la tesis propone nuevos diseños de ABHs para estructuras con curvatura. Estas son muy habituales en los sectores naval, aeronáutico e industrial, por lo que merece la pena investigar si los ABH pueden dar buenos resultados en algunos casos. La sección comienza analizando la inclusión de ABHs en vigas circulares y se ve como estos dan pie a la aparición de fenómenos típicos de sistemas periódicos. Seguidamente se propone un ABH anular para reducir las vibraciones en conductos cilíndricos. En concreto, se tratan los casos de un conducto simplemente soportado con un ABH anular, y el de un conducto con ABH, soportes periódicos y rigidificadores. Para finalizar la sección, se investigan los efectos de los ABH anulares en la radiación acústica del conducto teniendo en cuenta el nivel de potencia acústica, la eficiencia de radiación y la intensidad supersónica. La tercera parte de la tesis es más corta que las anteriores y simula el aislamiento de una placa con múltiples ABHs, en el rango de media y alta frecuencia. A tal efecto se emplea el método del análisis estadístico de distribución modal de energía (SmEdA: statistical modal energy distribution analysis). En esta sección, la estructura con ABHs ya no se analiza como un elemento individual, sino que se acopla a dos cavidades de aire formando parte de un sistema mecánico más complejo. A lo largo de la tesis se utiliza repetidamente el método de expansión gaussiana (GEM: Gaussian expansión method). Por GEM entendemos tomar funciones gaussianas como base para resolver ecuaciones diferenciales en derivadas parciales en el marco del método de Rayleigh-Ritz. El GEM se parece mucho a los enfoques de ondículas, pero ofrece algunas ventajas en el caso de condiciones de contorno periódicas. Al principio de la tesis se expone un breve repaso del GEM y, cuando es necesario, se aborda su reformulación para un problema particular en el capítulo correspondiente.
Acoustic black holes (ABHs) in mechanics usually consist of geometrical indentations on beams and plates having a power-law decreasing thickness profile. An ABH slows down the phase and group velocity of incident flexural waves in such a way that, ideally, it would take an infinite amount of time for them to reach the ABH center, if the latter had an exact zero thickness. Though this is not possible in practice, strong wave dissipation can be achieved by placing a damping layer at the central region of the ABH, where most vibration energy concentrates. In recent years, ABHs have been not only exploited as a passive means for structural vibration and noise reduction, but its potential for other applications like wave manipulation or energy harvesting have been also explored. The objective of this thesis is threefold. Therefore, after an initial overview the work is divided into three main parts. The first one deals with ABH applications on straight beams and flat plates. To start with, an ABH piezoelectric bimorph cantilever for energy harvesting is proposed and analyzed. Then, ring-shaped ABH indentations are suggested as a means of isolating external excitation points in flat plates and prevent vibration transmission. Finally, periodic ABH array configurations are contemplated to collimate flexural wave beams and focus energy at desired plate locations. The second part of the thesis proposes new ABH designs for curved structures. The latter are very common in the naval, aeronautical and industrial sectors so it is worth investigating if ABHs could function for them. The section starts analyzing the embedding of ABHs on circular beams and how this results in the appearance of typical phenomena of periodic systems. After that, an annular ABH is proposed to reduce vibrations in cylindrical shells. The cases of a simply supported shell with an annular ABH indentation and of a periodic simply supported ABH shell with stiffeners are considered. To finish the section, the effects of annular ABHs on sound radiation are investigated in terms of sound power level, radiation efficiency and supersonic intensity. The third part of the thesis is shorter than the previous ones and is devoted to analyzing the transmission loss of a plate with multiple ABH indentations, in the mid-high frequency range. Statistical modal energy distribution analysis is used for that purpose. Here, the ABH plate is not taken as an individual structure but coupled to two air cavities, thus being part of a more complex mechanical system. Throughout the thesis repeated use is made of the Gaussian expansion method (GEM). The GEM refers to taking Gaussian functions as the basis for solving partial differential equations in the framework of the Rayleigh-Ritz method. The GEM closely resembles wavelet approaches but offers some advantages in the case of periodic boundary conditions. A brief overview of the GEM is exposed at the beginning of the thesis and, when necessary, its reformulation for a particular problem is tackled in its corresponding chapter.
Gong, Yun. „Structure-property relationships of dyes as applied to dye-sensitized solar cells“. Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/275007.
Der volle Inhalt der QuelleIvan, Lucian. „Development of High-order CENO Finite-volume Schemes with Block-based Adaptive Mesh Refinement (AMR)“. Thesis, 2011. http://hdl.handle.net/1807/29759.
Der volle Inhalt der QuelleBücher zum Thema "Curved block structure"
Deschler Canossi, Lesly, und Zoraida Lopez-Diago, Hrsg. Black Matrilineage, Photography, and Representation. Leuven University Press, 2022. http://dx.doi.org/10.11116/9789461664631.
Der volle Inhalt der QuelleFlyvbjerg, Bent. Introduction. Herausgegeben von Bent Flyvbjerg. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780198732242.013.1.
Der volle Inhalt der QuelleBuchteile zum Thema "Curved block structure"
Liang, Yuli, und Deliang Dai. „On Explicit Estimation of the Growth Curve Model with a Block Circular Covariance Structure“. In Recent Developments in Multivariate and Random Matrix Analysis, 255–66. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-56773-6_15.
Der volle Inhalt der QuelleXu, Yong, Yusen Qu, Ben Ma, Ti Wu, Bo Shu, Dekun Peng und Shuwei Yu. „Study on Mortar Rebound Method for Masonry Structure Blocks of Concrete Products“. In Advances in Transdisciplinary Engineering. IOS Press, 2021. http://dx.doi.org/10.3233/atde210302.
Der volle Inhalt der QuelleNagarajan, Harikumar, B. Tamilarasan und Thanjaivadivel M. „Building Blocks“. In Advances in Systems Analysis, Software Engineering, and High Performance Computing, 32–66. IGI Global, 2024. http://dx.doi.org/10.4018/979-8-3693-3964-0.ch002.
Der volle Inhalt der QuelleFang, Jian, Wenwen Zheng und Xiaoyan Lei. „Experimental Study on Characteristics of Short Wave Irregularity in Urban Rail Transit“. In Advances in Transdisciplinary Engineering. IOS Press, 2020. http://dx.doi.org/10.3233/atde200223.
Der volle Inhalt der QuelleDeng, Jie. „Low-frequency bandgaps by topological acoustic black holes“. In Phonons - Recent Advances, New Perspectives and Applications [Working Title]. IntechOpen, 2024. http://dx.doi.org/10.5772/intechopen.1005765.
Der volle Inhalt der Quelle„Self-Assembly and Biomimetics“. In Nanoscopic Materials: Size-Dependent Phenomena and Growth Principles, 296–326. 2. Aufl. The Royal Society of Chemistry, 2014. http://dx.doi.org/10.1039/bk9781849739078-00296.
Der volle Inhalt der QuelleScacco, J., G. Milani und P. B. Lourenço. „A simple homogenization approach for masonry structures: A discrete approach extension from walls to curved structures“. In Brick and Block Masonry - From Historical to Sustainable Masonry, 875–81. CRC Press, 2020. http://dx.doi.org/10.1201/9781003098508-125.
Der volle Inhalt der QuelleDeng, Jie, und Nansha Gao. „Periodic Acoustic Black Holes to Mitigate Sound Radiation from Cylindrical Structures“. In Acoustic Emission - New Perspectives and Applications. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.101959.
Der volle Inhalt der QuelleAutry, Robyn. „The Curated Past“. In Desegregating the Past, 66–106. Columbia University Press, 2017. http://dx.doi.org/10.7312/columbia/9780231177580.003.0003.
Der volle Inhalt der QuelleTuranboy, A., und E. Ülker. „Using the distribution curves to optimize the block exploitation in natural stone quarries“. In Rock Engineering and Rock Mechanics: Structures in and on Rock Masses, 631–35. CRC Press, 2014. http://dx.doi.org/10.1201/b16955-108.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Curved block structure"
Zhang, Xuhui, Xun Wu und Shanguo Jiang. „Study on Mechanical Properties of a Negative Poisson's Ratio Structural Bridge Block“. In IABSE Congress, New Delhi 2023: Engineering for Sustainable Development. Zurich, Switzerland: International Association for Bridge and Structural Engineering (IABSE), 2023. http://dx.doi.org/10.2749/newdelhi.2023.0508.
Der volle Inhalt der QuelleZhang, Fei, und Jianxun Ma. „Experimental Study on Hybrid Masonry Structure with RC Frame under Lateral Reversed Cyclic Loading“. In IABSE Conference, Kuala Lumpur 2018: Engineering the Developing World. Zurich, Switzerland: International Association for Bridge and Structural Engineering (IABSE), 2018. http://dx.doi.org/10.2749/kualalumpur.2018.0142.
Der volle Inhalt der QuelleKaravelić-Hadžimejlić, Amina, und Senad Medić. „Vibrations tests of a Bailey-type suspension bridge over the Jablanica lake“. In 8th International Conference on Road and Rail Infrastructure, 1113–19. University of Zagreb Faculty of Civil Engineering, 2024. http://dx.doi.org/10.5592/co/cetra.2024.1722.
Der volle Inhalt der QuelleZeng, Xiangyin, Jiangqi He und Baoshu Xu. „Accelerated Convergence for Lumped-Elements Based on-Package RF Passives Design by Using Curve Fitted Formula“. In ASME 2005 Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS, and Electronic Systems collocated with the ASME 2005 Heat Transfer Summer Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/ipack2005-73308.
Der volle Inhalt der QuelleSchmitz, Anne. „Compression Energy Stored in an Additively Manufactured Mesostructure“. In ASME 2022 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/imece2022-88493.
Der volle Inhalt der QuelleWang, Ruiqin, und Xin Yan. „Background-Grid Based Mapping Approach to Film Cooling Meshing: Part I — Strategies and Test Cases“. In ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/gt2020-15768.
Der volle Inhalt der QuelleDavlatov, Elyor, und Judit Sági. „The Role of New Keynesian Semi-structural Macroeconomic Forecasting Model in Realisation of Sustainable Development Goals in Uzbekistan“. In 7th FEB International Scientific Conference. University of Maribor, University Press, 2023. http://dx.doi.org/10.18690/um.epf.3.2023.7.
Der volle Inhalt der QuelleMokhtar, Jawad D., und James H. Oliver. „Parametric Volume Models for Interactive Three-Dimensional Grid Generation“. In ASME 1994 Design Technical Conferences collocated with the ASME 1994 International Computers in Engineering Conference and Exhibition and the ASME 1994 8th Annual Database Symposium. American Society of Mechanical Engineers, 1994. http://dx.doi.org/10.1115/detc1994-0086.
Der volle Inhalt der QuelleTibbits, Patrick A. „Effect of Pillow Block Deformation on Ball Bearing Load Distribution“. In ASME 2004 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2004. http://dx.doi.org/10.1115/detc2004-57729.
Der volle Inhalt der QuelleNoverri, P. „Mahakam Field Characterization Using Production Type-Curve With Business Intelligence Application“. In Digital Technical Conference. Indonesian Petroleum Association, 2020. http://dx.doi.org/10.29118/ipa20-e-242.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Curved block structure"
Hauzenberger, Niko, Florian Huber, Gary Koop und James Mitchell. Bayesian modeling of time-varying parameters using regression trees. Federal Reserve Bank of Cleveland, Januar 2023. http://dx.doi.org/10.26509/frbc-wp-202305.
Der volle Inhalt der QuelleFord, Adam T., Marcel Huijser und Anthony P. Clevenger. Long-term responses of an ecological community to highway mitigation measures. Nevada Department of Transportation, Juni 2022. http://dx.doi.org/10.15788/ndot2022.06.
Der volle Inhalt der Quelle