Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Curvas de dispersión“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Curvas de dispersión" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Curvas de dispersión"
Corchete, V. „Shear-wave Velocity Structure of Greenland from Rayleigh-wave Analysis“. Earth Sciences Research Journal 20, Nr. 1 (30.04.2016): 1–11. http://dx.doi.org/10.15446/esrj.v20n1.41079.
Der volle Inhalt der QuelleGraizbord, Boris, und Alejandro Mina Valdés. „Población-territorio : cien años de evolución, 1895-1990“. Estudios Demográficos y Urbanos 8, Nr. 1 (01.01.1993): 31. http://dx.doi.org/10.24201/edu.v8i1.862.
Der volle Inhalt der QuelleCorchete, Víctor. „Shear-wave velocity structure of Australia from Rayleigh-wave analysis“. Earth Sciences Research Journal 18, Nr. 2 (15.03.2015): 87–98. http://dx.doi.org/10.15446/esrj.v18n2.41078.
Der volle Inhalt der QuelleIglesias, A., V. M. Cruz-Atienza, N. M. Shapiro, S. K. Singh und J. F. Pacheco. „Crustal structure of south-central Mexico estimated from the inversion of surface-wave dispersion curves using genetic and simulated annealing algorithms“. Geofísica Internacional 40, Nr. 3 (01.07.2001): 181–90. http://dx.doi.org/10.22201/igeof.00167169p.2001.40.3.321.
Der volle Inhalt der QuelleDe Souza, Jorge Luis. „Crustal structure of the southeastern Brazilian continental margin from surface wave dispersion“. Geofísica Internacional 35, Nr. 3 (01.07.1996): 285–300. http://dx.doi.org/10.22201/igeof.00167169p.1996.35.3.463.
Der volle Inhalt der QuelleGranada, J. C. „Polaritones Superficiales Acoplados a Magnetoplasmones en una Super-Red Semi Infinita“. Revista de Ciencias 9 (08.11.2011): 51–60. http://dx.doi.org/10.25100/rc.v9i0.605.
Der volle Inhalt der QuelleQuispe Coaquira, Jesús E., Paúl Castillo Paca, William Yana Viveros, Hugo Vilcanqui Mamani, Edgar Apaza Zúñiga und Diana M. Quispe Roque. „Atributos textiles de la fibra de alpacas Huacaya blanca y color (Vicugna pacos) de la feria ganadera del sur del Perú“. Revista de Investigaciones Veterinarias del Perú 32, Nr. 4 (24.08.2021): e20930. http://dx.doi.org/10.15381/rivep.v32i4.20930.
Der volle Inhalt der QuelleMartínez Zambrano, José Jobanny, Efrén de Jesús Muñoz Prieto, Hugo Alfonso Rojas Sarmiento und Gustavo Pablo Romanelli. „ESTUDIO DE UN CATALIZADOR ÁCIDO MAGNÉTICO EN LA OBTENCIÓN DE FURFURAL A PARTIR DE LA DESHIDRATACIÓN DE XILOSA“. BISTUA REVISTA DE LA FACULTAD DE CIENCIAS BASICAS 14, Nr. 2 (31.10.2016): 104. http://dx.doi.org/10.24054/01204211.v2.n2.2016.2187.
Der volle Inhalt der QuelleFernández Campo, Betty Nayibe, Lesly Alejandra González Camacho und Claudia Milena Hernández Bonilla. „IMPACTO DEL REUSO DE FRECUENCIA FRACCIONAL EN LA REDUCCIÓN DE INTERFERENCIA INTERCELDA EN LTE.“ Revista de Investigaciones Universidad del Quindío 25, Nr. 1 (31.05.2014): 28–39. http://dx.doi.org/10.33975/riuq.vol25n1.146.
Der volle Inhalt der QuelleMorales, Juan, Avto Goguitchaichvili, L. M. Alva Valdivia, Martin N. Gratton, Jaime Urrutia Fucugauchi, J. Rosas Elguera und Ana María Soler. „An attempt to determine the microwave paleointensity on historic Paricutín volcano lava flows, Central Mexico“. Geofísica Internacional 42, Nr. 1 (01.01.2003): 95–100. http://dx.doi.org/10.22201/igeof.00167169p.2003.42.1.363.
Der volle Inhalt der QuelleDissertationen zum Thema "Curvas de dispersión"
Vázquez, Martínez Santiago. „Nuevas técnicas de ensayos no destructivos basadas en ondas mecánicas para la valoración del daño en materiales cementicios“. Doctoral thesis, Universitat Politècnica de València, 2021. http://hdl.handle.net/10251/165531.
Der volle Inhalt der Quelle[CA] En l'actualitat, una gran quantitat d'infraestructures estan formades totalment o parcialment de materials cementants. El formigó és un dels materials cementants més antics i utilitzats en la construcció degut al seu preu, la seua durabilitat i les seues característiques mecàniques i estructurals. Malgrat la seua durabilitat i característiques, aquests materials estan exposats a diverses condicions adverses de l'entorn i pateixen processos de deterioració que afecten la seua integritat i seguretat. El reconeixement de la integritat i seguretat en les estructures cementants ha implicat una extensa investigació i el desenvolupament de diverses proves per a verificar la seua qualitat i estat. Mitjançant la destrucció d'una mostra de l'estructura en el cas dels assajos destructius, o mitjançant la inspecció de l'estructura sense danyar-la o alterar les seues propietats en el cas dels assajos no destructius. Existeixen multitud de tècniques d'inspecció no destructiva que tracten de caracteritzar aquestes estructures sense danyar-les. La inspecció mitjançant ultrasons és un dels assajos no destructius més utilitzats en materials cementants. Tradicionalment, aquestes tècniques ultrasòniques estan basades en l'estudi de les ones longitudinals (P) i transversals (S), que permeten caracteritzar una estructura mitjançant la realització de múltiples mesures en l'estructura. No obstant, existeixen altres tipus d'ones, formades per la superposició dels desplaçaments de les partícules de les ones P i S, denominades ones guiades, les quals permeten inspeccionar una estructura de manera global a partir d'una única mesura, a més de poder propagar-se a grans distàncies mantenint una bona relació senyal-soroll en comparació a les ones P i S. Dins de les ones guiades més utilitzades per a inspeccionar materials cementants, es troben les ones de Rayleigh i les ones de Lamb. Les ones de Rayleigh es propaguen en estructures de gran grossària, mentre que les ones de Lamb es propaguen en plaques. Les ones de Lamb presenten una naturalesa dispersiva i multimodal. La seua naturalesa dispersiva implica que les velocitats de fase i grup d'aquestes ones depenen de la freqüència, mentre que la naturalesa multimodal implica que apareguen més modes de propagació a l'augmentar la freqüència d'excitació. Es poden excitar i detectar selectivament els diferents modes de Lamb mitjançant la incidència obliqua, és a dir, variant la inclinació del transmissor i el receptor. Existeixen diferents tècniques d'acoblament que permeten la incidència obliqua, com l'acoblament per metacrilat, l'acoblament per aigua i l'acoblament per aire. Aquesta tesi s'ha enfocat en l'estudi de noves tècniques d'assajos no destructius basades en ones guiades (ones de Rayleigh i ones de Lamb) per a caracteritzar diferents tipus de dany en els materials cementants. S'han realitzat un nombre considerable de mesures experimentals basades en diferents tècniques d'acoblament per a la generació i captació d'ones guiades. Inicialment s'han analitzat materials homogenis com els metalls per a, posteriorment, utilitzar el coneixement adquirit en aquests materials i estudiar d'altres més heterogenis com els cementants. Concretament, s'han avaluat diferents tipus de tècniques d'acoblament i diferents tipus de transductors. Els materials cementants s'han inspeccionat mitjançant ones guiades ultrasòniques amb dos tipus de dany o degradació: la carbonatació, estudiant el seu efecte amb provetes de dues capes de morter, i l'envelliment de fibres en plaques de ciment reforçat amb fibra de vidre (GRC). S'ha demostrat que les ones guiades són sensibles a aquests danys, obtenint resultats esperançadors. Concretament, les ones de Rayleigh s'han utilitzat en el dany per carbonatació a causa de la seua sensibilitat a capes superficials de degradació, mentre que en l'envelliment de fibres s'han utilitzat les ones de Lamb, per la seua sensibilitat a defe
[EN] Nowadays, a large number of infrastructures are partially or wholly built with cementitious materials. Concrete is one of the oldest and most popular cementitious materials due to its low cost, durability and remarkable mechanical and structural characteristics. However, if these materials are exposed to different environments and harsh conditions, they suffer damaging processes that affect their integrity and safety. To verify their state and quality, extensive research has been conducted and several tests have been developed, such as destructive testing and non-destructive testing. Destructive testing (DT) requires a sample of the inspected structure while non-destructive testing (NDT) allows the inspection of the structure without altering its properties and without damaging it. There are several NDT techniques that characterize cementitious structures without harming them, such as ultrasonic testing, which is one of the most widely used. This technique is based on the study of longitudinal (P) and shear (S) waves, which enable the characterization of a structure by a point-by-point scan. However, there are another kind of waves, called guided waves, which are composed of the superposition of the P and S wave particle displacements. Unlike P and S waves, guided waves allow a global inspection of a structure from a single transducer position and they are able to propagate over long distances with a good signal-to-noise ratio. Rayleigh and Lamb waves are the most frequently used guided waves in NDT of cementitious materials. Rayleigh waves propagate in thick structures while Lamb waves propagate in plate-like structures. Lamb waves are dispersive (their phase and group velocities depend on frequency) and multimodal (as frequency increases, many propagation modes with different velocities exist in the received signal). Lamb wave modes can be selectively excited and detected by means of oblique incidence, i.e., by varying the inclination of the transmitting and receiving transducers. Different coupling techniques can be used to change the inclination of the transducers, such as the contact technique with angle beam wedge transducers, water coupling and air coupling. This thesis has been focused in the study of new NDT techniques based on guided waves (Rayleigh and Lamb waves) to characterize different types of damage of cementitious materials. For this goal, a significant number of experimental arrangements based on different coupling techniques have been carried out. Firstly, homogeneous materials as metals have been analized, because they are a reference in guided wave testing. After performing different experiments in metals, the acquired knowledge has been used to inspect heterogeneous materials as cementitious ones. Different coupling techniques (variable angle wedges, immersion testing, fixed angle wedges, ...) with different types of transducers (contact transducers, immersion transducers and air-coupled transducers) have been employed. Cementitious materials with two damaging processes have been inspected by means of guided waves: two-layered mortar specimens to study carbonation and glass-fibre reinforced cement (GRC) plates to study fiber ageing. This thesis demonstrates that guided waves are sensitive to these damaging processes and the obtained results are encouraging. Specifically, Rayleigh waves have been used to detect carbonation due to its sensitivity to surface layers, while Lamb waves have been used to detect fiber ageing due to its sensitivity to defects along the thickness of the GRC plates.
La investigación realizadaen esta tesis se ha financiado con las siguientes ayudas y proyectos concedidos por el gobierno español: Ayudas para contratos predoctorales para la formación de doctores 2015 (BES-2015-071958); Nuevas aplicaciones de ensayos no destructivos basados en ondas mecánicas para la evaluación de la degradación en materiales cementantes (BIA2014-55311-C2-2-P); Desarrollo y aplicación de ensayos no destructivos basados en ondas mecánicas para la evaluación y monitorización de reología y autosanación en materiales cementantes (BIA2017-87573-C2)
Vázquez Martínez, S. (2021). Nuevas técnicas de ensayos no destructivos basadas en ondas mecánicas para la valoración del daño en materiales cementicios [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/165531
TESIS
Gandhi, Navneet. „Determination of dispersion curves for acoustoelastic lamb wave propagation“. Thesis, Georgia Institute of Technology, 2010. http://hdl.handle.net/1853/37158.
Der volle Inhalt der QuelleUllah, Irfan. „Caracterização da subsuperfície rasa através da curva da razão espectral H/V e da inversão conjunta das curvas de dispersão e elipticidade“. Universidade de São Paulo, 2017. http://www.teses.usp.br/teses/disponiveis/14/14132/tde-04062018-101840/.
Der volle Inhalt der QuelleThe destruction caused by an earthquake at a site depends on many factors like source characteristics such as magnitude, epicentral distance from the site, depth of the source, and on the geological setting of the area. The destruction caused due to the geological setting of an area is termed as site effect. To model the site effect of an area is to determine the shaking level longevity and its displacement amplification. The elastic properties (shear and compressional wave velocities, density, thickness of soil layer, etc.) of the site are required to find out by employing various geophysical procedures. The knowledge of these elastic properties help in better designing the infrastructure, which reduces the chances of destruction caused by a local geological setting due to an earthquake occurrence. This procedure is widely termed as microzonation. The most important parameters for the microzonation are the thickness of soft sediments over the seismic bedrock and its shear wave velocity profile. These two parameters are properly characterized by employing various geophysical techniques like borehole measurement, seismic reflection and seismic refraction. The conventional geophysical methods bring some hindrance to the picture such as, the drilling of a borehole and artificial seismic sources deployment for the reflection and refraction survey, which are both expensive and time consuming, difficult or even in some case impossible to implement in urbanized environment, the investigation is depth limited to few tens of meter. The methods which replaced this conventional geophysical method from the last decades or so is the analysis of Earth vibration caused by the seismic noise which is produced by both natural and cultural sources. This ambient seismic noise can be recorded with less cost and effort with good lateral coverage. Various seismic noise techniques are employed for this job; however, the one which got the most attention in recent years is the horizontal over vertical spectral ratio (H/V) technique. The H/V spectral ratio curve is a fast easy and cheap tool for the near-subsurface characterization. There are various study performed on the topic which has tried to cover almost all the aspects and problems associated with the method. Here in this study, we try to detail the aspects of this technique, which are not been evaluated fully. The different modelling procedures presented to model and physically link the H/V curve with some physical phenomenon will be discussed and its numerical result with the experimental H/V curve will be compared for a borehole test site. The peak and the shape of the H/V curve will be modelled to find its peak frequency deviation from the shear wave resonance frequency by considering different wave-field around the peak. Similarly, the shape dominancy of the H/V curve linkage will be find out. The peak frequency of the H/V curve is used to estimate the thickness-frequency relation by regression analysis. Here we will show that the dispersion curve obtained from multi-channel analysis of surface waves (MASW) can be used to estimate the velocity at one meter and the shear wave velocity increase trend with depth. These values can be used to estimate the thickness frequency relation for an area and its result will be compared with the experimentally derived thickness-frequency relationship for the same area. The sensitivity of the H/V curve shape to the subsurface velocity structure will find out for two main modelling techniques (Rayleigh wave ellipticity and diffused field based H/V curve). The different parts of the H/V curve are inverted (back modelled) to find out the part of H/V curve which is carrying the most important information about the subsurface structure. The lesson learned from all this analysis will be applied to experimental data of three different sites. The Love waves might contaminate the result of the H/V curve. Two different techniques to remove their effects will be discussed. Then, the joint inversion result of the dispersion and this Love effect removed H/V for more precisely ellipticity curve is discussed. Some new aspects of the H/V curve technique are also discussed at the end.
Latini, Marco. „Mixing in Curved Pipes“. Scholarship @ Claremont, 2001. https://scholarship.claremont.edu/hmc_theses/129.
Der volle Inhalt der QuellePei, Donghong. „Modeling and inversion of dispersion curves of surface waves in shallow site investigations“. abstract and full text PDF (free order & download UNR users only), 2007. http://0-gateway.proquest.com.innopac.library.unr.edu/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3275830.
Der volle Inhalt der QuelleAsabere, Philip. „COMPARISON OF DISPERSION CURVES ACQUIRED USING MULTICHANNEL ANALYSIS OF SURFACE WAVES WITH VARIOUS STRIKER PLATE CONFIGURATIONS“. Master's thesis, Temple University Libraries, 2016. http://cdm16002.contentdm.oclc.org/cdm/ref/collection/p245801coll10/id/368445.
Der volle Inhalt der QuelleM.S.C.E.
There is growing appreciation and research regarding geophysical methods to evaluate near surface soil properties in geotechnical engineering. Geophysical methods are generally non-destructive test (NDT) methods that do not necessitate traditional sampling of soils. Instead, they rely on application of input signals and deduction of soil properties from the measured response of the domain. Geophysical methods include various seismic, magnetic and nuclear techniques applied at the surface and/or subsurface within boreholes. Surface seismic methods, which include Multichannel Analysis of Surface Waves (MASW), are increasing in usage for geotechnical engineering purposes to evaluate stiffness properties of soils. MASW typically involves using a hammer to impact a base plate (also referred to as a striker plate) to transmit surface waves into the ground. These waves propagate through the underlying soils at a site and are received by an array of geophones placed on the ground surface. The manner in which the waves propagate is primarily influenced by soil stiffness, particularly against shear. Therefore, the signals recorded during an MASW survey can be analyzed to estimate the shear stiffness of the soils at a site, a parameter that is extremely important for seismic-related engineering purposes (e.g., site amplification, liquefaction, etc.). Aluminum plates are routinely used in a large number of MASW studies as a striker plate to couple the energy from a sledgehammer blow to the underlying soil layers. Various researchers have postulated that the material make-up of the striker plate has an effect on the frequency of the generated waves and, for that matter, the depth achieved with a typical MASW survey. For example, a less stiff material such as ultra-high-molecular-weight (UHMW) polyethylene is often recommended to increase low frequency energy of the input surface wave relative to aluminum. However, very limited research work has been performed in this area to systematically ascertain the effects of modifications to the striker plate material. Due to the limited direct research related to striker plates, MASW was utilized in this study to measure the dispersion curve resulting from MASW at various sites in the Philadelphia metropolitan area. Different striker plate configurations were used during testing to systematically quantify their effects on typical MASW results. The proposed striker base plate configurations included a one (1.0) inch thick aluminum plate, a one (1.0) inch thick aluminum plate over additional rubber mats of varying thickness, and multiple ultra-high-molecular-weight (UHMW) polyethylene plates of various thicknesses. The purpose of this testing was to examine the performance of each configuration, particularly at the low frequency range of the dispersion results. Also efforts were made to qualitatively access the durability of the configurations with respect to long term exposure to impact load.
Temple University--Theses
Koreck, Juergen. „Computational characterization of adhesive bond properties using guided waves in bonded plates“. Thesis, Available online, Georgia Institute of Technology, 2006, 2006. http://etd.gatech.edu/theses/available/etd-08252006-064856/.
Der volle Inhalt der QuelleJacobs, Laurence, Committee Chair ; Qu, Jianmin, Committee Member ; Valle, Christine, Committee Co-Chair.
Amjad, Umar. „Multi-Component Structural Health Assessment Using Guided Acoustic Waves“. Diss., The University of Arizona, 2014. http://hdl.handle.net/10150/344230.
Der volle Inhalt der QuelleMelo, Emerson Gonçalves de. „Integração monolítica de guias de onda, curvas e junções em Y baseados em cristais fotônicos planares de silício e com baixas velocidades de grupo“. Universidade de São Paulo, 2017. http://www.teses.usp.br/teses/disponiveis/3/3140/tde-15012018-150947/.
Der volle Inhalt der QuelleSilicon photonics is an emerging research field that has great potential to contribute to solving some of the technological problems nowadays. Maybe, one of the greatest challenges to be overcome is the bottleneck imposed by electrical interconnections in the expansion of the bandwidth of communication systems such as those of high performance computers. Slow light propagation in dispersionless media is a hot topic in the current research fields that seek to more efficiently explore the silicon optical properties, and thus, increase the compatibility between photonic components and CMOS technology by decreasing the footprint and power consumption of active optical components. This way, the manufacturing costs it is expected to be reduced by making the large-scale production of integrated optoelectronic devices feasible, and so, they could be used in short distance communication systems to expand the available bandwidth. Recent researches has also shown that photonic crystal slab waveguides are very promising to simultaneously control group velocity and devices dispersion, as well as in the reduction of the size of elements such as bends, power splitters and nanocavities due to the fields confinement through the photonic bandgap effect. Thus, this work addresses a study of the monolithic integration of slow light and dispersionless waveguides, 60º bends, and Y-junctions fabricated in air-bridge photonic crystal slabs formed by the drilling of a periodic array of air holes in a silicon membrane. The research was accomplished with intensive activities in numerical simulations, as well as in nanophotonic manufacturing processes, and optical characterizations. Throughout the discussions were identified and analyzed the mechanisms that more critically affected the devices efficiency. The major problems faced in the manufacturing processes were also evaluated, and their possible solutions were pointed out. The results demonstrated a theoretical possibility of performing such integration more efficiently. Having a better understandment about the relation between the photonic crystal waveguides geometrical parameters and their dispersion allowed the modeling of bends and power splitters which exhibited 3 dB bandwidths that covered, respectively, ranges around 56 and 40 nm, along spectral regions with very high group indices. It was possible to fabricate photonic crystals with a quality close to those already reported in the literature on this subject and thus, very solid bases were established for the manufacture of such devices locally, without the necessity of accessing manufacturing centers abroad.
Tsarsitalidou, Christina. „Inversion of Rayleigh-wave dispersion curves using a finite-element eigenvalue/eigenvector solver, applied to the Alpine region and Italian peninsula“. Master's thesis, Alma Mater Studiorum - Università di Bologna, 2019. http://amslaurea.unibo.it/18152/.
Der volle Inhalt der QuelleBücher zum Thema "Curvas de dispersión"
Busarello, G. Atlas of velocity dispersion profiles and rotation curves for elliptical and lenticular galaxies. Napoli: Liguori Editore, 1989.
Den vollen Inhalt der Quelle findenKress, W. Phonon dispersion curves, one-phonon densities of states and impurity vibrations of metallic systems. Karlsruhe: Fachinformationszentrum Karlsruhe, 1987.
Den vollen Inhalt der Quelle findenBinette, André. Inflation and relative price dispersion in Canada: An empirical assessment. Ottawa: Bank of Canada, 2005.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Curvas de dispersión"
Strauch, D. „BAs: phonon dispersion curves, phonon frequencies“. In New Data and Updates for IV-IV, III-V, II-VI and I-VII Compounds, their Mixed Crystals and Diluted Magnetic Semiconductors, 145–46. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-14148-5_86.
Der volle Inhalt der QuelleStrauch, D. „BP: phonon dispersion curves, phonon frequencies“. In New Data and Updates for IV-IV, III-V, II-VI and I-VII Compounds, their Mixed Crystals and Diluted Magnetic Semiconductors, 255–56. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-14148-5_137.
Der volle Inhalt der QuelleStrauch, D. „BSb: phonon dispersion curves, phonon frequencies“. In New Data and Updates for IV-IV, III-V, II-VI and I-VII Compounds, their Mixed Crystals and Diluted Magnetic Semiconductors, 265–66. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-14148-5_143.
Der volle Inhalt der QuelleStrauch, D. „SiC: phonon frequencies, phonon dispersion curves“. In New Data and Updates for IV-IV, III-V, II-VI and I-VII Compounds, their Mixed Crystals and Diluted Magnetic Semiconductors, 305–10. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-14148-5_165.
Der volle Inhalt der QuelleMeyer, B. K. „ZnO: phonon dispersion curves, phonon wavenumbers“. In New Data and Updates for IV-IV, III-V, II-VI and I-VII Compounds, their Mixed Crystals and Diluted Magnetic Semiconductors, 587–88. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-14148-5_327.
Der volle Inhalt der QuelleStrauch, D. „HgS: phonon dispersion curves, phonon spectra“. In Landolt-Börnstein - Group III Condensed Matter, 203–5. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-23415-6_119.
Der volle Inhalt der QuelleStrauch, D. „HgSe: phonon dispersion curves, phonon spectra“. In Landolt-Börnstein - Group III Condensed Matter, 215–16. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-23415-6_127.
Der volle Inhalt der QuelleStrauch, D. „HgTe: phonon dispersion curves, phonon spectra“. In Landolt-Börnstein - Group III Condensed Matter, 221–22. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-23415-6_132.
Der volle Inhalt der QuelleRössler, U. „ZnS: phonon dispersion curves, phonon spectra“. In New Data and Updates for several Semiconductors with Chalcopyrite Structure, for several II-VI Compounds and diluted magnetic IV-VI Compounds, 195–97. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-28531-8_91.
Der volle Inhalt der QuelleRössler, U. „ZnSe: phonon dispersion curves, phonon spectra“. In New Data and Updates for several Semiconductors with Chalcopyrite Structure, for several II-VI Compounds and diluted magnetic IV-VI Compounds, 228–29. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-28531-8_101.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Curvas de dispersión"
Cho, Younho, Joseph L. Rose, Chong Myoung Lee und Gregory N. Bogan. „Elastic Guided Waves in Composite Pipes“. In ASME/JSME 2004 Pressure Vessels and Piping Conference. ASMEDC, 2004. http://dx.doi.org/10.1115/pvp2004-2813.
Der volle Inhalt der QuelleNeducza, B., und L. Hermann. „Automatic Determination of Dispersion Curves“. In Near Surface 2005 - 11th European Meeting of Environmental and Engineering Geophysics. European Association of Geoscientists & Engineers, 2005. http://dx.doi.org/10.3997/2214-4609-pdb.13.a032.
Der volle Inhalt der QuelleLuo, Yinhe, Jianghai Xia, Jiangping Liu, Yixian Xu und Qingsheng Liu. „Research On Dispersion Curves Of Masw“. In 20th EEGS Symposium on the Application of Geophysics to Engineering and Environmental Problems. European Association of Geoscientists & Engineers, 2007. http://dx.doi.org/10.3997/2214-4609-pdb.179.01379-1387.
Der volle Inhalt der QuelleLuo, Yinhe, Jianghai Xia, Jiangping Liu, Yixian Xu und Qingsheng Liu. „Research on Dispersion Curves of MASW“. In Symposium on the Application of Geophysics to Engineering and Environmental Problems 2007. Environment and Engineering Geophysical Society, 2007. http://dx.doi.org/10.4133/1.2924645.
Der volle Inhalt der QuelleSun, Lin, und Jayathi Y. Murthy. „Molecular Dynamics Simulation of Phonon Transport in EDIP Silicon“. In ASME 2005 Summer Heat Transfer Conference collocated with the ASME 2005 Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS, and Electronic Systems. ASMEDC, 2005. http://dx.doi.org/10.1115/ht2005-72200.
Der volle Inhalt der QuellePlona, Tom, Bikash Sinha, Michael Kane, Sandip Bose, Canyun Wang, Jahir Pabon und Smaine Zeroug. „Identifying formation response using sonic dispersion curves“. In SEG Technical Program Expanded Abstracts 2004. Society of Exploration Geophysicists, 2004. http://dx.doi.org/10.1190/1.1845242.
Der volle Inhalt der QuellePark, Choon, Richard Miller, David Laflen, Cabrilo Neb, Julian Ivanov, Brett Bennett und Rob Huggins. „Imaging dispersion curves of passive surface waves“. In SEG Technical Program Expanded Abstracts 2004. Society of Exploration Geophysicists, 2004. http://dx.doi.org/10.1190/1.1851112.
Der volle Inhalt der QuelleAlbakri, Mohammad I., Vijaya V. N. Sriram Malladi und Pablo A. Tarazaga. „Acoustoelastic-Based Stress Measurement Utilizing Low-Frequency Flexural Waves“. In ASME 2017 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/smasis2017-3858.
Der volle Inhalt der QuelleAkbarov, S. D., und C. Ipek. „On the Dispersion of the Axisymmetric Longitudinal Waves in the Pre-Strained Bi-Layered Hollow Cylinder Under Imperfect Contact Between the Layers“. In ASME 2011 International Mechanical Engineering Congress and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/imece2011-62886.
Der volle Inhalt der QuelleLiu, Kuo-Chung, und Yuan-Fang Chou. „Identifying Intersections of Dispersion Curves for Phononic Crystals“. In ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-65754.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Curvas de dispersión"
Wong, J., D. Clatterbuck, F. Occelli, D. Farber, A. Schwartz, M. Wall, C. Boro et al. Phonon dispersion curves determination in (delta)-phase Pu-Ga alloys. Office of Scientific and Technical Information (OSTI), Februar 2006. http://dx.doi.org/10.2172/928180.
Der volle Inhalt der QuelleOstiguy, Jean-Francois. Remarks on the concept of dispersion in a curved linac. Office of Scientific and Technical Information (OSTI), Januar 2009. http://dx.doi.org/10.2172/952027.
Der volle Inhalt der QuelleFujiki, Hiroshi, und Howard J. Wall. Controlling for Geographic Dispersion When Estimating the Japanese Phillips Curve. Federal Reserve Bank of St. Louis, 2006. http://dx.doi.org/10.20955/wp.2006.057.
Der volle Inhalt der Quelle