Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Cucurbitacin D“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Cucurbitacin D" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Cucurbitacin D"
Ku, Jin Mo, Se Hyang Hong, Hyo In Kim, Ye Seul Lim, Sol Ji Lee, Mia Kim, Hye Sook Seo, Yong Cheol Shin und Seong-Gyu Ko. „Cucurbitacin D exhibits its anti-cancer effect in human breast cancer cells by inhibiting Stat3 and Akt signaling“. European Journal of Inflammation 16 (01.01.2018): 1721727X1775180. http://dx.doi.org/10.1177/1721727x17751809.
Der volle Inhalt der QuelleTosun, Emir, und Ahmet Baysar. „Simultaneous isolation and purification of cucurbitacin D and I from Ecballium elaterium (l.) A. Rich fruit juice“. Macedonian Journal of Chemistry and Chemical Engineering 38, Nr. 2 (30.12.2019): 171. http://dx.doi.org/10.20450/mjcce.2019.1648.
Der volle Inhalt der QuelleAbdel Halim, Osama B., El-Sayed M. Marawan, Ali A. El-Gamal und Mona G. Zaghloul. „Socotroside, a New Pentacyclic Cucurbitane Glycoside from Dendrosicyos socotrana“. Zeitschrift für Naturforschung B 63, Nr. 12 (01.12.2008): 1415–20. http://dx.doi.org/10.1515/znb-2008-1212.
Der volle Inhalt der QuelleCai, Yuee, Xiefan Fang, Chengwei He, Peng Li, Fei Xiao, Yitao Wang und Meiwan Chen. „Cucurbitacins: A Systematic Review of the Phytochemistry and Anticancer Activity“. American Journal of Chinese Medicine 43, Nr. 07 (Januar 2015): 1331–50. http://dx.doi.org/10.1142/s0192415x15500755.
Der volle Inhalt der QuelleMuñoz, Orlando, Carla Delporte, Nadine Backhouse, Silvia Erazo, Rosa Negrete, Sergio Maldonado, José L. López-Pérez und Arturo San Feliciano. „A New Cucurbitacin Glycoside from Kageneckia oblonga (Rosaceae)“. Zeitschrift für Naturforschung C 55, Nr. 3-4 (01.04.2000): 141–45. http://dx.doi.org/10.1515/znc-2000-3-403.
Der volle Inhalt der QuelleMu, Shicheng, Jiao Li, Cui Liu, Yan Zeng, Yan Men, Yi Cai, Ning Chen, Hongwu Ma und Yuanxia Sun. „Effective Glycosylation of Cucurbitacin Mediated by UDP-Glycosyltransferase UGT74AC1 and Molecular Dynamics Exploration of Its Substrate Binding Conformations“. Catalysts 10, Nr. 12 (15.12.2020): 1466. http://dx.doi.org/10.3390/catal10121466.
Der volle Inhalt der QuelleD. Sarker, Satyajit, Pensri Whiting, René Lafont, Jean-Pierre Girault und Laurence Dinan. „Cucurbitacin D from Cercidiphyllum japonicum“. Biochemical Systematics and Ecology 25, Nr. 1 (Januar 1997): 79–80. http://dx.doi.org/10.1016/s0305-1978(96)00093-2.
Der volle Inhalt der QuelleDelporte, Carla, Orlando Muñozb, Javier Rojas, Marisa Ferrándiz, Miguel Payá, Silvia Erazo, Rosa Negrete, Sergio Maldonado, Arturo San Feliciano und Nadine Backhouse. „Pharmaco-Toxicological Study of Kageneckia oblonga, Rosaceae“. Zeitschrift für Naturforschung C 57, Nr. 1-2 (01.02.2002): 100–108. http://dx.doi.org/10.1515/znc-2002-1-218.
Der volle Inhalt der QuelleDINAN, Laurence, Pensri WHITING, Jean-Pierre GIRAULT, René LAFONT, S. Tarlochan DHADIALLA, E. Dean CRESS, Bruno MUGAT, Christophe ANTONIEWSKI und Jean-Antoine LEPESANT. „Cucurbitacins are insect steroid hormone antagonists acting at the ecdysteroid receptor“. Biochemical Journal 327, Nr. 3 (01.11.1997): 643–50. http://dx.doi.org/10.1042/bj3270643.
Der volle Inhalt der QuelleSikander, Mohammed, Shabnam Malik, Neeraj Chauhan, Parvez Khan, Sonam Kumari, Vivek Kashyap, Sheema Khan et al. „Cucurbitacin D Reprograms Glucose Metabolic Network in Prostate Cancer“. Cancers 11, Nr. 3 (14.03.2019): 364. http://dx.doi.org/10.3390/cancers11030364.
Der volle Inhalt der QuelleDissertationen zum Thema "Cucurbitacin D"
„Further exploration to the cucurbitacin D (LC978) signal transduction pathway during fetal hemoglobin induction“. 2008. http://library.cuhk.edu.hk/record=b5896856.
Der volle Inhalt der QuelleThesis (M.Phil.)--Chinese University of Hong Kong, 2008.
Includes bibliographical references (leaves 87-98).
Abstracts in English and Chinese.
Chapter 1. --- General introduction --- p.1
Chapter 1.1. --- "Types, structure and function of human hemoglobin" --- p.1
Chapter 1.1.1. --- Structure and functions of human hemoglobin --- p.1
Chapter 1.1.2. --- Types of human hemoglobin --- p.2
Chapter 1.2. --- Regulatory mechanism of human hemoglobin expression --- p.3
Chapter 1.2.1. --- The human a and β locus --- p.3
Chapter 1.2.2. --- Development of globin genes switching concept --- p.4
Chapter 1.2.3. --- Factors that regulate globin gene expression --- p.5
Chapter 1.2.3.1. --- The locus control region (LCR) --- p.5
Chapter 1.2.3.2. --- The cis-regulatory elements --- p.5
Chapter 1.2.3.3. --- The trans-acting factors --- p.6
Chapter 1.3. --- The human hemoglobinopathies --- p.8
Chapter 1.3.1. --- α-thalassemia --- p.8
Chapter 1.3.2. --- β-thalassemia --- p.9
Chapter 1.3.3. --- Sickle cell anemia --- p.10
Chapter 1.4. --- Current approaches towards β-thalassemia treatment --- p.11
Chapter 1.4.1. --- Blood transfusion --- p.11
Chapter 1.4.2. --- Bone marrow transplantation --- p.12
Chapter 1.4.3. --- Drug-induced activation of fetal hemoglobin production --- p.12
Chapter 1.4.3.1. --- Hydroxyurea --- p.12
Chapter 1.4.3.2. --- Butyrate and short-chain fatty acids --- p.13
Chapter 1.4.3.3. --- "Mutagens, DNA methyltransferase inhibitors and other HbF inducible agents" --- p.13
Chapter 1.4.3.4. --- Cucurbitacin D --- p.14
Chapter 1.4.4. --- Gene therapy --- p.14
Chapter 1.5. --- Research Objectives --- p.15
Chapter 2. --- "Analysis of CuD, Hydroxyurea and other inducers on the induction of α, β, γ, δ, ε,ζ BP-1 genes and fetal hemoglobin induction" --- p.16
Chapter 2.1. --- Introduction --- p.16
Chapter 2.1.1. --- Properties of human K562 cell line --- p.16
Chapter 2.1.2. --- Induction and measurement of fetal hemoglobin --- p.16
Chapter 2.1.3. --- "Induction of α, β, γ, δ, ε , ζ and BP-1 gene and Real-time RT-PCR analysis" --- p.17
Chapter 2.2. --- Materials --- p.18
Chapter 2.2.1. --- Chemicals and reagents --- p.18
Chapter 2.2.2. --- Kits --- p.19
Chapter 2.2.3. --- Buffers and solutions --- p.19
Chapter 2.2.4. --- Cell lines --- p.20
Chapter 2.3. --- Experimental procedures --- p.20
Chapter 2.3.1. --- Hemoglobin quantity measurement by HbF ELISA --- p.20
Chapter 2.3.1.1. --- MTT assay --- p.21
Chapter 2.3.1.2. --- Preparation of capture-antibody coated ELISA plates --- p.21
Chapter 2.3.1.3. --- Plate blocking --- p.22
Chapter 2.3.1.4. --- Sample and standard preparation --- p.22
Chapter 2.3.1.5. --- HRP antibody and colorimetric detection --- p.23
Chapter 2.3.1.6. --- Statistical analysis --- p.23
Chapter 2.3.2. --- Preparation of mRNA extract from K562 cells --- p.23
Chapter 2.3.3. --- Reverse transcription and Real-time PCR analysis --- p.24
Chapter 2.4. --- Results --- p.25
Chapter 2.4.1. --- CuD significantly upregulates HbF expression in K562 cells --- p.25
Chapter 2.4.2. --- "CuD augments α, β, γ, δ, ε , ζ and BP-1 genes at different level in K562 cells" --- p.28
Chapter 2.4.3. --- Cucurbitacin D-induced γ-globin gene activation requires12-24 hours in K562 cells --- p.31
Chapter 2.5. --- Discussion --- p.33
Chapter 2.5.1. --- Enhancement of fetal hemoglobin production using different chemical compounds --- p.33
Chapter 2.5.2. --- CuD increased HbF synthesis by increasing γ-globin mRNA amount --- p.35
Chapter 2.5.3. --- CuD and HU down-regulated the BP-1 gene expression --- p.36
Chapter 3. --- Determination of potential signal transduction pathways during CuD and HU-mediated fetal hemoglobin production --- p.36
Chapter 3.1. --- Introductions --- p.36
Chapter 3.1.1. --- The p38 MAPK family --- p.37
Chapter 3.1.2. --- The JAK2-STAT3 pathway --- p.38
Chapter 3.1.3. --- Fundamentals on inhibition assay of p38 MAPK and JAK2-STAT3 pathway --- p.39
Chapter 3.1.4. --- Fundamentals on nuclear translocation of STAT3 --- p.41
Chapter 3.2. --- Materials --- p.41
Chapter 3.2.1. --- Chemicals and reagents --- p.41
Chapter 3.2.2. --- Kits --- p.44
Chapter 3.2.3. --- Buffers and solutions --- p.44
Chapter 3.3. --- Experimental procedures --- p.45
Chapter 3.3.1. --- Detection of p3 8 MAPK phosphorylation status --- p.46
Chapter 3.3.1.1. --- Preparation of cytosolic protein extracts --- p.46
Chapter 3.3.1.2. --- Quantitative measurement of phospho-p38 and pan-p38 by ELIS A method --- p.46
Chapter 3.3.1.2.1. --- Antigen adsorption and establishment of standard curves --- p.46
Chapter 3.3.1.2.2. --- Plate washing and application of detection antibody --- p.47
Chapter 3.3.1.2.3. --- Plate washing and application of secondary antibody --- p.47
Chapter 3.3.1.2.4. --- Plate washing and chromogen detection --- p.48
Chapter 3.3.2. --- Detection of signal cascade on JAK2-STAT3 pathway --- p.48
Chapter 3.3.2.1. --- Preparation of cytosolic protein extracts for Western Blot detection --- p.48
Chapter 3.3.2.2. --- Gel running and Western Blot detection --- p.48
Chapter 3.3.3. --- Quantitative measurement of phospho-STAT3-Tyr705 using ELISA method --- p.50
Chapter 3.3.3.1. --- Preparation of cytosolic protein extracts --- p.50
Chapter 3.3.3.2. --- Reconstitution and Dilution of STAT3 [pY705] Standard --- p.50
Chapter 3.3.3.3. --- Measurement of STAT3 [pY705] concentration in cell lysates --- p.51
Chapter 3.3.4. --- Inhibitor assay of JAK2-STAT3 and p38 MAPK pathway --- p.52
Chapter 3.3.4.1. --- Establishment of inhibitor assay --- p.52
Chapter 3.3.4.2. --- HbF ELISA detection --- p.53
Chapter 3.3.5. --- Detection of STAT3 nuclear translocation and DNA binding affinity --- p.53
Chapter 3.3.5.1. --- Preparation of nuclear extract from K562 cells --- p.53
Chapter 3.3.5.2. --- EMS A detection of transcriptional factors binding to γ-promoter region --- p.54
Chapter 3.3.5.2.1. --- 3´ة end-labeling of EMS A probes --- p.54
Chapter 3.3.5.2.2. --- Dot blotting for labeling efficiency estimation --- p.56
Chapter 3.3.5.2.3. --- EMSA binding reaction and non-denaturing gel electrophoresis --- p.57
Chapter 3.3.5.2.4. --- Membrane development and chemiluminescence detection --- p.58
Chapter 3.3.5.3. --- Preparation of K562 samples for immunofluorescence detection --- p.60
Chapter 3.3.5.3.1. --- Slide coating for cell capture --- p.60
Chapter 3.3.5.3.2. --- Preparation of cell slide --- p.60
Chapter 3.3.5.3.3. --- Sample fixation and antibody probing treatment --- p.60
Chapter 3.3.5.3.4. --- Sample imaging and immunofluorescence detection --- p.61
Chapter 3.4 --- Results --- p.62
Chapter 3.4.1. --- Activation of p38 MAPK pathway and STAT3 phosphorylation by hydroxyurea --- p.62
Chapter 3.4.1.1. --- "The p38 MAPK pathway is activated by hydroxyurea, but not activated by Cucurbitacin D" --- p.62
Chapter 3.4.1.2. --- Increased p38 phosphorylation level elicits STAT3 phosphorylation at Ser727 site --- p.64
Chapter 3.4.2. --- Activation of JAK2 and STAT3 phosphorylation by Cucurbitacin D --- p.66
Chapter 3.4.2.1. --- Cucurbitacin D promotes JAK2 activation --- p.66
Chapter 3.4.2.2. --- Cucurbitacin D and hydroxyurea promote STAT3 phosphorylation at Tyr705 site --- p.66
Chapter 3.4.3. --- Basal activity of signal transduction pathways is essential for HbF induction --- p.69
Chapter 3.4.3.1. --- Activation of γ-globin gene requires presence of basal phosphorylation level of p38 MAPK --- p.69
Chapter 3.4.3.2. --- Inhibition on JAK2-STAT3 pathway results in reduced fetal hemoglobin production --- p.71
Chapter 3.4.4. --- Translocation and DNA binding of STAT under Cucurbitacin D induction --- p.72
Chapter 3.4.4.1. --- Cucurbitacin D and hydroxyurea both enhance binding affinity of transcriptional factors to the Gγ/Aγ promoter --- p.72
Chapter 3.4.4.2. --- Cucurbitacin D and hydroxyurea induces nuclear translocation of STAT3 --- p.75
Chapter 3.5. --- Discussion --- p.77
Chapter 3.5.1. --- The role of p38 MAPK activation during γ-globin gene activation --- p.77
Chapter 3.5.2. --- STAT3 phosphorylation at Ser727 site promotes transcription factor activity and γ-globin gene expression --- p.77
Chapter 3.5.3. --- The role of JAK2-STAT3 activation during γ-globin gene activation --- p.78
Chapter 3.5.4. --- Inhibitor assay --- p.79
Chapter 3.5.5. --- Relations between STAT3 nuclear translocation and enhanced fetal hemoglobin production --- p.82
Chapter 4. --- Summery and Prospect --- p.83
Chapter 5. --- References --- p.87
„Molecular analyses of the mechanisms of cucurbitacin D (CuD)-induced human gamma-globin gene activation in K562 cells“. Thesis, 2011. http://library.cuhk.edu.hk/record=b6075155.
Der volle Inhalt der Quelle"November, 2010"--Abstract.
Thesis (Ph.D.)--Chinese University of Hong Kong, 2011.
Includes bibliographical references (leaves 116-129).
Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web.
Abstract also in Chinese.
Hrabánková, Klára. „Využití polymerních proléčiv s cucurbitacinem D pro léčbu experimentálních nádorů“. Master's thesis, 2021. http://www.nusl.cz/ntk/nusl-446100.
Der volle Inhalt der QuelleKolasa, Anna [Verfasser]. „Identification and analysis of new phloem proteins from Brassicaceae and Cucurbitaceae = Identifizierung und Analyse neuer Phloemproteine aus Brassicaceen und Cucurbitaceen / Anna Kolasa“. 2006. http://d-nb.info/979770998/34.
Der volle Inhalt der QuelleBuchteile zum Thema "Cucurbitacin D"
Akinyinka Akinwumi, Kazeeem, Oluwole Olusoji Eleyowo und Omolara Omowunmi Oladipo. „A Review on the Ethnobotanical Uses, Phytochemistry and Pharmacology Effect of Luffa cylindrica“. In Pharmacognosy - Medicinal Plants [Working Title]. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.98405.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Cucurbitacin D"
Sikander, Mohammed, Bilal Bin Hafeez, Shabnam Malik, Aditya Ganju, Fathi T. Halaweish, Murali Mohan Yallapu, Subhash C. Chauhan und Meena Jaggi. „Abstract 3224: Cucurbitacin D inhibits prostate tumor growth via targeting glucose metabolism“. In Proceedings: AACR Annual Meeting 2017; April 1-5, 2017; Washington, DC. American Association for Cancer Research, 2017. http://dx.doi.org/10.1158/1538-7445.am2017-3224.
Der volle Inhalt der QuelleSikander, Mohammed, Bilal Bin Hafeez, Fathi T. Halaweish, Murali M. Yallapu, Meena Jaggi und Subhash C. Chauhan. „Abstract 3081: Novel cucurbitacin analogue Cuc D exhibits potent anti-cancer activity in cervical cancer“. In Proceedings: AACR 107th Annual Meeting 2016; April 16-20, 2016; New Orleans, LA. American Association for Cancer Research, 2016. http://dx.doi.org/10.1158/1538-7445.am2016-3081.
Der volle Inhalt der QuelleSikander, Mohammed, Shabnam Malik, Bilal Bin Hafeez, Hassan Mandil, Fathi T. Halaweish, Meena Jaggi und Subhash C. Chauhan. „Abstract 2934: Cucurbitacin D enhances the therapeutic efficacy of docetaxel via targeting cancer stem cells and miR-145“. In Proceedings: AACR Annual Meeting 2018; April 14-18, 2018; Chicago, IL. American Association for Cancer Research, 2018. http://dx.doi.org/10.1158/1538-7445.am2018-2934.
Der volle Inhalt der QuelleKim, Myeong-Sun, Ji Hye Kim, Jin Mo Ku, Se Hyang Hong, Kangwook Lee, Hyeong Sim Choi, Sang Mi Woo, Jee Yun Chang, Tai Young Kim und Seong Gyu Ko Ko. „Abstract 3522: Cyclins and CDKs regulation and caspase cascade activation by cucurbitacin D induced cell cycle arrest and apoptosis in pancreatic tumor“. In Proceedings: AACR 107th Annual Meeting 2016; April 16-20, 2016; New Orleans, LA. American Association for Cancer Research, 2016. http://dx.doi.org/10.1158/1538-7445.am2016-3522.
Der volle Inhalt der QuelleKu, Jin Mo, Se Hyang Hong, Myeong-Sun Kim, Hyo In Kim, Soo-Yeon Kang, Kangwook Lee, Yu-Jeong Choi et al. „Abstract 2320: Cucurbitacin D induces cell cycle arrest and apoptosis by inhibiting STAT3 and NF-κB signaling in doxorubicin-resistant human breast carcinoma (MCF7/ADR) cells“. In Proceedings: AACR Annual Meeting 2017; April 1-5, 2017; Washington, DC. American Association for Cancer Research, 2017. http://dx.doi.org/10.1158/1538-7445.am2017-2320.
Der volle Inhalt der Quelle