Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Cucumber mosaic virus Genetics“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Cucumber mosaic virus Genetics" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Cucumber mosaic virus Genetics"
Avgelis, A. „Cucumber Mosaic Virus on Banana in Crete“. Journal of Phytopathology 120, Nr. 1 (September 1987): 20–24. http://dx.doi.org/10.1111/j.1439-0434.1987.tb04410.x.
Der volle Inhalt der QuelleRagozzino, A., und D. Stefanis. „Urospermum picroides ospite naturale del virus del mosaico del cetriolo (Cucumber mosaic virus) e del virus del mosaico dell'erba medica (Alfalfa mosaic virus)1)“. Journal of Phytopathology 86, Nr. 1 (28.06.2008): 27–36. http://dx.doi.org/10.1111/j.1439-0434.1976.tb04654.x.
Der volle Inhalt der QuelleListihani, Listihani, Dewa Gede Wiryangga Selangga und Mimi Sutrawati. „NATURAL INFECTION OF Tobacco mosaic virus ON BUTTERNUT SQUASH IN BALI, INDONESIA“. JURNAL HAMA DAN PENYAKIT TUMBUHAN TROPIKA 21, Nr. 2 (18.07.2021): 116–22. http://dx.doi.org/10.23960/jhptt.221116-122.
Der volle Inhalt der QuellePetrovic, Dragana, Maja Ignjatov, Zorica Nikolic, Milka Vujakovic, Mirjana Vasic, Mirjana Milosevic und Ksenija Taski-Ajdukovic. „Occurrence and distribution of viruses infecting the bean in Serbia“. Archives of Biological Sciences 62, Nr. 3 (2010): 595–601. http://dx.doi.org/10.2298/abs1003595p.
Der volle Inhalt der QuelleWalters, S. Alan. „Influence of Watermelon Mosaic Virus on Slicing Cucumber Farmgate Revenues“. HortTechnology 14, Nr. 1 (Januar 2004): 144–48. http://dx.doi.org/10.21273/horttech.14.1.0144.
Der volle Inhalt der QuelleFisher, J. R., und S. G. P. Nameth. „Characterization of a Cucumber Mosaic Virus Isolate and Satellite RNA from the Ornamental Host Ajuga reptans `Royalty'“. Journal of the American Society for Horticultural Science 128, Nr. 2 (März 2003): 231–37. http://dx.doi.org/10.21273/jashs.128.2.0231.
Der volle Inhalt der QuelleWalkey, D. G. A., C. M. Ward und K. Phelps. „The reaction of lettuce (Lactuca sativa L.) cultivars to cucumber mosaic virus“. Journal of Agricultural Science 105, Nr. 2 (Oktober 1985): 291–97. http://dx.doi.org/10.1017/s0021859600056367.
Der volle Inhalt der QuelleKim, Shin Je, Kyung-Hee Paek und Byung-Dong Kim. „Delay of Disease Development in Transgenic Petunia Plants Expressing Cucumber Mosaic Virus I17N-Satellite RNA“. Journal of the American Society for Horticultural Science 120, Nr. 2 (März 1995): 353–59. http://dx.doi.org/10.21273/jashs.120.2.353.
Der volle Inhalt der QuelleDavino, S., S. Cugnata und M. G. Bellardi. „Globularia nudicaulis, a new host for Cucumber mosaic virus“. Plant Pathology 55, Nr. 4 (August 2006): 568. http://dx.doi.org/10.1111/j.1365-3059.2006.01422.x.
Der volle Inhalt der QuelleGERA, A., und J. COHEN. „Occurrence of cucumber mosaic virus in phlox in Israel“. Plant Pathology 39, Nr. 3 (September 1990): 558–60. http://dx.doi.org/10.1111/j.1365-3059.1990.tb02533.x.
Der volle Inhalt der QuelleDissertationen zum Thema "Cucumber mosaic virus Genetics"
Wahyuni, Wiwiek Sri. „Variation among cucumber mosaic virus (CMV) isolates and their interaction with plants“. Title page, contents and summary only, 1992. http://web4.library.adelaide.edu.au/theses/09PH/09phw137.pdf.
Der volle Inhalt der QuelleAfsharifar, Alireza. „Characterisation of minor RNAs associated with plants infected with cucumber mosaic virus“. Title page, table of contents and abstract only, 1997. http://web4.library.adelaide.edu.au/theses/09PH/09pha2584.pdf.
Der volle Inhalt der QuelleWilliams, Rhys Harold Verdon George. „Further studies on the structure and function of the cucumber mosaic virus genome : a thesis submitted to the University of Adelaide, South Australia for the degree of Doctor of Philosophy“. 1988, 1988. http://web4.library.adelaide.edu.au/theses/09PH/09phw7261.pdf.
Der volle Inhalt der QuelleChen, Baoshan. „Encapsidation of nucleic acids by cucumovirus coat proteins /“. Title page, contents and summary only, 1991. http://web4.library.adelaide.edu.au/theses/09PH/09phc5183.pdf.
Der volle Inhalt der QuelleYang, Rongchang. „Towards genetic engineering cucumber mosaic virus (CMV) resistance in lupins“. Thesis, Yang, Rongchang ORCID: 0000-0003-2563-2015 (2000) Towards genetic engineering cucumber mosaic virus (CMV) resistance in lupins. PhD thesis, Murdoch University, 2000. https://researchrepository.murdoch.edu.au/id/eprint/41568/.
Der volle Inhalt der QuelleGeering, Andrew D. W. „The epidemiology of cucumber mosaic virus in narrow-leafed lupins (Lupinus angustifolius) in South Australia“. Title page, table of contents and summary only, 1992. http://web4.library.adelaide.edu.au/theses/09PH/09phg298.pdf.
Der volle Inhalt der QuelleBalcı, Evrim Doğanlar Sami. „Genetic characterization of cucumber mosaic virus(CMV)resistance in tomato and pepper“. [s.l.]: [s.n.], 2005. http://library.iyte.edu.tr/tezler/master/biyoloji/T000388.pdf.
Der volle Inhalt der QuelleTamisier, Lucie. „Adaptation des populations virales aux résistances variétales et exploitation des ressources génétiques des plantes pour contrôler cette adaptation“. Thesis, Avignon, 2017. http://www.theses.fr/2017AVIG0696/document.
Der volle Inhalt der QuellePlants carrying major resistance genes have been widely used to fight against diseases. However, the pathogensability to overcome the resistance after a few years of usage requires the search for efficient and durable resistances.The objectives of this thesis were (i) to identify plant genomic regions limiting pathogen evolution by inducinggenetic drift effects and (ii) to study the impact of the evolutionary forces imposed by the plant on the pathogenability to adapt to resistance, the goal being to further use these forces to limit pathogen evolution. The pepper(Capsicum annuum) – PVY (Potato virus Y) pathosystem has been mainly used to conduct these researches.Regarding the first objective, quantitative trait loci (QTL) were mapped on a biparental pepper population andthrough genome-wide association on a pepper core-collection. These approaches have allowed the detection ofgenomic regions on chromosomes 6, 7 and 12 controlling viral effective population size during the inoculationstep. Some of these QTLs were common to PVY and CMV (Cucumber mosaic virus) while other were virusspecific.Moreover, the QTL detected on chromosome 6 colocalizes with a previously identified QTL controllingPVY accumulation and interacting with a QTL affecting the breakdown frequency of a major resistance gene.Regarding the second objective, a correlation analysis between the evolutionary forces imposed by the plant andan experimental estimation of the durability of a major resistance gene has been done. Experimental evolution ofPVY populations on plants contrasted for the levels of genetic drift, selection and virus accumulation they imposedhas also been performed. Both studies demonstrated that a plant inducing a strong genetic drift combined to areduction in virus accumulation limits virus evolution and could even lead to the extinction of the virus population.These results open new perspectives to deploy plant genetic factors directly controlling pathogen evolutionarypotential and could help to preserve the durability of major resistance genes
McQuillin, Andrew. „Aspects of cucumber mosaic virus replication“. Thesis, Imperial College London, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.321682.
Der volle Inhalt der QuelleTungadi, Trisna Dewi. „Cucumber mosaic virus modifies plant-aphid interactions“. Thesis, University of Cambridge, 2014. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.708288.
Der volle Inhalt der QuelleBücher zum Thema "Cucumber mosaic virus Genetics"
Boulton, Margaret I. Protein synthesis in cucumber mosaic virus infected cucumber protoplasts. Birmingham: University of Birmingham, 1985.
Den vollen Inhalt der Quelle findenWallington, Emma Jane. Studies on transgenic resistance to cucumber mosaic virus. Birmingham: University of Birmingham, 1992.
Den vollen Inhalt der Quelle findenWeiland, John J. The roles of turnip yellow mosaic virus genes in virus replication. 1992.
Den vollen Inhalt der Quelle findenTsai, Ching-Hsiu. Characterization of the role of the 3' noncoding region of turnip yellow mosaic virus RNA. 1993.
Den vollen Inhalt der Quelle findenWallace, S. Ellen. Search for protein-protein interactions underlying the cis-preferential replication of turnip yellow mosaic virus. 1997.
Den vollen Inhalt der Quelle findenWallace, S. Ellen. Search for protein-protein interactions underlying the cis-preferential replication of turnip yellow mosaic virus. 1997.
Den vollen Inhalt der Quelle findenBransom, Kathryn L. Gene expression of proteins involved in replication of turnip yellow mosaic virus. 1994.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Cucumber mosaic virus Genetics"
Shintaku, Michael, und Peter Palukaitis. „Genetic Mapping of Cucumber Mosaic Virus“. In Viral Genes and Plant Pathogenesis, 156–64. New York, NY: Springer New York, 1990. http://dx.doi.org/10.1007/978-1-4612-3424-1_16.
Der volle Inhalt der QuelleGarcía-Arenal, Fernando, José Luis Alonso-Prados, Miguel A. Aranda, José M. Malpica und Aurora Fraile. „Mixed Infections and Genetic Exchange Occur in Natural Populations of Cucumber Mosaic Cucumovirus“. In Virus-Resistant Transgenic Plants: Potential Ecological Impact, 94–99. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-662-03506-1_11.
Der volle Inhalt der QuelleOkada, Yoshimi. „Cucumber Green Mottle Mosaic Virus“. In The Plant Viruses, 267–81. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4684-7026-0_14.
Der volle Inhalt der QuelleGeorgieva, I. D., und E. Stoimenova. „Cytochemical Investigation of Tomato and Cucumber Pollen After Cucumber Mosaic Virus Infection“. In Progress in Botanical Research, 223–26. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-011-5274-7_49.
Der volle Inhalt der QuelleTasaki, Keisuke, Masumi Yamagishi und Chikara Masuta. „Virus-Induced Gene Silencing in Lilies Using Cucumber Mosaic Virus Vectors“. In Methods in Molecular Biology, 1–13. New York, NY: Springer US, 2020. http://dx.doi.org/10.1007/978-1-0716-0751-0_1.
Der volle Inhalt der QuelleBaulcombe, David, Martine Devic und Martine Jaegle. „The Molecular Biology of Satellite RNA from Cucumber Mosaic Virus“. In Recognition and Response in Plant-Virus Interactions, 263–72. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-74164-7_13.
Der volle Inhalt der QuelleGarcía-Arenal, F., und P. Palukaitis. „Structure and Functional Relationships of Satellite RNAs of Cucumber Mosaic Virus“. In Current Topics in Microbiology and Immunology, 37–63. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-662-09796-0_3.
Der volle Inhalt der QuellePiazzolla, P., A. M. Tamburro und V. Renugopalakrishnan. „Structural studies of cucumber mosaic virus: Fourier transform infrared spectroscopic studies“. In Proteins, 133–37. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-010-9063-6_19.
Der volle Inhalt der QuelleChen, Jishuang. „Gene Cloning of Cucumber Mosaic Virus and Some Related Viral Agents“. In Advanced Topics in Science and Technology in China, 1–46. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-14119-5_1.
Der volle Inhalt der QuelleWestwood, Jack H., und John P. Carr. „Cucumber Mosaic Virus-ArabidopsisInteraction: Interplay of Virulence Strategies and Plant Responses“. In Molecular Plant Immunity, 225–50. Oxford, UK: Wiley-Blackwell, 2012. http://dx.doi.org/10.1002/9781118481431.ch11.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Cucumber mosaic virus Genetics"
„Reactivation of VaSTS1 expression in transgenic Arabidopsis thaliana plants by retransformation with 2b from Cucumber mosaic virus, isolate NK“. In Plant Genetics, Genomics, Bioinformatics, and Biotechnology. Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 2019. http://dx.doi.org/10.18699/plantgen2019-125.
Der volle Inhalt der Quelle„Reactivation of VaSTS1 expression in Arabidopsis thaliana transgenic plants by retransformation with 2b from the Cucumber Mosaic Virus isolate NK“. In Current Challenges in Plant Genetics, Genomics, Bioinformatics, and Biotechnology. Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences Novosibirsk State University, 2019. http://dx.doi.org/10.18699/icg-plantgen2019-45.
Der volle Inhalt der QuelleShehu, Dhurata, Thanas Ruci, Mirjana Stanoevska und Lefteri Onuzi. „IDENTIFICATION of Cucumber mosaic virus (CMV) ON KUKES DISTRICT, ALBANIA“. In The 4th Global Virtual Conference. Publishing Society, 2016. http://dx.doi.org/10.18638/gv.2016.4.1.755.
Der volle Inhalt der QuelleNasir, Aya Ali, und Mustafa Adhab. „A Biologically Distinct Isolate of Cucumber mosaic virus from Iraq“. In 2021 Third International Sustainability and Resilience Conference: Climate Change. IEEE, 2021. http://dx.doi.org/10.1109/ieeeconf53624.2021.9668142.
Der volle Inhalt der QuelleChandra, Mukesh, Pallavi Somvanshi, B. N. Mishra und Amod Tiwari. „Genetics of Yellow Mosaic Virus Resistance in Mung bean“. In 2010 IEEE International Conference on Computational Intelligence and Computing Research (ICCIC). IEEE, 2010. http://dx.doi.org/10.1109/iccic.2010.5705760.
Der volle Inhalt der QuellePlotnikov, Kirill, Valeriya Ryabinina, Alevtina Khodakova und Natalia Blazhko. „Viral Load Distribution of Cucumber Green Mottle Mosaic Virus in Leaves“. In Proceedings of the International Scientific Conference The Fifth Technological Order: Prospects for the Development and Modernization of the Russian Agro-Industrial Sector (TFTS 2019). Paris, France: Atlantis Press, 2020. http://dx.doi.org/10.2991/assehr.k.200113.171.
Der volle Inhalt der QuelleMolad, Ori, Elisheva Smith, Neta Luria, Noa Sela, Oded Lachman, Elena Bakelman, Diana Leibman und Aviv Dombrovsky. „Plant Disease Symptomatology: Cucumber Green Mottle Mosaic Virus (CGMMV)-Infected Cucumber Plants Exposed to Fluctuating Extreme Temperatures“. In IECPS 2021. Basel Switzerland: MDPI, 2021. http://dx.doi.org/10.3390/iecps2021-11991.
Der volle Inhalt der QuelleLee, Hoonsoo, Hyoun-Sub Lim und Byoung-Kwan Cho. „Classification of cucumber green mottle mosaic virus (CGMMV) infected watermelon seeds using Raman spectroscopy“. In SPIE Commercial + Scientific Sensing and Imaging, herausgegeben von Moon S. Kim, Kuanglin Chao und Bryan A. Chin. SPIE, 2016. http://dx.doi.org/10.1117/12.2228264.
Der volle Inhalt der QuelleRyabinina, Valeriya, Sergey Pashkovsky, Kirill Plotnikov und Eugeniya Gordienko. „Dynamics of Cucumber Green Mottle Mosaic Virus Accumulation and its Association to the Disease Manifestation“. In Proceedings of the International Scientific Conference The Fifth Technological Order: Prospects for the Development and Modernization of the Russian Agro-Industrial Sector (TFTS 2019). Paris, France: Atlantis Press, 2020. http://dx.doi.org/10.2991/assehr.k.200113.141.
Der volle Inhalt der QuelleUda, M. N. A., C. M. Hasfalina, A. A. Samsuzana, S. Faridah, Rafidah A. R., U. Hashim, Shahrul A. B. Ariffin und Subash C. B. Gopinath. „Determination of set potential voltages for cucumber mosaic virus detection using screen printed carbon electrode“. In 11TH ASIAN CONFERENCE ON CHEMICAL SENSORS: (ACCS2015). Author(s), 2017. http://dx.doi.org/10.1063/1.4975289.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Cucumber mosaic virus Genetics"
Gera, Abed, Abed Watad, P. Ueng, Hei-Ti Hsu, Kathryn Kamo, Peter Ueng und A. Lipsky. Genetic Transformation of Flowering Bulb Crops for Virus Resistance. United States Department of Agriculture, Januar 2001. http://dx.doi.org/10.32747/2001.7575293.bard.
Der volle Inhalt der QuelleGal-On, Amit, Shou-Wei Ding, Victor P. Gaba und Harry S. Paris. role of RNA-dependent RNA polymerase 1 in plant virus defense. United States Department of Agriculture, Januar 2012. http://dx.doi.org/10.32747/2012.7597919.bard.
Der volle Inhalt der QuelleValverde, Rodrigo A., Aviv Dombrovsky und Noa Sela. Interactions between Bell pepper endornavirus and acute viruses in bell pepper and effect to the host. United States Department of Agriculture, Januar 2014. http://dx.doi.org/10.32747/2014.7598166.bard.
Der volle Inhalt der QuelleWhitham, Steven A., Amit Gal-On und Victor Gaba. Post-transcriptional Regulation of Host Genes Involved with Symptom Expression in Potyviral Infections. United States Department of Agriculture, Juni 2012. http://dx.doi.org/10.32747/2012.7593391.bard.
Der volle Inhalt der QuelleGrumet, Rebecca, und Benjamin Raccah. Identification of Potyviral Domains Controlling Systemic Infection, Host Range and Aphid Transmission. United States Department of Agriculture, Juli 2000. http://dx.doi.org/10.32747/2000.7695842.bard.
Der volle Inhalt der Quelle