Auswahl der wissenschaftlichen Literatur zum Thema „CsPbBr3“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "CsPbBr3" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "CsPbBr3"

1

Dutt, V. G. Vasavi, Syed Akhil und Nimai Mishra. „Enhancement of photoluminescence and the stability of CsPbX3 (X = Cl, Br, and I) perovskite nanocrystals with phthalimide passivation“. Nanoscale 13, Nr. 34 (2021): 14442–49. http://dx.doi.org/10.1039/d1nr03916d.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Zhao, Xianhao, Tianyu Tang, Quan Xie, Like Gao, Limin Lu und Yanlin Tang. „First-principles study on the electronic and optical properties of the orthorhombic CsPbBr3 and CsPbI3 with Cmcm space group“. New Journal of Chemistry 45, Nr. 35 (2021): 15857–62. http://dx.doi.org/10.1039/d1nj02216d.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Chen, Lung-Chien, Ching-Ho Tien, Zong-Liang Tseng, Yu-Shen Dong und Shengyi Yang. „Influence of All-Inorganic Halide Perovskite CsPbBr3 Quantum Dots Combined with Polymer Matrix“. Materials 12, Nr. 6 (25.03.2019): 985. http://dx.doi.org/10.3390/ma12060985.

Der volle Inhalt der Quelle
Annotation:
The poor stability of CsPbX3 quantum dots (QDs-CsPbX3) under wet conditions is still considered to be a key issue. In order to overcome this problem, this study presents a high molecular weight polymer matrix (polymethylmethacrylate, PMMA) incorporated into the QDs-CsPbBr3 to improve its stability and maintain its excellent optical properties. In this study, the Cs2CO3, PbO, Tetrabutylammonium Bromide (TOAB) powder, oleic acid, and toluene solvent were uniformly mixed and purified to prepare high-quality QDs powders. Then, hexane was used as a dispersing agent for the QD powder to complete the perovskite QDs-CsPbBr3 solution. Finally, a solution with different proportions of quantum dots CsPbBr3 and PMMA was prepared and discussed. In the preparation of thin films, firstly, a thin film with the structure of glass/QD-CsPbBr3/PMMA was fabricated in a glove box using a well-developed QDs-CsPbBr3 solution by changing the ratio of CsPbBr3:PMMA. The material analysis of QDs-CsPbBr3 thin films was performed with photoluminescence (PL), transmittance, absorbance, and transmission electron microscopy (TEM). The structures and morphologies were further examined to study the effect of doped PMMA on perovskite QDs-CsPbBr3.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Xu, Jian, Hongxiang Zhang, Chunxia Wu und Jun Dai. „Stable CsPbX3@SiO2 Perovskite Quantum Dots for White-Light Emitting Diodes“. Journal of Nanoelectronics and Optoelectronics 15, Nr. 5 (01.05.2020): 599–606. http://dx.doi.org/10.1166/jno.2020.2824.

Der volle Inhalt der Quelle
Annotation:
In this article, we reported the synthesis method of stable CsPbX3@SiO2 quantum dots using cesium acetate instead of cesium carbonate. The results showed that CsPbX3@SiO2 presents good crystallinity and excellent luminescence properties. The coating layer of SiO2 on the CsPbX3 quantum dots surface blocks the air and water contact and suppresses anion exchange between the quantum dots, which dramatically enhances the stability. White light-emitting diode devices are manufactured by integrating the green CsPbBr3@SiO2 quantum dots and red CsPbBr1 I2@SiO2 quantum dots on the blue GaN chips. The devices show stable white light emission with Commission Internationale de L'Eclairage color coordinates (0.3511, 0.3437), and the white light intensity keeps unchanged after continuously working for 16 hours. The results indicate that CsPbX3@SiO2 quantum dots can be an ideal down-conversion fluorescent material for white light-emitting diode devices.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Tien, Chen, Lee, Tseng, Dong und Lin. „High-Quality All-Inorganic Perovskite CsPbBr3 Quantum Dots Emitter Prepared by a Simple Purified Method and Applications of Light-Emitting Diodes“. Energies 12, Nr. 18 (11.09.2019): 3507. http://dx.doi.org/10.3390/en12183507.

Der volle Inhalt der Quelle
Annotation:
High-quality perovskite CsPbBr3 quantum dots (QDs-CsPbBr3) were prepared using the ultrasonic oscillation method, which is simple and provides variable yield according to requirements. The emission spectra over a large portion of the visible spectral region (450–650 nm) of QD-CsPbX3 (X = Cl, Br, and I) have tunable compositions that can be halide exchanged using the halide anion exchange technique and quantum size-effects. A strong peak with high intensity of (200) lattice plane of purified QDs-CsPbBr3 film is obtained, confirming the formation of an orthorhombic perovskite crystal structure of the Pnma space group. The photoluminescence of QDs-CsPbBr3 was characterized using a narrow line-width emission of 20 nm, with high quantum yields of up to 99.2%, and radioactive lifetime increasing to 26 ns. Finally, through the excellent advantages of QDs-CsPbBr3 mentioned above, purified perovskite QDs-CsPbBr3 as an active layer was utilized in perovskite quantum dot light-emitting diodes structure applications. As a result, the perovskite QDs-CsPbBr3 light-emitting diodes (LEDs) exhibits a turn-on voltage of 7 V and a maximum luminance of 5.1 cd/m2.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Narayan, R. Lakshmi, M. V. S. Sarma und S. V. Suryanarayana. „Ionic conductivity of CsPbCl3 and CsPbBr3“. Journal of Materials Science Letters 6, Nr. 1 (Januar 1987): 93–94. http://dx.doi.org/10.1007/bf01729441.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Zhou, Jiangcong, Yiqing Lai, Na Lin, Xiaotian Huang, Yu Chen, Yao Yao und Bo Wang. „Incorporating CsPbBr3 Nanocrystals into Porous AlO(OH) Matrices to Improve their Stability in Backlit Displays“. Nano 14, Nr. 12 (Dezember 2019): 1950156. http://dx.doi.org/10.1142/s179329201950156x.

Der volle Inhalt der Quelle
Annotation:
Currently, the poor stability of inorganic perovskite CsPbX3 ([Formula: see text], Br, I) nanocrystals restricts their practical application in optoelectronic devices. Therefore, improving the stability of this material remains an urgent task for most researchers. In this study, incorporation of CsPbBr3 nanocrystals into porous AlO(OH) matrices through simple in situ synthesis was demonstrated to be an efficient approach for improving the nanocrystal stability. X-ray diffraction (XRD) revealed that the as-obtained product was composed of cubic CsPbBr3 nanocrystals and orthorhombic AlO(OH) compounds. In addition, transmission electron microscopy (TEM) revealed that the CsPbBr3 nanocrystals were successfully encapsulated by AlO(OH) matrices. The Brunauer–Emmett–Teller (BET) specific surface area was 234.96[Formula: see text]m2 g[Formula: see text] for AlO(OH) and 60.08[Formula: see text]m2 g[Formula: see text] for the CsPbBr3@AlO(OH) composites. The decrease in surface area could be attributed to the filling of the AlO(OH) pores by the CsPbBr3 nanocrystals. Further, the as-prepared composites showed red-shifted emission at 522[Formula: see text]nm and a larger full width at half-maximum (FWHM) as 26[Formula: see text]nm, compared with those of the CsPbBr3 nanocrystals with the emission at 517[Formula: see text]nm and FWHM as 17[Formula: see text]nm. More importantly, the emission intensity preserved 67% of the original value after a storage time of 120[Formula: see text]h, but bare CsPbBr3 nanocrystals rapidly degraded within only 1[Formula: see text]h in the polar ethanol solution. Finally, a light-emitting diode (LED) device was fabricated by coating the CsPbBr3@AlO(OH) composites and red commercial K2SiF6:Mn[Formula: see text] phosphors on the surface of a blue InGaN chip, covering 96% of National Television Standards Committee. The results indicate that the obtained composites could be promising luminescent materials for backlit displays.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Lee, ChaeHyun, Soo Jeong Lee, YeJi Shin, Yeonsu Woo, Sung-Hwan Han, Andrés Fabián Gualdrón-Reyes, Iván Mora-Seró und Seog Joon Yoon. „Synthetic and Post-Synthetic Strategies to Improve Photoluminescence Quantum Yields in Perovskite Quantum Dots“. Catalysts 11, Nr. 8 (10.08.2021): 957. http://dx.doi.org/10.3390/catal11080957.

Der volle Inhalt der Quelle
Annotation:
Making high-quality raw materials is the key to open the versatile potential of next generation materials. All-inorganic CsPbX3 (X: Cl−, Br−, and/or I−) perovskite quantum dots (PQDs) have been applied in various optoelectronic devices, such as photocatalysis, hydrogen evolution, solar cells, and light-emitting diodes, due to their outstanding photophysical properties, such as high photoluminescence quantum yield (PLQY), absorption cross-section, efficient charge separation, and so on. Specifically, for further improvement of the PLQY of the PQDs, it is essential to diminish the non-radiative charge recombination processes. In this work, we approached two ways to control the non-radiative charge recombination processes through synthetic and post-synthetic processes. Firstly, we proposed how refinement of the conventional recrystallization process for PbI2 contributes to higher PLQY of the PQDs. Secondly, after halide exchange from CsPbI3 PQDs to CsPbBr3, through an in situ spectroelectrochemical setup, we monitored the positive correlation between bromide deposition of on the surface of the perovskite and photoluminescence improvement of the CsPbBr3 perovskite film through electrodeposition. These two strategies could provide a way to enhance the photophysical properties of the perovskites for application to various perovskite-based optoelectronic devices.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Li, Zongtao, Cunjiang Song, Longshi Rao, Hanguang Lu, Caiman Yan, Kai Cao, Xinrui Ding, Binhai Yu und Yong Tang. „Synthesis of Highly Photoluminescent All-Inorganic CsPbX3 Nanocrystals via Interfacial Anion Exchange Reactions“. Nanomaterials 9, Nr. 9 (11.09.2019): 1296. http://dx.doi.org/10.3390/nano9091296.

Der volle Inhalt der Quelle
Annotation:
All-inorganic cesium lead halide perovskite CsPbX3 (X = Cl, Br, I) nanocrystals (NCs) have attracted significant attention owing to their fascinating electronic and optical properties. However, researchers still face challenges to achieve highly stable and photoluminescent CsPbX3 NCs at room temperature by the direct-synthesis method. Herein, we synthesize CsPbX3 NCs by a facile and environmentally friendly method, which uses an aqueous solution of metal halides to react with Cs4PbBr6 NCs via interfacial anion exchange reactions and without applying any pretreatment. This method produces monodisperse and air-stable CsPbX3 NCs with tunable spectra covering the entire visible range, narrow photoluminescence emission bandwidth, and high photoluminescence quantum yield (PL QY, 80%). In addition, the chemical transformation mechanism between Cs4PbBr6 NCs and CsPbX3 NCs was investigated. The Cs4PbBr6 NCs were converted to CsPbBr3 NCs first by stripping CsBr, and then, the as-prepared CsPbBr3 NCs reacted with metal halides to form CsPbX3 NCs. This work takes advantage of the chemical transformation mechanism of Cs4PbBr6 NCs and provides an efficient and environmentally friendly way to synthesize CsPbX3 NCs.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Liao, Lianxing, Kunhua Quan, Xiangshi Bin, Ruosheng Zeng und Tao Lin. „Bandgap and Carrier Dynamic Controls in CsPbBr3 Nanocrystals Encapsulated in Polydimethylsiloxane“. Crystals 11, Nr. 9 (17.09.2021): 1132. http://dx.doi.org/10.3390/cryst11091132.

Der volle Inhalt der Quelle
Annotation:
Bandgap tunability through ion substitution is a key feature of lead halide perovskite nanocrystals (LHP-NCs). However, the low stability and low luminescent performance of CsPbCl3 hinder their full-color applications. In this work, quantum confinement effect (QCE) was utilized to control the bandgap of CsPbBr3 NCs instead of using unstable CsPbCl3, which possess much higher emission efficiency in blue spectra region. Studies of microstructures, optical spectra and carrier dynamics revealed that tuning the reaction temperature was an effective way of controlling the NC sizes as well as QCE. Furthermore, the obtained CsPbBr3 NCs were encapsulated in a PDMS matrix while maintaining their size distribution and quantum-confined optoelectronic properties. The encapsulated samples showed long-term air and water stability. These results provide valuable guidance for both applications of LHP-NCs and principal investigation related to the carrier transition in LHP-NCs.
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Dissertationen zum Thema "CsPbBr3"

1

Liška, Petr. „Optická charakterizace pokročilých nanomateriálů s vysokým laterálním rozlišením“. Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2021. http://www.nusl.cz/ntk/nusl-443725.

Der volle Inhalt der Quelle
Annotation:
Advanced nanomaterials show a significant improvement in certain physical or functional properties compared to conventional materials. Such advanced materials are, for example, lead halide perovskites (LHP). It is a group of hybrid organic-inorganic materials with a direct bandgap exhibiting unique optical properties. The high quantum efficiency of photoluminescence makes nanocrystals or thin films of LHP suitable candidates for the production of light-emitting diodes, solar cells and LCD displays. Their inexpensive and simple fabrication together with their unique optical properties makes LHP one of the most developed materials of the last decade. This diploma thesis aims to study the optical properties of CsPbBr3 perovskite nanocrystals using high lateral resolution methods. CsPbBr3 perovskite nanocrystals show intense anti-Stokes photoluminescence. These nanocrystals can emit light with a lower wavelength than that of the light that causes their photoluminescence. The nanocrystals are prepared in two different ways: by evaporation or by crystallization of the precursor in a solution of dimethylformamide. The morphology, photoluminescence properties and chemical composition of individual nanocrystals are studied. Each nanocrystal is studied individually and its size, shape, photoluminescence properties and chemical compounds are determined, which leads to a deeper understanding of the anti-Stokes photoluminescence of perovskite nanocrystals.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Pan, Lei. „Development of perovskite for X-ray detection and gamma-ray spectroscopy“. The Ohio State University, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=osu161886103349645.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Ashner, Matthew N. (Matthew Nickol). „Data-driven approach to understanding exciton-exciton interactions in CsPbBr₃ nanocrystals“. Thesis, Massachusetts Institute of Technology, 2019. https://hdl.handle.net/1721.1/122847.

Der volle Inhalt der Quelle
Annotation:
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Chemical Engineering, 2019
Cataloged from PDF version of thesis.
Includes bibliographical references (pages 105-109).
Lead halide perovskites are a rapidly developing class of materials of interest for optoelectronic applications. They have a number of desirable properties such as long carrier diffusion lengths and defect tolerance that arise from the materials' unique dielectric properties. Although much of the initial interest in lead halide perovskites was geared towards producing highly efficient solar cells from the bulk material, cubic perovskite nanocrystals are a strong candidate system for light-emitting applications. Optical gain in semiconductor nanocrystals relies on emission from biexciton or doubly excited states. Knowledge of the spectral properties of biexciton states is critical for understanding optical gain development as well as many-body interactions between charge carriers more broadly. In this thesis, we develop and demonstrate a data-driven approach to characterizing the energetics and dynamics of biexciton states in CsPbBr₃ nanocrystals using TA spectroscopy.
We then use the understanding developed using the TA data to guide experiments using other techniques and further examine the physical phenomena that influence these excited states. In Chapter 2, we describe our data-driven method in detail and demonstrate its effectiveness in extracting spectral information about CsPbBr₃ nanocrystals. The method combines the target analysis fit commonly employed in organic systems with Bayesian inference and a Markov chain Monte Carlo sampler to accurately characterize the model uncertainty and vet the model itself. In Chapter 3, we apply the analysis developed in Chapter 2 to a size-series of CsPbBr₃ nanocrystals to extract the biexciton and exciton component TA spectra as a function of nanocrystal size. We find that the exciton and biexciton spectra have distinctive shapes, in contrast with the common assumption about these spectra.
The biexciton spectra a broader and slightly blue-shifted from the exciton spectrum, and the broadening and blue-shifting both increase as the nanocrystal size decreases. We verify this with our own time-resolved photoluminescence experiments. In Chapter 4, we propose and discuss in detail the development of an experiment to verify our hypothesis for why the exciton-exciton interaction is repulsive - the effect of polaron formation. We describe the development of a femtosecond stimulated Raman spectroscopy experiment to directly observe polaron formation and the challenges of performing this technique at high repetition rate. The central goal of this thesis is to describe a more careful approach to analyzing spectroscopic data.
by Matthew N. Ashner.
Ph. D.
Ph.D. Massachusetts Institute of Technology, Department of Chemical Engineering
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Vaills, Yann. „Contribution à l'étude des transitions de phase structurales des pérovskites CsCaCl3 et CsPbCI3 par résonance paramagnétique électronique de l'ion Gd3+“. Paris 6, 1986. http://www.theses.fr/1986PA066149.

Der volle Inhalt der Quelle
Annotation:
Les composés du titre synthétisés par la méthode Bridgman-Stockbaerger ont été étudiés à l'aide des sondes paramagnétiques Gd3+-S2-. Le groupe d'espace de CsCaCl3 en phase quadratique a été déterminé par diffraction RX. Détermination des paramètres des hamiltoniens de spin des sondes et interprétation dans le cadre des modèles de superposition et électrostatique. Etude des transformations de phase dans les deux composes.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Becker, Pascal [Verfasser]. „Structural and Optoelectronic Properties, Phase Transitions, and Degradation of Semiconducting CsPbI3-Perovskite Thin-Films for Photovoltaics / Pascal Becker“. Wuppertal : Universitätsbibliothek Wuppertal, 2019. http://d-nb.info/120422255X/34.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Hsieh, Yu-Hsuan, und 謝宇軒. „Ab initio study of topological insulator of perovskite CsPbBr3 and CsPbI3“. Thesis, 2019. http://ndltd.ncl.edu.tw/cgi-bin/gs32/gsweb.cgi/login?o=dnclcdr&s=id=%22107NCHU5693032%22.&searchmode=basic.

Der volle Inhalt der Quelle
Annotation:
碩士
國立中興大學
精密工程學系所
107
By using the first principle calculation, the topological insulators including perovskite structure CsPbBr3 and peroskite CsPbI3 was investigated in this work. The calculation on equi-triaxial compressive strain of bulk perovskite CsPbBr3 shows that an inverse insulator band could be observed in the CsPbBr3 as subjected to 6% strain. Meanwhile the Dirac cone feature is also confirmed at the 54th layer of perovskite CsPbBr3 under 6% strain by the surface state band calculation with the insertion of 20 Å-thick vaccum layer along [001] orientation. We can conclude that CsPbBr3 acts as a topological insulator. For bulk perovskite CsPbI3, the inverse insulator band could be obtained with 4% strain according to the calculation on equi-triaxal compressive strain. Furthermore it is showed that the magnitude of band inversion increase as the strain increases from 4% to 6%. By inserting 20 Å-thick vaccum layer along [001] orientation of CsPbI3 in the surface state band calculation, the Dirac cone feature appears at the 40th layer when 4% strain is applied. However, the Dirac cone feature could even be found within first 10 layers when the strain is increased from 4% to 6%, inducating that higher the strain is exerted to perovskite CsPbI3, the fewer film layers are required for making a topological insulator.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

CHIANG, PEI-SHAN, und 蔣佩珊. „Study single crystal CsPbBr3 perovskite photodetector“. Thesis, 2019. http://ndltd.ncl.edu.tw/handle/uw9msp.

Der volle Inhalt der Quelle
Annotation:
碩士
國立臺南大學
材料科學系碩士班
107
In recent years, perovskite materials have attracted more and more attention because they have good photoelectric properties and are inexpensive, and can be prepared at room temperature. In this study, electron beam lithography was used to implant electrostatic charges between electrodes to absorb DNA molecules. Nanoparticles and DNA were used as medium to adsorb perovskite (CsPbBr3) nanoparticles as crystal seed which then grew into a single crystal across the electrodes as a light sensor. Since the obstruction of the polycrystalline interface is avoided, the photo electron-hole pair generated when the single crystal perovskite is irradiated with light is directly transmitted to the electrodes, thereby efficiently performing high-efficiency light sensing.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

CHEN, JHAO-CHENG, und 陳昭誠. „Flexible CsPbBr3/ZnO Nanocomposites for UV Photodetectors Applications“. Thesis, 2019. http://ndltd.ncl.edu.tw/handle/33bdm2.

Der volle Inhalt der Quelle
Annotation:
碩士
國立臺北科技大學
製造科技研究所
107
In this study, we separate it to three steps, first polar ZnO thin films were used to be a buffer layer for synthesizing the second step’s one dimensional polar ZnO nanorods, then we start using these samples to be the UV photodetectors to discuss the reproducibility and stability of this sample. Lastly, spin coating CsPbBr3 perovskite quantum dots on top for UV photodetector sensing. First, polar ZnO thin films were deposited onto the p-type (100) Si and mica substrate by using Plasma Enhanced Chemical Vapor Deposition (PECVD)system. Second, utilizing the as-prepared thin films from two different substrates to synthesize ZnO nanorods by a simple hydrothermal method. Herein, we discovered the influence of the different growth time. Moreover, we used spin coaters to spin coating CsPbBr3 perovskite on top, and study these nanocomposites by using these samples as UV photodetectors then discuss the responsivity and sensitivity. According to the flexibility of mica substrate, we bend the mica substrate and discuss that with different direction of the force whether the substrate is changed and how. As a result, we successfully synthesized the vertical polar ZnO nanorods. After finishing one dimensional polar ZnO nanorods, we spin coating CsPbBr3 ¬perovskite ontop and identify these samples. After finish these nanocomposites we used platinum as top electrodes to fabricate horizontal structures of metal-semiconductor-metal (MSM) with Schottky contact behavior. As a result, the performance of ZnO-based photodetector platinum electrodes, it is showing the good reproducibility and stability after 5 times switching of UV illumination. Moreover, the sensitivity was enhanced after synthesized the nanorods structure on the polar ZnO buffer layer. For ZnO-based photodetector, the polar ZnO thin films photo gain increased by growth ZnO nanorods with 1hr growth time. What’s more, after spin coating perovskite we make the photo gain become larger and both the responsivity, to find out the self-powered ability we give 0V and still get the response. Lastly, we compare the force from the opposite direction to bend the mica substrate and found out with tensile force show good reproducibility and stability, with further 25 times bent, although the responsivity decay, we can still get a good reproducibility and stability.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

LUO, ZHENG-MING, und 羅政銘. „Preparation and Properties of Inorganic Perovskite CsPbBr3 Solar Cells“. Thesis, 2019. http://ndltd.ncl.edu.tw/handle/x528z2.

Der volle Inhalt der Quelle
Annotation:
碩士
國立臺南大學
材料科學系碩士班
107
In the face of global energy crisis and environmental pollution, environmentally friendly and renewable energy is what everyone expects, and solar energy is a good choice. Perovskite solar cells, which have been experiencing rapid development since 2009, are one of the emerging materials that scholars have paid attention to in recent years. Their material properties have high photoelectric conversion efficiency, low preparation cost and low pollution. Properties, and organic-inorganic hybrid perovskite solar cells have so far approached the photoelectric conversion efficiency level of commercially available polycrystalline silicon solar cells. However, the organic-inorganic hybrid perovskite is easy to react with water and oxygen in the atmosphere, so that the life of the organic-inorganic hybrid perovskite solar cell is short. In this study, inorganic perovskite is used as the light absorbing layer, and the preparation of inorganic perovskite solar cells was discussed, and the influence of process parameters on cell characteristics and related mechanisms were clarified. The first part is to synthesize the CsPbBr3 light absorbing layer by a multiple spin coating method modified from the two-step solution method. Different spin coating speed and spin coating times are used to control the phase composition of the perovskite light absorbing layer, and its different photoelectric properties are discussed. The second part is to discusses the effect of polydimethylsiloxane (PDMS) anti-reflection layer made from different sandpaper on the transmittance of fluorine-doped tin oide (FTO) substrate. The effect of PDMS layer on the performance of inorganic perovskite solar cells is discussed. The third part is to return to the method of making the light absorbing layer. In order to reduce the temperature of the whole process, the research uses IR irradiation instead of heat treatment to discusses the formation of perovskite layer and their photoelectric properties. The results show that the inorganic perovskite solar cell fabricated by multiple spin coating method can control the phase composition of inorganic perovskite by using different spin coating speed and number of spin coating. The best experimental parameter is 2000 rpm five times deposition of PbBr2 solution. The CsPbBr3 inorganic perovskite, which is closest to the pure phase in the product, can be obtained with an efficiency of up to 4.03%. The PDMS anti-reflective layer cast on the 240C sandpaper combined with FTO can improve light penetration and obtain the highest tranmittance. The highest penetration in the visible range is 88%, and the haze is as high as 84.24%. The photoelectric conversion efficiency of the all-inorganic perovskite perovskite solar cell is increased to 4.56% from 4.03%. At the same time, in this study the use of IR-assisted growth of all-inorganic perovskite light-absorbing layer was successful to prepare all-inorganic perovskite solar cells in a low-temperature environment below 400C, and the photoelectric conversion efficiency was up to 1.19%. The proposed IR-assisted method can help the use other low temperature substrate materials for flexible all-inorganic perovskite solar cells.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

LIN, TANG-YU, und 林唐鈺. „The Characteristics of Hybrid Graphene-CsPbBr3 Perovskite Nanocrystals Photodetector“. Thesis, 2019. http://ndltd.ncl.edu.tw/handle/t89e5w.

Der volle Inhalt der Quelle
Annotation:
碩士
國立臺南大學
材料科學系碩士班
107
Inorganic perovskite nanoparticles (CsPbBr3) have high absorbance for ultraviolet (UV), while graphene has high carrier mobility. This study combines the properties of both CsPbBr3 and graphene to produce photo-sensing device that are driven at very low voltages (0.001V) and have high responsivity. In this study, graphene was used as the electrical current channel between the two electrodes, and CsPbBr3 NCs were distributed on graphene as a UV-sensing material to make a photo-electrical sensing device. UV light of 254 nm was used as a light source in the experiment, and sensing was performed with a very small bias of 0.001 V. When the sensor is irradiated with UV light, the CsPbBr3 particles will generate a pair of photo-generated electron-holes pair, and the charge in the particles affects the carrier mobility of the graphene and also forms a gate (Gating) effect, thereby performing UV light sensing. In the research, it is found that the sensing current will increase or decrease with the different semiconductor characteristics of graphene and CsPbBr3 NCs. When sensing in a vacuum environment, the current will have a significant difference in the degree of current change due to the presence of negative ions in the bromine defect or not.
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Buchteile zum Thema "CsPbBr3"

1

Darshan, B. A., Kumar E. Dushyantha, H. S. Jithendra, A. M. Raghavendra, Kumar M. S. Praveen und B. S. Madhukar. „Flexible Piezoelectric Nanogenerator: PVDF-CsPbBr3 Nanocomposite“. In Springer Proceedings in Physics, 121–29. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-58868-7_14.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Pan, Lei, Praneeth Kandlakunta und Lei R. Cao. „Inorganic Perovskite CsPbBr3 Gamma-Ray Detector“. In Advanced Materials for Radiation Detection, 33–54. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-76461-6_2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Kale, Abhijeet, Rajneesh Chaurasiya und Ambesh Dixit. „DFT Studies on Electronic and Optical Properties of Inorganic CsPbI3 Perovskite Absorber for Solar Cell Application“. In Proceedings of the 7th International Conference on Advances in Energy Research, 1199–206. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-5955-6_114.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "CsPbBr3"

1

Chen, Jiabao, Gengfeng Wu, Jing Tang, Bing Xu und Xiaowei Sun. „Eu-doped CsPbBr3 perovskite nanocrystals“. In 2021 4th International Conference on Advanced Electronic Materials, Computers and Software Engineering (AEMCSE). IEEE, 2021. http://dx.doi.org/10.1109/aemcse51986.2021.00050.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Forth, Logan J., Mingqing Wang, Issy Braddock, Jia C. Khong, Rob Moss, Paul Sellin, Kwang L. Choy und Robert Speller. „Sensitive X-ray Detectors Synthesised from CsPbBr3“. In 2019 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC). IEEE, 2019. http://dx.doi.org/10.1109/nss/mic42101.2019.9059728.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Poonia, Ajay K., Wasim J. Mir, Megha Shrivastava, Angshuman Nag und K. V. Adarsh. „Thermal assisted carrier recombination in CsPbBr3 nanocrystals“. In CLEO: Science and Innovations. Washington, D.C.: OSA, 2020. http://dx.doi.org/10.1364/cleo_si.2020.sth4h.7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Zhang, Shubin, Maksym Zhukovskyi, Boldizsar Janko und Masaru K. Kuno. „Evaluation of CsPbBr3 nanocrystals for laser cooling“. In Photonic Heat Engines: Science and Applications, herausgegeben von Richard I. Epstein, Denis V. Seletskiy und Mansoor Sheik-Bahae. SPIE, 2019. http://dx.doi.org/10.1117/12.2507051.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Gabelloni, Fabio, Dario Balestri, Francesco Biccari, Giulia Andreotti, Francesca Intonti, Nicola Calisi, Stefano Caporali und Anna Vinattieri. „Near-field optical spectroscopy of CsPbBr3 microstructures“. In Bragg Gratings, Photosensitivity and Poling in Glass Waveguides and Materials. Washington, D.C.: OSA, 2018. http://dx.doi.org/10.1364/bgppm.2018.jtu2a.21.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Xue, Jie, und Xiaobao Xu. „Photon-induced reversible phase transition in CsPbBr3 perovskite“. In Information Storage System and Technology. Washington, D.C.: OSA, 2019. http://dx.doi.org/10.1364/isst.2019.jw4a.24.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Soni, Kumavat, Vishal Jain und N. Lakshmi. „Comparative study of CsPbBr3: Bulk and 001 surface“. In DAE SOLID STATE PHYSICS SYMPOSIUM 2019. AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0017492.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Leitao, Miguel F., Nicolas Laurand und Martin Dawson. „Luminescence Dynamics of CsPbBr3 Quantum Dot-Based Color Converters“. In 2018 IEEE Photonics Conference (IPC). IEEE, 2018. http://dx.doi.org/10.1109/ipcon.2018.8527337.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Kuno, Masaru K. „Evaluation of CsPbBr3 nanocrystals for laser cooling (Conference Presentation)“. In Photonic Heat Engines: Science and Applications II, herausgegeben von Richard I. Epstein, Denis V. Seletskiy und Mansoor Sheik-Bahae. SPIE, 2020. http://dx.doi.org/10.1117/12.2543541.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Lin, W. X/, und S. R. Chung. „Enhancing quantum yield of CsPbBr3 by ligand post-treatment“. In Physical Chemistry of Semiconductor Materials and Interfaces XVIII, herausgegeben von Daniel Congreve, Hugo A. Bronstein, Christian Nielsen und Felix Deschler. SPIE, 2019. http://dx.doi.org/10.1117/12.2529036.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie