Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „CsPbBr3“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "CsPbBr3" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "CsPbBr3"
Dutt, V. G. Vasavi, Syed Akhil und Nimai Mishra. „Enhancement of photoluminescence and the stability of CsPbX3 (X = Cl, Br, and I) perovskite nanocrystals with phthalimide passivation“. Nanoscale 13, Nr. 34 (2021): 14442–49. http://dx.doi.org/10.1039/d1nr03916d.
Der volle Inhalt der QuelleZhao, Xianhao, Tianyu Tang, Quan Xie, Like Gao, Limin Lu und Yanlin Tang. „First-principles study on the electronic and optical properties of the orthorhombic CsPbBr3 and CsPbI3 with Cmcm space group“. New Journal of Chemistry 45, Nr. 35 (2021): 15857–62. http://dx.doi.org/10.1039/d1nj02216d.
Der volle Inhalt der QuelleChen, Lung-Chien, Ching-Ho Tien, Zong-Liang Tseng, Yu-Shen Dong und Shengyi Yang. „Influence of All-Inorganic Halide Perovskite CsPbBr3 Quantum Dots Combined with Polymer Matrix“. Materials 12, Nr. 6 (25.03.2019): 985. http://dx.doi.org/10.3390/ma12060985.
Der volle Inhalt der QuelleXu, Jian, Hongxiang Zhang, Chunxia Wu und Jun Dai. „Stable CsPbX3@SiO2 Perovskite Quantum Dots for White-Light Emitting Diodes“. Journal of Nanoelectronics and Optoelectronics 15, Nr. 5 (01.05.2020): 599–606. http://dx.doi.org/10.1166/jno.2020.2824.
Der volle Inhalt der QuelleTien, Chen, Lee, Tseng, Dong und Lin. „High-Quality All-Inorganic Perovskite CsPbBr3 Quantum Dots Emitter Prepared by a Simple Purified Method and Applications of Light-Emitting Diodes“. Energies 12, Nr. 18 (11.09.2019): 3507. http://dx.doi.org/10.3390/en12183507.
Der volle Inhalt der QuelleNarayan, R. Lakshmi, M. V. S. Sarma und S. V. Suryanarayana. „Ionic conductivity of CsPbCl3 and CsPbBr3“. Journal of Materials Science Letters 6, Nr. 1 (Januar 1987): 93–94. http://dx.doi.org/10.1007/bf01729441.
Der volle Inhalt der QuelleZhou, Jiangcong, Yiqing Lai, Na Lin, Xiaotian Huang, Yu Chen, Yao Yao und Bo Wang. „Incorporating CsPbBr3 Nanocrystals into Porous AlO(OH) Matrices to Improve their Stability in Backlit Displays“. Nano 14, Nr. 12 (Dezember 2019): 1950156. http://dx.doi.org/10.1142/s179329201950156x.
Der volle Inhalt der QuelleLee, ChaeHyun, Soo Jeong Lee, YeJi Shin, Yeonsu Woo, Sung-Hwan Han, Andrés Fabián Gualdrón-Reyes, Iván Mora-Seró und Seog Joon Yoon. „Synthetic and Post-Synthetic Strategies to Improve Photoluminescence Quantum Yields in Perovskite Quantum Dots“. Catalysts 11, Nr. 8 (10.08.2021): 957. http://dx.doi.org/10.3390/catal11080957.
Der volle Inhalt der QuelleLi, Zongtao, Cunjiang Song, Longshi Rao, Hanguang Lu, Caiman Yan, Kai Cao, Xinrui Ding, Binhai Yu und Yong Tang. „Synthesis of Highly Photoluminescent All-Inorganic CsPbX3 Nanocrystals via Interfacial Anion Exchange Reactions“. Nanomaterials 9, Nr. 9 (11.09.2019): 1296. http://dx.doi.org/10.3390/nano9091296.
Der volle Inhalt der QuelleLiao, Lianxing, Kunhua Quan, Xiangshi Bin, Ruosheng Zeng und Tao Lin. „Bandgap and Carrier Dynamic Controls in CsPbBr3 Nanocrystals Encapsulated in Polydimethylsiloxane“. Crystals 11, Nr. 9 (17.09.2021): 1132. http://dx.doi.org/10.3390/cryst11091132.
Der volle Inhalt der QuelleDissertationen zum Thema "CsPbBr3"
Liška, Petr. „Optická charakterizace pokročilých nanomateriálů s vysokým laterálním rozlišením“. Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2021. http://www.nusl.cz/ntk/nusl-443725.
Der volle Inhalt der QuellePan, Lei. „Development of perovskite for X-ray detection and gamma-ray spectroscopy“. The Ohio State University, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=osu161886103349645.
Der volle Inhalt der QuelleAshner, Matthew N. (Matthew Nickol). „Data-driven approach to understanding exciton-exciton interactions in CsPbBr₃ nanocrystals“. Thesis, Massachusetts Institute of Technology, 2019. https://hdl.handle.net/1721.1/122847.
Der volle Inhalt der QuelleCataloged from PDF version of thesis.
Includes bibliographical references (pages 105-109).
Lead halide perovskites are a rapidly developing class of materials of interest for optoelectronic applications. They have a number of desirable properties such as long carrier diffusion lengths and defect tolerance that arise from the materials' unique dielectric properties. Although much of the initial interest in lead halide perovskites was geared towards producing highly efficient solar cells from the bulk material, cubic perovskite nanocrystals are a strong candidate system for light-emitting applications. Optical gain in semiconductor nanocrystals relies on emission from biexciton or doubly excited states. Knowledge of the spectral properties of biexciton states is critical for understanding optical gain development as well as many-body interactions between charge carriers more broadly. In this thesis, we develop and demonstrate a data-driven approach to characterizing the energetics and dynamics of biexciton states in CsPbBr₃ nanocrystals using TA spectroscopy.
We then use the understanding developed using the TA data to guide experiments using other techniques and further examine the physical phenomena that influence these excited states. In Chapter 2, we describe our data-driven method in detail and demonstrate its effectiveness in extracting spectral information about CsPbBr₃ nanocrystals. The method combines the target analysis fit commonly employed in organic systems with Bayesian inference and a Markov chain Monte Carlo sampler to accurately characterize the model uncertainty and vet the model itself. In Chapter 3, we apply the analysis developed in Chapter 2 to a size-series of CsPbBr₃ nanocrystals to extract the biexciton and exciton component TA spectra as a function of nanocrystal size. We find that the exciton and biexciton spectra have distinctive shapes, in contrast with the common assumption about these spectra.
The biexciton spectra a broader and slightly blue-shifted from the exciton spectrum, and the broadening and blue-shifting both increase as the nanocrystal size decreases. We verify this with our own time-resolved photoluminescence experiments. In Chapter 4, we propose and discuss in detail the development of an experiment to verify our hypothesis for why the exciton-exciton interaction is repulsive - the effect of polaron formation. We describe the development of a femtosecond stimulated Raman spectroscopy experiment to directly observe polaron formation and the challenges of performing this technique at high repetition rate. The central goal of this thesis is to describe a more careful approach to analyzing spectroscopic data.
by Matthew N. Ashner.
Ph. D.
Ph.D. Massachusetts Institute of Technology, Department of Chemical Engineering
Vaills, Yann. „Contribution à l'étude des transitions de phase structurales des pérovskites CsCaCl3 et CsPbCI3 par résonance paramagnétique électronique de l'ion Gd3+“. Paris 6, 1986. http://www.theses.fr/1986PA066149.
Der volle Inhalt der QuelleBecker, Pascal [Verfasser]. „Structural and Optoelectronic Properties, Phase Transitions, and Degradation of Semiconducting CsPbI3-Perovskite Thin-Films for Photovoltaics / Pascal Becker“. Wuppertal : Universitätsbibliothek Wuppertal, 2019. http://d-nb.info/120422255X/34.
Der volle Inhalt der QuelleHsieh, Yu-Hsuan, und 謝宇軒. „Ab initio study of topological insulator of perovskite CsPbBr3 and CsPbI3“. Thesis, 2019. http://ndltd.ncl.edu.tw/cgi-bin/gs32/gsweb.cgi/login?o=dnclcdr&s=id=%22107NCHU5693032%22.&searchmode=basic.
Der volle Inhalt der Quelle國立中興大學
精密工程學系所
107
By using the first principle calculation, the topological insulators including perovskite structure CsPbBr3 and peroskite CsPbI3 was investigated in this work. The calculation on equi-triaxial compressive strain of bulk perovskite CsPbBr3 shows that an inverse insulator band could be observed in the CsPbBr3 as subjected to 6% strain. Meanwhile the Dirac cone feature is also confirmed at the 54th layer of perovskite CsPbBr3 under 6% strain by the surface state band calculation with the insertion of 20 Å-thick vaccum layer along [001] orientation. We can conclude that CsPbBr3 acts as a topological insulator. For bulk perovskite CsPbI3, the inverse insulator band could be obtained with 4% strain according to the calculation on equi-triaxal compressive strain. Furthermore it is showed that the magnitude of band inversion increase as the strain increases from 4% to 6%. By inserting 20 Å-thick vaccum layer along [001] orientation of CsPbI3 in the surface state band calculation, the Dirac cone feature appears at the 40th layer when 4% strain is applied. However, the Dirac cone feature could even be found within first 10 layers when the strain is increased from 4% to 6%, inducating that higher the strain is exerted to perovskite CsPbI3, the fewer film layers are required for making a topological insulator.
CHIANG, PEI-SHAN, und 蔣佩珊. „Study single crystal CsPbBr3 perovskite photodetector“. Thesis, 2019. http://ndltd.ncl.edu.tw/handle/uw9msp.
Der volle Inhalt der Quelle國立臺南大學
材料科學系碩士班
107
In recent years, perovskite materials have attracted more and more attention because they have good photoelectric properties and are inexpensive, and can be prepared at room temperature. In this study, electron beam lithography was used to implant electrostatic charges between electrodes to absorb DNA molecules. Nanoparticles and DNA were used as medium to adsorb perovskite (CsPbBr3) nanoparticles as crystal seed which then grew into a single crystal across the electrodes as a light sensor. Since the obstruction of the polycrystalline interface is avoided, the photo electron-hole pair generated when the single crystal perovskite is irradiated with light is directly transmitted to the electrodes, thereby efficiently performing high-efficiency light sensing.
CHEN, JHAO-CHENG, und 陳昭誠. „Flexible CsPbBr3/ZnO Nanocomposites for UV Photodetectors Applications“. Thesis, 2019. http://ndltd.ncl.edu.tw/handle/33bdm2.
Der volle Inhalt der Quelle國立臺北科技大學
製造科技研究所
107
In this study, we separate it to three steps, first polar ZnO thin films were used to be a buffer layer for synthesizing the second step’s one dimensional polar ZnO nanorods, then we start using these samples to be the UV photodetectors to discuss the reproducibility and stability of this sample. Lastly, spin coating CsPbBr3 perovskite quantum dots on top for UV photodetector sensing. First, polar ZnO thin films were deposited onto the p-type (100) Si and mica substrate by using Plasma Enhanced Chemical Vapor Deposition (PECVD)system. Second, utilizing the as-prepared thin films from two different substrates to synthesize ZnO nanorods by a simple hydrothermal method. Herein, we discovered the influence of the different growth time. Moreover, we used spin coaters to spin coating CsPbBr3 perovskite on top, and study these nanocomposites by using these samples as UV photodetectors then discuss the responsivity and sensitivity. According to the flexibility of mica substrate, we bend the mica substrate and discuss that with different direction of the force whether the substrate is changed and how. As a result, we successfully synthesized the vertical polar ZnO nanorods. After finishing one dimensional polar ZnO nanorods, we spin coating CsPbBr3 ¬perovskite ontop and identify these samples. After finish these nanocomposites we used platinum as top electrodes to fabricate horizontal structures of metal-semiconductor-metal (MSM) with Schottky contact behavior. As a result, the performance of ZnO-based photodetector platinum electrodes, it is showing the good reproducibility and stability after 5 times switching of UV illumination. Moreover, the sensitivity was enhanced after synthesized the nanorods structure on the polar ZnO buffer layer. For ZnO-based photodetector, the polar ZnO thin films photo gain increased by growth ZnO nanorods with 1hr growth time. What’s more, after spin coating perovskite we make the photo gain become larger and both the responsivity, to find out the self-powered ability we give 0V and still get the response. Lastly, we compare the force from the opposite direction to bend the mica substrate and found out with tensile force show good reproducibility and stability, with further 25 times bent, although the responsivity decay, we can still get a good reproducibility and stability.
LUO, ZHENG-MING, und 羅政銘. „Preparation and Properties of Inorganic Perovskite CsPbBr3 Solar Cells“. Thesis, 2019. http://ndltd.ncl.edu.tw/handle/x528z2.
Der volle Inhalt der Quelle國立臺南大學
材料科學系碩士班
107
In the face of global energy crisis and environmental pollution, environmentally friendly and renewable energy is what everyone expects, and solar energy is a good choice. Perovskite solar cells, which have been experiencing rapid development since 2009, are one of the emerging materials that scholars have paid attention to in recent years. Their material properties have high photoelectric conversion efficiency, low preparation cost and low pollution. Properties, and organic-inorganic hybrid perovskite solar cells have so far approached the photoelectric conversion efficiency level of commercially available polycrystalline silicon solar cells. However, the organic-inorganic hybrid perovskite is easy to react with water and oxygen in the atmosphere, so that the life of the organic-inorganic hybrid perovskite solar cell is short. In this study, inorganic perovskite is used as the light absorbing layer, and the preparation of inorganic perovskite solar cells was discussed, and the influence of process parameters on cell characteristics and related mechanisms were clarified. The first part is to synthesize the CsPbBr3 light absorbing layer by a multiple spin coating method modified from the two-step solution method. Different spin coating speed and spin coating times are used to control the phase composition of the perovskite light absorbing layer, and its different photoelectric properties are discussed. The second part is to discusses the effect of polydimethylsiloxane (PDMS) anti-reflection layer made from different sandpaper on the transmittance of fluorine-doped tin oide (FTO) substrate. The effect of PDMS layer on the performance of inorganic perovskite solar cells is discussed. The third part is to return to the method of making the light absorbing layer. In order to reduce the temperature of the whole process, the research uses IR irradiation instead of heat treatment to discusses the formation of perovskite layer and their photoelectric properties. The results show that the inorganic perovskite solar cell fabricated by multiple spin coating method can control the phase composition of inorganic perovskite by using different spin coating speed and number of spin coating. The best experimental parameter is 2000 rpm five times deposition of PbBr2 solution. The CsPbBr3 inorganic perovskite, which is closest to the pure phase in the product, can be obtained with an efficiency of up to 4.03%. The PDMS anti-reflective layer cast on the 240C sandpaper combined with FTO can improve light penetration and obtain the highest tranmittance. The highest penetration in the visible range is 88%, and the haze is as high as 84.24%. The photoelectric conversion efficiency of the all-inorganic perovskite perovskite solar cell is increased to 4.56% from 4.03%. At the same time, in this study the use of IR-assisted growth of all-inorganic perovskite light-absorbing layer was successful to prepare all-inorganic perovskite solar cells in a low-temperature environment below 400C, and the photoelectric conversion efficiency was up to 1.19%. The proposed IR-assisted method can help the use other low temperature substrate materials for flexible all-inorganic perovskite solar cells.
LIN, TANG-YU, und 林唐鈺. „The Characteristics of Hybrid Graphene-CsPbBr3 Perovskite Nanocrystals Photodetector“. Thesis, 2019. http://ndltd.ncl.edu.tw/handle/t89e5w.
Der volle Inhalt der Quelle國立臺南大學
材料科學系碩士班
107
Inorganic perovskite nanoparticles (CsPbBr3) have high absorbance for ultraviolet (UV), while graphene has high carrier mobility. This study combines the properties of both CsPbBr3 and graphene to produce photo-sensing device that are driven at very low voltages (0.001V) and have high responsivity. In this study, graphene was used as the electrical current channel between the two electrodes, and CsPbBr3 NCs were distributed on graphene as a UV-sensing material to make a photo-electrical sensing device. UV light of 254 nm was used as a light source in the experiment, and sensing was performed with a very small bias of 0.001 V. When the sensor is irradiated with UV light, the CsPbBr3 particles will generate a pair of photo-generated electron-holes pair, and the charge in the particles affects the carrier mobility of the graphene and also forms a gate (Gating) effect, thereby performing UV light sensing. In the research, it is found that the sensing current will increase or decrease with the different semiconductor characteristics of graphene and CsPbBr3 NCs. When sensing in a vacuum environment, the current will have a significant difference in the degree of current change due to the presence of negative ions in the bromine defect or not.
Buchteile zum Thema "CsPbBr3"
Darshan, B. A., Kumar E. Dushyantha, H. S. Jithendra, A. M. Raghavendra, Kumar M. S. Praveen und B. S. Madhukar. „Flexible Piezoelectric Nanogenerator: PVDF-CsPbBr3 Nanocomposite“. In Springer Proceedings in Physics, 121–29. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-58868-7_14.
Der volle Inhalt der QuellePan, Lei, Praneeth Kandlakunta und Lei R. Cao. „Inorganic Perovskite CsPbBr3 Gamma-Ray Detector“. In Advanced Materials for Radiation Detection, 33–54. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-76461-6_2.
Der volle Inhalt der QuelleKale, Abhijeet, Rajneesh Chaurasiya und Ambesh Dixit. „DFT Studies on Electronic and Optical Properties of Inorganic CsPbI3 Perovskite Absorber for Solar Cell Application“. In Proceedings of the 7th International Conference on Advances in Energy Research, 1199–206. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-5955-6_114.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "CsPbBr3"
Chen, Jiabao, Gengfeng Wu, Jing Tang, Bing Xu und Xiaowei Sun. „Eu-doped CsPbBr3 perovskite nanocrystals“. In 2021 4th International Conference on Advanced Electronic Materials, Computers and Software Engineering (AEMCSE). IEEE, 2021. http://dx.doi.org/10.1109/aemcse51986.2021.00050.
Der volle Inhalt der QuelleForth, Logan J., Mingqing Wang, Issy Braddock, Jia C. Khong, Rob Moss, Paul Sellin, Kwang L. Choy und Robert Speller. „Sensitive X-ray Detectors Synthesised from CsPbBr3“. In 2019 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC). IEEE, 2019. http://dx.doi.org/10.1109/nss/mic42101.2019.9059728.
Der volle Inhalt der QuellePoonia, Ajay K., Wasim J. Mir, Megha Shrivastava, Angshuman Nag und K. V. Adarsh. „Thermal assisted carrier recombination in CsPbBr3 nanocrystals“. In CLEO: Science and Innovations. Washington, D.C.: OSA, 2020. http://dx.doi.org/10.1364/cleo_si.2020.sth4h.7.
Der volle Inhalt der QuelleZhang, Shubin, Maksym Zhukovskyi, Boldizsar Janko und Masaru K. Kuno. „Evaluation of CsPbBr3 nanocrystals for laser cooling“. In Photonic Heat Engines: Science and Applications, herausgegeben von Richard I. Epstein, Denis V. Seletskiy und Mansoor Sheik-Bahae. SPIE, 2019. http://dx.doi.org/10.1117/12.2507051.
Der volle Inhalt der QuelleGabelloni, Fabio, Dario Balestri, Francesco Biccari, Giulia Andreotti, Francesca Intonti, Nicola Calisi, Stefano Caporali und Anna Vinattieri. „Near-field optical spectroscopy of CsPbBr3 microstructures“. In Bragg Gratings, Photosensitivity and Poling in Glass Waveguides and Materials. Washington, D.C.: OSA, 2018. http://dx.doi.org/10.1364/bgppm.2018.jtu2a.21.
Der volle Inhalt der QuelleXue, Jie, und Xiaobao Xu. „Photon-induced reversible phase transition in CsPbBr3 perovskite“. In Information Storage System and Technology. Washington, D.C.: OSA, 2019. http://dx.doi.org/10.1364/isst.2019.jw4a.24.
Der volle Inhalt der QuelleSoni, Kumavat, Vishal Jain und N. Lakshmi. „Comparative study of CsPbBr3: Bulk and 001 surface“. In DAE SOLID STATE PHYSICS SYMPOSIUM 2019. AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0017492.
Der volle Inhalt der QuelleLeitao, Miguel F., Nicolas Laurand und Martin Dawson. „Luminescence Dynamics of CsPbBr3 Quantum Dot-Based Color Converters“. In 2018 IEEE Photonics Conference (IPC). IEEE, 2018. http://dx.doi.org/10.1109/ipcon.2018.8527337.
Der volle Inhalt der QuelleKuno, Masaru K. „Evaluation of CsPbBr3 nanocrystals for laser cooling (Conference Presentation)“. In Photonic Heat Engines: Science and Applications II, herausgegeben von Richard I. Epstein, Denis V. Seletskiy und Mansoor Sheik-Bahae. SPIE, 2020. http://dx.doi.org/10.1117/12.2543541.
Der volle Inhalt der QuelleLin, W. X/, und S. R. Chung. „Enhancing quantum yield of CsPbBr3 by ligand post-treatment“. In Physical Chemistry of Semiconductor Materials and Interfaces XVIII, herausgegeben von Daniel Congreve, Hugo A. Bronstein, Christian Nielsen und Felix Deschler. SPIE, 2019. http://dx.doi.org/10.1117/12.2529036.
Der volle Inhalt der Quelle