Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Crystallization“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Crystallization" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Crystallization"
Frolova, S., und O. Sobol. „Dynamics of cluster structure change in melts that forms a continuous series of solid solutions during equilibrium and nonequilibrium crystallization“. BULLETIN of the L.N. Gumilyov Eurasian National University. Chemistry. Geography. Ecology Series 143, Nr. 2 (2023): 45–51. http://dx.doi.org/10.32523/2616-6771-2023-143-2-45-51.
Der volle Inhalt der QuelleFlorence, Alastair J., Andrea Johnston, Philippe Fernandes, Norman Shankland und Kenneth Shankland. „An automated platform for parallel crystallization of small organic molecules“. Journal of Applied Crystallography 39, Nr. 6 (10.11.2006): 922–24. http://dx.doi.org/10.1107/s0021889806040921.
Der volle Inhalt der QuelleSemjonova, Aina, und Agris Bērziņš. „Surfactant Provided Control of Crystallization Polymorphic Outcome and Stabilization of Metastable Polymorphs of 2,6-Dimethoxyphenylboronic Acid“. Crystals 12, Nr. 12 (01.12.2022): 1738. http://dx.doi.org/10.3390/cryst12121738.
Der volle Inhalt der QuelleRoy, Pritish Kumar, und Shibendra Shekher Sikder. „Study of Nanocrystallization Kinetics in Fe 73.5 Cu 1 Nb 3 Si 13.5 B 9 Finemet Type Alloy by Differential Thermal Analysis and Using Different Models“. BL College Journal 4, Nr. 1 (01.07.2022): 140–55. http://dx.doi.org/10.62106/blc2022v4i1e3.
Der volle Inhalt der QuelleQin, Hong Wu, Xiao Xue Xing und Xian Zhang. „The Analysis for Crystallization of Sn-Pb Alloys Using Acoustic Emission Testing about Wind Turbine Root Materials“. Applied Mechanics and Materials 668-669 (Oktober 2014): 83–86. http://dx.doi.org/10.4028/www.scientific.net/amm.668-669.83.
Der volle Inhalt der QuelleBosq, Nicolas, Nathanaël Guigo und Nicolas Sbirrazzuoli. „Crystallization Behaviour of Polytetrafluoroethylene over very Large Cooling Rate Domains“. Advanced Materials Research 747 (August 2013): 201–4. http://dx.doi.org/10.4028/www.scientific.net/amr.747.201.
Der volle Inhalt der QuelleGrant, D., W. F. Long und F. B. Williamson. „Inhibition by glycosaminoglycans of CaCO3 (calcite) crystallization“. Biochemical Journal 259, Nr. 1 (01.04.1989): 41–45. http://dx.doi.org/10.1042/bj2590041.
Der volle Inhalt der QuelleAversa, Raffaella, Francesco Tamburrino, Daniela Parcesepe und Antonio Apicella. „Cold Crystallization Behaviour of a Commercial Zr44-Ti11-Cu10-Ni10-Be25 Metal Glassy Alloy“. Advanced Materials Research 1088 (Februar 2015): 206–12. http://dx.doi.org/10.4028/www.scientific.net/amr.1088.206.
Der volle Inhalt der QuelleXiuju, Z., S. Juncai, Y. Huajun, L. Zhidan und T. Shaozao. „Mechanical Properties, Morphology, Thermal Performance, Crystallization Behavior, and Kinetics of PP/Microcrystal Cellulose Composites Compatibilized by Two Different Compatibilizers“. Journal of Thermoplastic Composite Materials 24, Nr. 6 (24.05.2011): 735–54. http://dx.doi.org/10.1177/0892705711403527.
Der volle Inhalt der QuelleCarugo, Oliviero, und Kristina Djinović-Carugo. „Packing bridges in protein crystal structures“. Journal of Applied Crystallography 47, Nr. 1 (07.12.2013): 458–61. http://dx.doi.org/10.1107/s160057671302880x.
Der volle Inhalt der QuelleDissertationen zum Thema "Crystallization"
Sweed, Muhamed. „Co-crystallization in polyolefin blends studied by various crystallization analysis techniques“. Thesis, Link to the online version, 2006. http://hdl.handle.net/10019.1/2733.
Der volle Inhalt der QuellePatki, Rahul P. „Quench Crystallization of Linear Polyethylene: Crystallization Kinetics, Morphology and Structure Investigation“. Cincinnati, Ohio : University of Cincinnati, 2008. http://rave.ohiolink.edu/etdc/view.cgi?acc_num=ucin1227282696.
Der volle Inhalt der QuelleNúñez, Eugenia. „Crystallization in Constrained Polymer Structures : Approaching the Unsolved Problems in Polymer Crystallization“. Doctoral thesis, KTH, Fiber- och polymerteknik, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4041.
Der volle Inhalt der QuelleQC 20100914
Suzuki, Yasuhito [Verfasser]. „How different is water crystallization from polymer crystallization under confinement? / Yasuhito Suzuki“. Mainz : Universitätsbibliothek Mainz, 2015. http://d-nb.info/1078386684/34.
Der volle Inhalt der QuelleRobertson, Divann. „Studying crystallization kinetics using solution crystallization analysis by laser light scattering (Scalls)“. Thesis, Stellenbosch : Stellenbosch University, 2012. http://hdl.handle.net/10019.1/20112.
Der volle Inhalt der QuelleENGLISH ABSTRACT: This study involved the analysis of crystallization kinetics by means of a unique and newly developed Solution crystallization analysis by laser light scattering (Scalls) technique. In the main study we compared two commercial linear low-density polyethylene (LLDPE) polymers (PE-1- octene and PE-1-hexene) and studied the effect of short-chain branching on the solution crystallization of these complex polymer systems. Characterization of the polymers was done by nuclear magnetic resonance spectroscopy (NMR) and high-temperature gel permeation chromatography (HT-GPC). The second study involved the fractionation of a PE-1-hexene copolymer by temperature rising elution fractionation (Tref) and analyzing the solution crystallization of the different temperature fractions. This resulted in important details on the different molecular regions present in the polymer. A third additional study was done on the compatibility in polyolefin blends. Two different blends were prepared: isotactic polypropylene (iPP) – low density polyethylene (LDPE) blend and iPP – polypropylene impact copolymer (PPIC) blend. It was found that co-crystallization only occurred for the iPP - PPIC blends. Phase separation occurred for the iPP – LDPE blends, resulting in the formation of two phases for all blend compositions. Solution crystallization analysis is usually measured by the conventional Crystallization Analysis Fractionation (Crystaf) technique. In this study all crystallization data were compared with Crystaf results and a good correlation was found between the results obtained by Crystaf and Scalls. The major advantages of the Scalls technique are that, results similar to that of Crystaf can be acquired with much shorter analysis times and Scalls also allows for the measurement of solution melting of the crystallized polymer solutions.
AFRIKAANSE OPSOMMING: Hierdie studie het die analise van kristallisasie kinetika behels met behulp van die unieke en nuut ontwikkelde oplossing kristallisasie analise deur laser lig verstrooiing (Scalls) tegniek. In die hoof studie het ons twee kommersïele liniêre lae-digtheid polietileen (LLDPE) polimere (PE-1-okteen en PE-1-hekseen) vergelyk en die effek van kort-ketting vertakking op kristallisasie in oplossing van hierdie komplekse polimeer sisteme bestudeer. Karakterisering van die polimere was gedoen met kern magnetiese resonans spektroskopie (KMR) en hoë-temperatuur gel permeasie kromatografie (HT-GPC). Die tweede studie het die fraksionering van ‘n PE-1-hekseen ko-polieer met behulp van temperatuurstyging eluering fraksionering (Tref) behels asook die analisering van kristallisasie in oplossing van die verskillende temperatuur fraksies. Belangrike informasie oor die verskillende molekulêre areas teenwoordig in die polimeer was verkry. ‘n Derde addisionele studie was gedoen op die versoenbaarheid in poliolefin mengsels. Twee verskillende mengsels was voorberei: isotaktiese polipropileen (iPP) – lae digtheid polietileen (LDPE) mengsel en iPP – polipropileen impak ko-polimeer (PPIC) mengsel. Daar was gevind dat ko-kristallisasie slegs in die iPP – PPIC mengsel plaasgevind het. Fase skeiding het plaasgevind in die iPP – LDPE mengsels wat tot twee fases gelei het vir alle mengsel komposisies. Kristallisasie in oplossing word gewoonlik gemeet met die konvensionele kristallisasie analise fraksionering (Crystaf) tegniek. In hierdie studie was al die kristallisasie data met Crystaf resultate vergelyk en ‘n goeie korrelasie was gevind tussen die resultate van Crystaf en Scalls. Die grootste voordele van die Scalls tegniek is dat resultate soortgelyk aan diè van Crystaf kan verkry word met baie korter analises en Scalls laat ook toe vir die meting van smeltpunt van die gekristalliseerde polimeer oplossings.
Walter, Thomas S. „Methodology for macromolecular crystallization“. Thesis, University of Oxford, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.542989.
Der volle Inhalt der QuellePridmore, Derik A. (Derik Arnold) 1978. „Online polymer crystallization experiment“. Thesis, Massachusetts Institute of Technology, 2005. http://hdl.handle.net/1721.1/33335.
Der volle Inhalt der QuelleIncludes bibliographical references (leaves 119-120).
An architecture for online remote operation of a polymer crystallization experiment was refined, beta tested in actual use conditions, and extended based on feedback from those tests. In addition, an application for graphically simulating macroscopic crystal spherulite growth was developed for use as an educational tool. Finally, the experiment was used in the design process for modifying the generic iLab framework to incorporate interactive functionality. Specifically, a reservation model and design changes to the experiment storage and service broker were proposed based on the Polymerlab, and the experiment was used as a testbed for initial implementation of some of the proposed systems.
by Derik A. Pridmore.
M.Eng.
Yang, Li-yin 1952. „Crystallization kinetics of diphenylhydantoin“. Thesis, The University of Arizona, 1989. http://hdl.handle.net/10150/277190.
Der volle Inhalt der QuelleJana, Sarbojeet. „Crystallization behavior of waxes“. Thesis, Utah State University, 2016. http://pqdtopen.proquest.com/#viewpdf?dispub=10239292.
Der volle Inhalt der QuelleCrystallization behavior of different waxes such as beeswax (BW), paraffin wax (PW), ricebran wax (RBW), sunflower wax (SFW) was studied individually and in different oil solutions. Binary mixture at various proportions of the individual waxes was also explored in this study. Soybean oil is used in most of the study but olive, corn, sunflower, safflower, and canola oils were also explored. Lipid crystalline networks were characterized by several physical properties such as melting profile, solid fat content, viscoelastic parameters, cooling rate, phase behavior, crystal morphology. High intensity ultrasound (HIU) was used to change processing conditions of lipid crystallization. Instruments used to analyze the physical characteristics were differential scanning calorimeter, nuclear magnetic resonance spectroscopy, rheometer, temperature controlled water-bath, turbiscan light scattering device, and polarized light microscopy. The use of high intensity ultrasound showed that HIU technology can be used to delay the phase separation in beeswax/ oil system (canola, corn, olive, safflower, sunflower and soybean oil). Crystal sizes were reduced in beeswax/oil system at 0.5 and 1% concentration with the application of HIU technology. A study on binary waxes showed different phase behavior: eutectic behavior in BW/PW, SFW/PW, SFW/ BW, and RBW/BW; monotectic behavior in RBW/PW and continuous solid solution in RBW/SFW. Binary waxes in oil system (2.5% binary waxes) showed different physical properties when a range of binary blends were analyzed. Phase diagrams using iso-solid lines in binary wax/oil study show similarity when binary waxes without oil were studied using melting profile data. From all the above study it is understood that the physical properties of wax/oil systems are affected not only by the concentration and type of wax used, but also by the type of oil and application of HIU which induces wax crystallization and retards phase separation in wax/oil systems. Studies performed on all the topics suggest that understanding wax crystallization could help develop product formulation in food, pharmaceuticals, cosmetics, medicine and other industries.
Taffs, Jade. „Local structure in crystallization“. Thesis, University of Bristol, 2015. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.685975.
Der volle Inhalt der QuelleBücher zum Thema "Crystallization"
Beckmann, Wolfgang, Hrsg. Crystallization. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2013. http://dx.doi.org/10.1002/9783527650323.
Der volle Inhalt der QuelleMullin, J. W. Crystallization. 3. Aufl. Oxford: Butterworth-Heinemann, 1993.
Den vollen Inhalt der Quelle findenReiter, Günter, und Jens-Uwe Sommer, Hrsg. Polymer Crystallization. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/3-540-45851-4.
Der volle Inhalt der QuelleTavare, Narayan S. Industrial Crystallization. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4899-0233-7.
Der volle Inhalt der QuelleM, Bergfors Terese, Hrsg. Protein crystallization. La Jolla, Calif: International University Line, 2008.
Den vollen Inhalt der Quelle findenH, Ohtaki, Hrsg. Crystallization processes. Chichester: Wiley, 1998.
Den vollen Inhalt der Quelle findenGupta, Baskar Sen, und Shaliza Ibrahim, Hrsg. Mixing and Crystallization. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-017-2290-2.
Der volle Inhalt der QuelleAuriemma, Finizia, Giovanni Carlo Alfonso und Claudio de Rosa, Hrsg. Polymer Crystallization I. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-49203-2.
Der volle Inhalt der QuelleDosière, Marcel, Hrsg. Crystallization of Polymers. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1950-4.
Der volle Inhalt der QuelleHerlach, Dieter M., Hrsg. Solidification and Crystallization. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2004. http://dx.doi.org/10.1002/3527603506.
Der volle Inhalt der QuelleBuchteile zum Thema "Crystallization"
Beckmann, Wolfgang. „Crystallization: Introduction“. In Crystallization, 1–5. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2013. http://dx.doi.org/10.1002/9783527650323.ch1.
Der volle Inhalt der QuelleWieckhusen, Dierk. „Development of Batch Crystallizations“. In Crystallization, 187–202. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2013. http://dx.doi.org/10.1002/9783527650323.ch10.
Der volle Inhalt der QuelleHofmann, Günter, und Christian Melches. „Continuous Crystallization“. In Crystallization, 203–33. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2013. http://dx.doi.org/10.1002/9783527650323.ch11.
Der volle Inhalt der QuelleBeckmann, Wolfgang. „Precipitation“. In Crystallization, 235–46. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2013. http://dx.doi.org/10.1002/9783527650323.ch12.
Der volle Inhalt der QuelleNienhaus, Bernd. „Mixing in Crystallization Processes“. In Crystallization, 247–74. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2013. http://dx.doi.org/10.1002/9783527650323.ch13.
Der volle Inhalt der QuelleWieckhusen, Dierk, und Wolfgang Beckmann. „Downstream Processes“. In Crystallization, 275–88. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2013. http://dx.doi.org/10.1002/9783527650323.ch14.
Der volle Inhalt der QuelleUlrich, Joachim, und Torsten Stelzer. „Melt Crystallization“. In Crystallization, 289–304. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2013. http://dx.doi.org/10.1002/9783527650323.ch15.
Der volle Inhalt der QuelleHofmann, Günter, und Christian Melches. „Examples of Realized Continuous Crystallization Processes“. In Crystallization, 305–24. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2013. http://dx.doi.org/10.1002/9783527650323.ch16.
Der volle Inhalt der QuelleUlrich, Joachim, und Torsten Stelzer. „Design Examples of Melt Crystallization“. In Crystallization, 325–35. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2013. http://dx.doi.org/10.1002/9783527650323.ch17.
Der volle Inhalt der QuelleBeckmann, Wolfgang. „Mechanisms of Crystallization“. In Crystallization, 7–33. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2013. http://dx.doi.org/10.1002/9783527650323.ch2.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Crystallization"
Wohn, Donghee Yvette, und Brian J. Bowe. „Crystallization“. In the companion publication of the 17th ACM conference. New York, New York, USA: ACM Press, 2014. http://dx.doi.org/10.1145/2556420.2556509.
Der volle Inhalt der QuelleGoncharenko, О. P., und I. L. Lashina. „ENVIRONMENT OF POTASSIUM-MAGNESIUM SALT FORMATION IN THE UPPERPERMIAN KALININGRAD-GDANSK BLOCK OF THE CENTRAL EUROPEAN HALOGEN BASIN (FROMEXAMINATIONOFINCLUSIONSINMINERALS)“. In Проблемы минералогии, петрографии и металлогении. Научные чтения памяти П. Н. Чирвинского. Пермский государственный национальный исследовательский университет, 2021. http://dx.doi.org/10.17072/chirvinsky.2021.25.
Der volle Inhalt der QuelleScherer, G. W. „Factors affecting crystallization pressure“. In International RILEM Workshop on Internal Sulfate Attack and Delayed Ettringite Formation. RILEM Publications SARL, 2004. http://dx.doi.org/10.1617/2912143802.009.
Der volle Inhalt der QuelleOliveira, Vinícius, Willian Righi Assis und Erick de Moraes Franklin. „Crystallization in Bidispersed Beds“. In 19th Brazilian Congress of Thermal Sciences and Engineering. ABCM, 2022. http://dx.doi.org/10.26678/abcm.encit2022.cit22-0058.
Der volle Inhalt der QuelleBoix, Pablo P. „Device-oriented perovskite crystallization“. In International Conference on Hybrid and Organic Photovoltaics. València: FUNDACIO DE LA COMUNITAT VALENCIANA SCITO, 2024. http://dx.doi.org/10.29363/nanoge.hopv.2024.067.
Der volle Inhalt der QuelleKim, J. S., Y. M. Xiong, C. Lee, H. S. Choi und H. J. Kim. „Deformation Behavior and Properties of a CuZrTiNi BMG Kinetic Spray Coating“. In ITSC2007, herausgegeben von B. R. Marple, M. M. Hyland, Y. C. Lau, C. J. Li, R. S. Lima und G. Montavon. ASM International, 2007. http://dx.doi.org/10.31399/asm.cp.itsc2007p0114.
Der volle Inhalt der QuelleZhou, Guofu, Herman J. Borg, J. C. N. Rijpers, Martijn H. R. Lankhorst und J. J. L. Horikx. „Crystallization behavior of phase-change materials: comparison between nucleation- and growth-dominated crystallization“. In Optical Data Storage, herausgegeben von Douglas G. Stinson und Ryuichi Katayama. SPIE, 2000. http://dx.doi.org/10.1117/12.399337.
Der volle Inhalt der Quelle„Crystallization force of sodium chloride“. In Engineering Mechanics 2018. Institute of Theoretical and Applied Mechanics of the Czech Academy of Sciences, 2018. http://dx.doi.org/10.21495/91-8-417.
Der volle Inhalt der QuelleFedortchouk, Yana, und Ingrid Chinn. „Crystallization Conditions of Kimberlite Magma“. In Goldschmidt2020. Geochemical Society, 2020. http://dx.doi.org/10.46427/gold2020.695.
Der volle Inhalt der QuellePRADELL, T., D. CRESPO, N. CLAVAGUERA und M. T. CLAVAGUERA-MORA. „AVRAMI EXPONENTS VERSUS CRYSTALLIZATION MECHANISMS“. In Proceedings of the Fifth International Workshop on Non-Crystalline Solids. WORLD SCIENTIFIC, 1998. http://dx.doi.org/10.1142/9789814447225_0046.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Crystallization"
Yepez, Jeffrey. Lattice-Gas Crystallization. Fort Belvoir, VA: Defense Technical Information Center, Juni 1994. http://dx.doi.org/10.21236/ada421735.
Der volle Inhalt der QuelleHERTING DL. FRACTIONAL CRYSTALLIZATION FEED ENVELOPE. Office of Scientific and Technical Information (OSTI), März 2008. http://dx.doi.org/10.2172/926177.
Der volle Inhalt der QuelleSchiffer, J. P. Summary talk on beam crystallization. Office of Scientific and Technical Information (OSTI), November 1993. http://dx.doi.org/10.2172/10194766.
Der volle Inhalt der QuelleRosenberg, Marlene. Coulomb Crystallization in Dusty Plasmas. Fort Belvoir, VA: Defense Technical Information Center, September 1998. http://dx.doi.org/10.21236/ada354822.
Der volle Inhalt der QuelleRoland, C. M., und Gary S. Buckley. Thermal Crystallization of Polytetrahydrofuran Networks. Fort Belvoir, VA: Defense Technical Information Center, November 1989. http://dx.doi.org/10.21236/ada215336.
Der volle Inhalt der QuelleOrebaugh, E. G. Simulation of salt waste evaporation/crystallization. Office of Scientific and Technical Information (OSTI), Januar 1993. http://dx.doi.org/10.2172/10142007.
Der volle Inhalt der QuelleCullinan, Timothy Edward. Crystallization dynamics in glass-forming systems. Office of Scientific and Technical Information (OSTI), Februar 2016. http://dx.doi.org/10.2172/1342537.
Der volle Inhalt der QuelleSkone, Timothy J. Marcellus Shale Water Treatment with Crystallization. Office of Scientific and Technical Information (OSTI), Oktober 2011. http://dx.doi.org/10.2172/1509082.
Der volle Inhalt der QuellePERSON, J. C. LITERATURE SURVEY FOR FRACTIONAL CRYSTALLIZATION STUDY. Office of Scientific and Technical Information (OSTI), Juli 2004. http://dx.doi.org/10.2172/828250.
Der volle Inhalt der QuelleOrebaugh, E. G. Simulation of salt waste evaporation/crystallization. Office of Scientific and Technical Information (OSTI), Januar 1993. http://dx.doi.org/10.2172/6645352.
Der volle Inhalt der Quelle