Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Cryptic variation“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Cryptic variation" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Cryptic variation"
Gibson, Greg, und Laura K. Reed. „Cryptic genetic variation“. Current Biology 18, Nr. 21 (November 2008): R989—R990. http://dx.doi.org/10.1016/j.cub.2008.08.011.
Der volle Inhalt der QuelleGibson, Greg, und Ian Dworkin. „Uncovering cryptic genetic variation“. Nature Reviews Genetics 5, Nr. 9 (September 2004): 681–90. http://dx.doi.org/10.1038/nrg1426.
Der volle Inhalt der QuelleBurgess, Darren J. „An eye for cryptic variation“. Nature Reviews Genetics 15, Nr. 2 (24.12.2013): 64. http://dx.doi.org/10.1038/nrg3660.
Der volle Inhalt der QuelleZheng, Jia, Joshua L. Payne und Andreas Wagner. „Cryptic genetic variation accelerates evolution by opening access to diverse adaptive peaks“. Science 365, Nr. 6451 (25.07.2019): 347–53. http://dx.doi.org/10.1126/science.aax1837.
Der volle Inhalt der QuelleMcGuigan, Katrina, und Carla M. Sgrò. „Evolutionary consequences of cryptic genetic variation“. Trends in Ecology & Evolution 24, Nr. 6 (Juni 2009): 305–11. http://dx.doi.org/10.1016/j.tree.2009.02.001.
Der volle Inhalt der QuellePaaby, Annalise B., und Matthew V. Rockman. „Cryptic genetic variation: evolution's hidden substrate“. Nature Reviews Genetics 15, Nr. 4 (11.03.2014): 247–58. http://dx.doi.org/10.1038/nrg3688.
Der volle Inhalt der QuellePaaby, Annalise, und Greg Gibson. „Cryptic Genetic Variation in Evolutionary Developmental Genetics“. Biology 5, Nr. 2 (13.06.2016): 28. http://dx.doi.org/10.3390/biology5020028.
Der volle Inhalt der QuelleOmland, Kevin E., Cheryl L. Tarr, William I. Boarman, John M. Marzluff und Robert C. Fleischer. „Cryptic genetic variation and paraphyly in ravens“. Proceedings of the Royal Society of London. Series B: Biological Sciences 267, Nr. 1461 (22.12.2000): 2475–82. http://dx.doi.org/10.1098/rspb.2000.1308.
Der volle Inhalt der QuelleHodgkinson, Alan, Emmanuel Ladoukakis und Adam Eyre-Walker. „Cryptic Variation in the Human Mutation Rate“. PLoS Biology 7, Nr. 2 (03.02.2009): e1000027. http://dx.doi.org/10.1371/journal.pbio.1000027.
Der volle Inhalt der QuelleTitus, Robert. „Cryptic variation and its manifestation in the Lower Trentonian Rafinesquina lineage (Ordovician, New York State)“. Paleontological Society Special Publications 6 (1992): 292. http://dx.doi.org/10.1017/s2475262200008522.
Der volle Inhalt der QuelleDissertationen zum Thema "Cryptic variation"
KIssane, Kelly C. „Geographic variation and cryptic species evidence from natural populations of the fishing spider Dolomedes triton /“. abstract and full text PDF (free order & download UNR users only), 2007. http://0-gateway.proquest.com.innopac.library.unr.edu/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3275834.
Der volle Inhalt der QuelleMoeser, Andrew A. „Genetic analyses of sympatric cryptic species in the Neotropical catfish, Pimelodella chagresi“. Thesis, McGill University, 2005. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=82294.
Der volle Inhalt der QuelleTri, Baskoro T. S. „Cryptic species within Anopheles barbirostris Van der Wulp, 1884 : inferred from nuclear and mitochondrial gene sequence variation“. Thesis, University of Liverpool, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.250419.
Der volle Inhalt der QuelleVan, Leeuwen Travis Edward. „Variation in metabolic rate between individuals and species : cryptic physiological tradeoffs underlying habitat partitioning and life history strategies of juvenile salmonids“. Thesis, University of British Columbia, 2010. http://hdl.handle.net/2429/28689.
Der volle Inhalt der QuelleBazzano, Jason. „Differences in Sexual Dimorphism and Influences of Sexual Dichromatism on Crypsis Among Populations of the Jumping Spider Habronattus oregonensis“. PDXScholar, 2011. https://pdxscholar.library.pdx.edu/open_access_etds/272.
Der volle Inhalt der QuelleAissaoui, Cherifa. „Les mollusques du Golfe de Gabès (Méditerranée sud-orientale) : néo-endemisme ou variations écophénotypiques ?“ Thesis, Paris, Muséum national d'histoire naturelle, 2016. http://www.theses.fr/2016MNHN0014/document.
Der volle Inhalt der QuelleThe present Mediterranean marine fauna is the result of a history going back to the Messinian Salinity Crisis, with current biogeographical patterns mostly reflecting Quaternary to modern oceanographic conditions. The Gulf of Gabès, in southern Tunisia, is remarkable for its extreme ecological characteristics that distinguish it from "ambiant" Mediterranean conditions. Starting with the work of malacologists at the turn of the 19th-20th centuries, the molluscs of the Gulf of Gabès have been recognized as exhibiting morphological characters that set them apart from more typical forms that occur in the rest of the Mediterranean. At present, 6% of the species of the overall Gulf of Gabès mollusc fauna are treated as valid local endemics. Using an integrative taxonomy approach, combining molecular and morphological data, the objective of the study is to re-evaluate the status of these Gulf of Gabès local forms: are they valid, endemic species or do they represent ecophenotypic variation? Given the young geological age (6-8 ka) of the Gulf, where would local endemics have originated? The gastropod genera Jujubinus (Trochidae), Diodora (Fissurellidae), Tritia (Nassariidae) Ocinebrina (Muricidae), Muricopsis (Muricidae) and Aplus (Buccinidae) all have in common non-planktotrophic larval development. Our integrative approach confirms the validity of some of the endemic taxa, but also infirm that others are not valid species; molecular data also reveal unsuspected cryptic lineages both within and outside the Gulf. Regarding the question of the origin of the endemic species, various hypotheses have been proposed, one of them being that the Gulf of Gabès is a “speciation factory”. To formally test this hypothesis, more molecular data (coupled with fossil record data) are needed from other species groups and from other localities in the Mediterranean (specifically the Gulf of Syrte)
Colson-Proch, Céline. „Écophysiologie évolutive en milieu aquatique souterrain : influence des variations de température sur la distribution de Niphargus rhenorhodanensis et Proasellus valdensis“. Thesis, Lyon 1, 2009. http://www.theses.fr/2009LYO10195.
Der volle Inhalt der QuelleTemperature is the abiotic factor that most influences the life-history traits of ectothermic organisms. In order to study the relationships between physiology, environment and evolutionary history and their respective role in the determination of species distribution areas, this work takes advantage of the thermal caracteristics of subterranean aquatic biotopes. Our results refuted stenothermy in both studied hypogean organisms Niphargus rhenorhodanensis and Proasellus valdensis and they showed that evolutionary history, dispersal and competition are important factors that determine the distribution of subterranean species. Moreover, this work characterized for the first time in subterranean organisms a gene encoding heat shock proteins and demonstrated the high cellular sensitivity of N. rhenorhodanensis to increased water temperature
Cunche, Mathieu. „Codes AL-FEC hautes performances pour les canaux à effacements : variations autour des codes LDPC“. Phd thesis, Grenoble, 2010. http://tel.archives-ouvertes.fr/tel-00451336.
Der volle Inhalt der QuelleSmith, Geneviève Kathleen. „The coexistence of ecologically similar species“. 2013. http://hdl.handle.net/2152/23186.
Der volle Inhalt der Quelletext
Zhang, Bing. „Habitat selection, cryptic diversity, phylogeny, and phylogeography of the European Lepidocyrtus lanuginosus species group (Collembola: Entomobryidae)“. Doctoral thesis, 2018. http://hdl.handle.net/11858/00-1735-0000-002E-E58C-1.
Der volle Inhalt der QuelleBücher zum Thema "Cryptic variation"
Fabris, Flavia. Waddington’s Processual Epigenetics and the Debate over Cryptic Variability. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198779636.003.0012.
Der volle Inhalt der QuelleMinelli, Alessandro. Evolvability and Its Evolvability. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780199377176.003.0007.
Der volle Inhalt der QuelleSherratt, Thomas N., und Changku Kang. Anti-predator behavior. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198797500.003.0009.
Der volle Inhalt der QuelleBuchteile zum Thema "Cryptic variation"
Pavan, Márcio G., Gustavo B. S. Rivas, Fernando B. S. Dias und Rodrigo Gurgel-Gonçalves. „Looks Can be Deceiving: Cryptic Species and Phenotypic Variation in Rhodnius spp., Chagas Disease Vectors“. In Evolutionary Biology: Biodiversification from Genotype to Phenotype, 345–72. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-19932-0_18.
Der volle Inhalt der QuelleKrämer, Martin. „Crypto-Variation in Italian Velar Palatalisation“. In Romance Linguistics 2007, 193–208. Amsterdam: John Benjamins Publishing Company, 2009. http://dx.doi.org/10.1075/cilt.304.13kra.
Der volle Inhalt der Quellede Jonge, Wiebren, und David Chaum. „Some Variations on RSA Signatures & their Security“. In Advances in Cryptology — CRYPTO’ 86, 49–59. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/3-540-47721-7_4.
Der volle Inhalt der QuelleDworkin, Ian. „Canalization, Cryptic Variation, and Developmental Buffering“. In Variation, 131–58. Elsevier, 2005. http://dx.doi.org/10.1016/b978-012088777-4/50010-7.
Der volle Inhalt der Quelle„11. Phenotypic Traits, Cryptic Variation, and Human Diseases“. In Robustness and Evolvability in Living Systems, 161–74. Princeton: Princeton University Press, 2013. http://dx.doi.org/10.1515/9781400849383.161.
Der volle Inhalt der QuelleMargurran, Anne E. „The Causes and Consequences of Geographic Variation in Antipredator Behavior: Perspectives from Fish Populations“. In Geographic Variation in Behavior. Oxford University Press, 1999. http://dx.doi.org/10.1093/oso/9780195082951.003.0011.
Der volle Inhalt der Quelle„Life in the Slow Lane: Ecology and Conservation of Long-Lived Marine Animals“. In Life in the Slow Lane: Ecology and Conservation of Long-Lived Marine Animals, herausgegeben von Edward J. Heist. American Fisheries Society, 1999. http://dx.doi.org/10.47886/9781888569155.ch12.
Der volle Inhalt der Quelle„8.2 Intraspecific Variation in Cryptic Female Choice Criteria and Sexual Selection Theory“. In Female Control, 384–86. Princeton: Princeton University Press, 1996. http://dx.doi.org/10.1515/9780691207209-070.
Der volle Inhalt der QuelleWagner, Günter P. „Developmental Mechanisms for Evolutionary Novelties“. In Homology, Genes, and Evolutionary Innovation. Princeton University Press, 2014. http://dx.doi.org/10.23943/princeton/9780691156460.003.0006.
Der volle Inhalt der QuelleWeitz, Joshua S. „Evolutionary Dynamics of Viruses or Microbes, but Not Both“. In Quantitative Viral Ecology. Princeton University Press, 2016. http://dx.doi.org/10.23943/princeton/9780691161549.003.0004.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Cryptic variation"
Mills, Penelope J. „Chromosomal variation and cryptic species in theApiomorpha minorspecies complex“. In 2016 International Congress of Entomology. Entomological Society of America, 2016. http://dx.doi.org/10.1603/ice.2016.115289.
Der volle Inhalt der QuelleTan, Denise. „Exploring COI variation in EcuadorianHermeuptychia butterflies: The first step in an integrative approach to resolving species limits in this widely distributed and cryptic genus“. In 2016 International Congress of Entomology. Entomological Society of America, 2016. http://dx.doi.org/10.1603/ice.2016.115041.
Der volle Inhalt der QuelleEngler, Adam J. „Probing Mechanisms of Mechano-Sensitive Differentiation in Mesenchymal Stem Cells“. In ASME 2010 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2010. http://dx.doi.org/10.1115/sbc2010-19184.
Der volle Inhalt der QuelleWang, Junfeng, Chunlei Liang und Charles A. Garris. „Two-Dimensional Discontinous Galerkin Simulations of Crypto-Steady Supersonic Pressure Exchange“. In ASME 2011 International Mechanical Engineering Congress and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/imece2011-65818.
Der volle Inhalt der QuellePannekoek, H., M. Linders, J. Keijer, H. Veerman, H. Van Heerikhuizen und D. J. Loskutoff. „THE STRUCTURE OF THE HUMAN ENDOTHELIAL PLASMINOGEN ACTIVATOR INHIBITOR (PAI-1) GENE: NON-RANDOM POSITIONING OF INTRONS“. In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1644767.
Der volle Inhalt der Quelle