Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Cruciform structure“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Cruciform structure" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Cruciform structure"
Ait Saada, Anissia, Alex B. Costa, Ziwei Sheng, Wenying Guo, James E. Haber und Kirill S. Lobachev. „Structural parameters of palindromic repeats determine the specificity of nuclease attack of secondary structures“. Nucleic Acids Research 49, Nr. 7 (27.03.2021): 3932–47. http://dx.doi.org/10.1093/nar/gkab168.
Der volle Inhalt der QuelleTimsit, Youri, und Dino Moras. „Cruciform structures and functions“. Quarterly Reviews of Biophysics 29, Nr. 4 (Dezember 1996): 279–307. http://dx.doi.org/10.1017/s0033583500005862.
Der volle Inhalt der QuelleNag, Dilip K., und Alicia Kurst. „A 140-bp-Long Palindromic Sequence Induces Double-Strand Breaks During Meiosis in the Yeast Saccharomyces cerevisiae“. Genetics 146, Nr. 3 (01.07.1997): 835–47. http://dx.doi.org/10.1093/genetics/146.3.835.
Der volle Inhalt der QuelleNobile, C., J. Nickol und R. G. Martin. „Nucleosome phasing on a DNA fragment from the replication origin of simian virus 40 and rephasing upon cruciform formation of the DNA.“ Molecular and Cellular Biology 6, Nr. 8 (August 1986): 2916–22. http://dx.doi.org/10.1128/mcb.6.8.2916.
Der volle Inhalt der QuelleNobile, C., J. Nickol und R. G. Martin. „Nucleosome phasing on a DNA fragment from the replication origin of simian virus 40 and rephasing upon cruciform formation of the DNA“. Molecular and Cellular Biology 6, Nr. 8 (August 1986): 2916–22. http://dx.doi.org/10.1128/mcb.6.8.2916-2922.1986.
Der volle Inhalt der QuelleLeach, David R. F. „Long DNA palindromes, cruciform structures, genetic instability and secondary structure repair“. BioEssays 16, Nr. 12 (Dezember 1994): 893–900. http://dx.doi.org/10.1002/bies.950161207.
Der volle Inhalt der QuellePolishchuk, M. A., und M. V. Polishchuk. „Unmanned cruciform winged glider dynamics and control“. Journal of «Almaz – Antey» Air and Space Defence Corporation, Nr. 3 (30.09.2018): 55–60. http://dx.doi.org/10.38013/2542-0542-2018-3-55-60.
Der volle Inhalt der QuelleFridlyander, I. N., E. A. Tkachenko, A. Galliot, J. Koshorst, V. Y. Valkov und V. V. Budanov. „Structure and Properties of 1933 Cruciform Large Fitting Blanks“. Materials Science Forum 331-337 (Mai 2000): 1365–68. http://dx.doi.org/10.4028/www.scientific.net/msf.331-337.1365.
Der volle Inhalt der QuelleLader, Pål, Birger Enerhaug, Arne Fredheim, Pascal Klebert und Bjørnar Pettersen. „Forces on a cruciform/sphere structure in uniform current“. Ocean Engineering 82 (Mai 2014): 180–90. http://dx.doi.org/10.1016/j.oceaneng.2014.03.007.
Der volle Inhalt der QuelleGao, Xinglong, Qingbin Zhang, Qin Chen und Wenkai Wang. „Fluid-structure Interactions on Steerable Cruciform Parachute Inflation Dynamics“. IOP Conference Series: Materials Science and Engineering 751 (07.02.2020): 012010. http://dx.doi.org/10.1088/1757-899x/751/1/012010.
Der volle Inhalt der QuelleDissertationen zum Thema "Cruciform structure"
Nyczová, Adéla. „Analýza lokálních struktur v molekulách DNA“. Master's thesis, Vysoké učení technické v Brně. Fakulta chemická, 2021. http://www.nusl.cz/ntk/nusl-445146.
Der volle Inhalt der QuelleShrestha, Alina. „Fatigue Testing and Data Analysis of Welded Steel Cruciform Joints“. ScholarWorks@UNO, 2013. http://scholarworks.uno.edu/td/1670.
Der volle Inhalt der QuelleCoudon, Florent. „Comportement mécanique du superalliage base nickel à solidification dirigée DS200+Hf“. Thesis, Paris Sciences et Lettres (ComUE), 2017. http://www.theses.fr/2017PSLEM062/document.
Der volle Inhalt der QuelleVarious studies were aimed at developing crystal plasticity models to account for the anisotropic mechanical behaviour of single crystals. Directionally solidified (DS) materials can be modeled using such approaches, taking into account the underlying crystallographic structure. It requires the knowledge of the position, shape and crystallographic orientations of grains. To prevent heavy microstructure analyses, other models have to be developed for industrial calculations, using homogenization theory or considering a batch of synthetic pieces calculated using Crystal Plasticity Finite Elements Method (CPFEM). The aim of this thesis is to bring computational tools to carry out the two types of modeling for industrial applications. First of all, a crystal plasticity model for one grain of DS200+Hf is defined ranging from room temperature to 1200°C. Some scale transition rules, using full-field or mean-field approaches, are studied first in the theoretical case of a representative volume element (RVE) and then on tri-dimensional structures in order to access overall and local responses. For the RVE responses, micromechanical models are compared with a reference produced by CPFEM for various loadings. Moreover, the mechanical behaviour of a DS200+Hf cruciform specimen is studied. Biaxial tests with digital image correlation allow us to check the model predictions. These results raise questions about the modeling of oligogranular structures (i.e. with a small number of grains): should it be accepted that the local scale must be explicitly meshed, or, despite the fact that scale separability is not ensured, can we consider that the homogenized model still produces reliable results?
McGrier, Psaras Lamar. „Hydroxy cruciforms and bis(hydroxystyryl)benzenes: synthesis, structure, and photophysical properties of novel π-systems“. Diss., Georgia Institute of Technology, 2010. http://hdl.handle.net/1853/37185.
Der volle Inhalt der QuelleParé-Lambert, Olivier. „Étude de l'extraction d'énergie du phénomène de Vibrations Induites par Vortex (VIV) lorsque deux cylindres sont placés de façon cruciforme“. Master's thesis, Université Laval, 2020. http://hdl.handle.net/20.500.11794/67578.
Der volle Inhalt der QuelleŠedý, Michal. „Analýza lokalizace inverzních repetic v bakteriálních genomech“. Master's thesis, Vysoké učení technické v Brně. Fakulta chemická, 2021. http://www.nusl.cz/ntk/nusl-449791.
Der volle Inhalt der QuelleRatnasinghe, Duminda D. „Unusual Structure of a Human Middle Repetitive DNA“. Digital Commons @ East Tennessee State University, 1993. https://dc.etsu.edu/etd/2767.
Der volle Inhalt der QuelleSin, Ousphea. „Étude en deux dimensions de l'effet du taux de déformation sur la limite élastique de l'acier structural“. Mémoire, Université de Sherbrooke, 2017. http://hdl.handle.net/11143/11237.
Der volle Inhalt der QuelleBosland, Paul W. „The genetics and population structure of Fusarium oxysporum from crucifers“. 1986. http://catalog.hathitrust.org/api/volumes/oclc/14107323.html.
Der volle Inhalt der QuelleTypescript. Vita. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references (leaves 101-114).
Bücher zum Thema "Cruciform structure"
Ambrogio e la cruciforme "Romana" basilica degli apostoli nei milleseicento anni della sua storia. Milano: NED, 1986.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Cruciform structure"
Lilley, David M. J. „The Cruciform Extrusion Transition in Supercoiled DNA Molecules“. In Structure, Dynamics and Function of Biomolecules, 217–23. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-71705-5_46.
Der volle Inhalt der QuelleLilley, David M. J. „The Structure and Physical Chemistry of Cruciform Structures in Supercoiled DNA“. In Structure and Dynamics of Biopolymers, 112–36. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3619-5_7.
Der volle Inhalt der QuelleLilley, David M. J., Karen M. Sullivan, Alastair I. H. Murchie und Judy C. Furlong. „Cruciform Extrusion in Supercoiled DNA — Mechanisms and Contextual Influence“. In Unusual DNA Structures, 55–72. New York, NY: Springer New York, 1988. http://dx.doi.org/10.1007/978-1-4612-3800-3_4.
Der volle Inhalt der QuellePang, H. L. J., und T. G. F. Gray. „Fatigue Analysis of Unstress-Relieved Cruciform Welded Joints“. In Fracture of Engineering Materials and Structures, 639–44. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3650-1_94.
Der volle Inhalt der QuelleSaharan, Govind Singh, Prithwi Raj Verma, Prabhu Dayal Meena und Arvind Kumar. „Fine Structures“. In White Rust of Crucifers: Biology, Ecology and Management, 189–92. New Delhi: Springer India, 2014. http://dx.doi.org/10.1007/978-81-322-1792-3_11.
Der volle Inhalt der QuellePettijohn, David E., Richard R. Sinden und Steven S. Broyles. „Cruciform Transitions Assayed Using a Psoralen Crosslinking Method: Applications to measurements of DNA torsional tension“. In Unusual DNA Structures, 103–14. New York, NY: Springer New York, 1988. http://dx.doi.org/10.1007/978-1-4612-3800-3_7.
Der volle Inhalt der QuelleSmits, A., D. Lecompte, D. Van Hemelrijck, H. Sol und W. Van Paepegem. „Inverse Method for Parameter Determination of Biaxially Loaded Cruciform Composite Specimens“. In Experimental Analysis of Nano and Engineering Materials and Structures, 931–32. Dordrecht: Springer Netherlands, 2007. http://dx.doi.org/10.1007/978-1-4020-6239-1_463.
Der volle Inhalt der QuelleLilley, D. M. J., K. M. Sullivan und A. I. H. Murchie. „The Extrusion of Cruciform Structures in Supercoiled DNA — Kinetics and Mechanisms“. In Nucleic Acids and Molecular Biology, 126–37. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-46596-3_7.
Der volle Inhalt der QuelleLamkanfi, E., A. Smits, W. Van Paepegem und D. Van Hemelrijck. „Application of Ultrasonic Phased Array for Nondestructive Detection of Damage in Biaxial Cruciform“. In Experimental Analysis of Nano and Engineering Materials and Structures, 941–42. Dordrecht: Springer Netherlands, 2007. http://dx.doi.org/10.1007/978-1-4020-6239-1_468.
Der volle Inhalt der QuelleSingh Saharan, Govind, Naresh Mehta und Prabhu Dayal Meena. „Fine Structures and Electron Microscopy“. In Alternaria Diseases of Crucifers: Biology, Ecology and Disease Management, 163–66. Singapore: Springer Singapore, 2015. http://dx.doi.org/10.1007/978-981-10-0021-8_7.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Cruciform structure"
Mohanty, Subhasish, Aditi Chattopadhyay, Pedro Peralta und Dan Quech. „Fatigue damage prognosis of a cruciform structure under biaxial random and flight profile loading“. In SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring, herausgegeben von Peter J. Shull, Aaron A. Diaz und H. Felix Wu. SPIE, 2010. http://dx.doi.org/10.1117/12.848814.
Der volle Inhalt der QuelleLee, Kuk-Hee, Yun-Jae Kim, Robert A. Ainsworth, David Dean und Tae-Eun Jin. „Elastic Follow-Up Factor for Cruciform Plate Under Bi-Axial Loading“. In ASME 2011 Pressure Vessels and Piping Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/pvp2011-57185.
Der volle Inhalt der QuelleQIU, LEI, SHENFANG YUAN und BIN LIU. „Damage Imaging of Aircraft Composite Structure Based on 2-D Cruciform PZT Array and Spatial-Wavenumber Filters“. In Structural Health Monitoring 2015. Destech Publications, 2015. http://dx.doi.org/10.12783/shm2015/73.
Der volle Inhalt der QuelleKim, Jong-Min, Ki-Hyoung Lee, Ho-Jin Lee und Bong-Sang Lee. „Evaluation of Fracture Toughness Behavior of SA508 Steel Considering Biaxial Loading Condition“. In ASME 2012 Pressure Vessels and Piping Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/pvp2012-78689.
Der volle Inhalt der QuelleLimansky, Alex, und Olga Y. Limanskaya. „Inverted repeats: computer analysis of microorganism genome and imaging of cruciform structure in DNA by atomic force microscopy“. In Microtechnologies for the New Millennium 2003, herausgegeben von Angel Rodriguez-Vazquez, Derek Abbott und Ricardo Carmona. SPIE, 2003. http://dx.doi.org/10.1117/12.501637.
Der volle Inhalt der QuelleZhang, Jinjun, Kuang Liu und Aditi Chattopadhyay. „Fatigue Life Prediction Under Biaxial FALSTAFF Loading Using Statistical Volume Element Based Multiscale Modeling“. In ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/imece2012-86341.
Der volle Inhalt der QuelleBogdanov, Sergey, Semyon Mikheevskiy und Grzegorz Glinka. „The Fatigue Life Prediction Methodology Based on the Unigrow Model“. In ASME 2015 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/imece2015-53693.
Der volle Inhalt der QuelleO'Claire, David E., und David M. Hesse. „Transmission Towers with Cruciform Legs“. In Electrical Transmission and Substation Structures Conference 2012. Reston, VA: American Society of Civil Engineers, 2012. http://dx.doi.org/10.1061/9780784412657.024.
Der volle Inhalt der QuelleMohanty, Subhasish, Aditi Chattopadhyay, Jun Wei und Pedro Peralta. „On-Line Structural Health Monitoring and Prognosis of a Biaxial Cruciform Specimen“. In 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2009. http://dx.doi.org/10.2514/6.2009-2305.
Der volle Inhalt der QuelleHan, Lin-Han, und Kan Zhou. „Fire performance of concrete-encased CFST columns and beam-column joints“. In 12th international conference on ‘Advances in Steel-Concrete Composite Structures’ - ASCCS 2018. Valencia: Universitat Politècnica València, 2018. http://dx.doi.org/10.4995/asccs2018.2018.6927.
Der volle Inhalt der Quelle