Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Crops and climate“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Crops and climate" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Crops and climate"
Heffernan, Olive. „Cooling crops“. Nature Climate Change 1, Nr. 902 (22.01.2009): 14. http://dx.doi.org/10.1038/climate.2009.5.
Der volle Inhalt der QuelleM, Gidi. „Advances in Genomics: Crops Adapting to Climate Change“. Open Access Journal of Microbiology & Biotechnology 8, Nr. 2 (05.04.2023): 1–8. http://dx.doi.org/10.23880/oajmb-16000264.
Der volle Inhalt der QuelleHmielowski, Tracy. „Making Crops Climate Ready“. CSA News 64, Nr. 4 (April 2019): 6–8. http://dx.doi.org/10.2134/csa2019.64.0403.
Der volle Inhalt der QuelleBanga, Surinder S., und Manjit S. Kang. „Developing Climate-Resilient Crops“. Journal of Crop Improvement 28, Nr. 1 (02.01.2014): 57–87. http://dx.doi.org/10.1080/15427528.2014.865410.
Der volle Inhalt der QuelleReilly, John. „Crops and climate change“. Nature 367, Nr. 6459 (Januar 1994): 118–19. http://dx.doi.org/10.1038/367118a0.
Der volle Inhalt der QuelleKopeć, Przemysław. „Climate Change—The Rise of Climate-Resilient Crops“. Plants 13, Nr. 4 (08.02.2024): 490. http://dx.doi.org/10.3390/plants13040490.
Der volle Inhalt der QuelleSAAB, ANNE. „Climate-Resilient Crops and International Climate Change Adaptation Law“. Leiden Journal of International Law 29, Nr. 2 (29.04.2016): 503–28. http://dx.doi.org/10.1017/s0922156516000121.
Der volle Inhalt der QuelleSharafi, Saeed, Mohammad Javad Nahvinia und Fatemeh Salehi. „Assessing the Water Footprints (WFPs) of Agricultural Products across Arid Regions: Insights and Implications for Sustainable Farming“. Water 16, Nr. 9 (06.05.2024): 1311. http://dx.doi.org/10.3390/w16091311.
Der volle Inhalt der QuelleMorton, Lois Wright, und Lori J. Abendroth. „Crops, climate, culture, and change“. Journal of Soil and Water Conservation 72, Nr. 3 (2017): 47A—52A. http://dx.doi.org/10.2489/jswc.72.3.47a.
Der volle Inhalt der QuelleKuden, A. B. „Climate change affects fruit crops“. Acta Horticulturae, Nr. 1281 (Juni 2020): 437–40. http://dx.doi.org/10.17660/actahortic.2020.1281.57.
Der volle Inhalt der QuelleDissertationen zum Thema "Crops and climate"
Kambanje, Ardinesh. „Productivity and profitability of different maize varieties and cropping systems used in the smallholder sector of the Eastern Cape Province of South Africa : implication on food security“. Thesis, University of Fort Hare, 2018. http://hdl.handle.net/10353/6237.
Der volle Inhalt der QuelleSchmidt, Holger. „Neue stabile Germylene Ligandeneffekte, Struktur, Reaktivität /“. [S.l. : s.n.], 1998. http://catalog.hathitrust.org/api/volumes/oclc/76007677.html.
Der volle Inhalt der QuelleNg, Wai-yip. „Impact of climatic change during little ice age on agricultural development in north China, 1600-1650 Xiao bing qi qi hou bian qian yu Hua bei nong ye fa zhan : 1600-1650 nian jian de guan cha /“. Click to view the E-thesis via HKUTO, 2009. http://sunzi.lib.hku.hk/hkuto/record/B43209397.
Der volle Inhalt der QuelleWang, Xuhui. „Impacts of climate change and agricultural managements on major global cereal crops“. Electronic Thesis or Diss., Paris 6, 2017. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2017PA066625.pdf.
Der volle Inhalt der QuelleCroplands accounts for one-fifth of global land surface, providing calories for human beings and altering the global biogeochemical cycle and land surface energy balance. The response of croplands to climate change and intensifying human managements is of critical importance to food security and sustainability of the environment. The present manuscript of thesis utilizes various types of data sources (yield statistics, long-term agrometeorological observations, field warming experiments, data-driven global datasets, gridded historical climate dataset and projected climate change) and also modelling approaches (statistical model vs. process model). It presents a series of detection and attribution studies exploring how crop phenology and crop yield respond to climate change and some management practices at regional and global scales, according to data availability. In Chapter 2, a statistical model is constructed with prefecture-level yield statistics and historical climate observations over Northeast China. There are asymmetrical impacts of daytime and nighttime temperatures on maize yield. Maize yield increased by 10.0±7.7% in response to a 1 oC increase of daily minimum temperature (Tmin) averaged in the growing season, but decreased by 13.4±7.1% in response to a 1 oC warming of daily maximum temperature (Tmax). There is a large spatial variation in the yield response to Tmax, which can be partly explained by the spatial gradient of growing season mean temperature (R=-0.67, P<0.01). The response of yield to precipitation is also dependent on moisture conditions. In spite of detection of significant impacts of climate change on yield variations, a large portion of the variations is not explained by climatic variables, highlighting the urgent research need to clearly attribute crop yield variations to change in climate and management practices. Chapter 3 presents the development of a Bayes-based optimization algorithm that is used to optimize key parameters controlling phenological development in ORCHIDEE-crop model for discriminating effects of managements from those of climate change on rice growth duration (LGP). The results from the optimized ORCHIDEE-crop model suggest that climate change has an effect on LGP trends, but with dependency on rice types. Climate trends have shortened LGP of early rice (-2.0±5.0 day/decade), lengthened LGP of late rice (1.1±5.4 day/decade) and have little impacts on LGP of single rice (-0.4±5.4 day/decade). ORCHIDEE-crop simulations further show that change in transplanting date caused widespread LGP change only for early rice sites, offsetting 65% of climate-change-induced LGP shortening. The primary drivers of LGP change are thus different among the three types of rice. Management is predominant driver of LGP change for early and single rice. This chapter demonstrated the capability of the optimized crop model to represent complex regional variations of LGP. Future studies should better document observational errors and management practices in order to reduce large uncertainties that exist in attribution of LGP change and to facilitate further data-model integration. In Chapter 4, a harmonized data set of field warming experiments at 48 sites across the globe for the four most-widely-grown crops (wheat, maize, rice and soybean) is combined with an ensemble of gridded global crop models to produce emergent constrained estimates of the responses of crop yield to changes in temperature (ST). The new constraining framework integrates evidences from field warming experiments and global crop modeling shows with >95% probability that warmer temperatures would reduce yields for maize (-7.1±2.8% K-1), rice (-5.6±2.0% K-1) and soybean (-10.6±5.8% K-1). For wheat, ST was less negative and only 89% likely to be negative (-2.9±2.3% K-1). The field-observation based constraints from the results of the warming experiments reduced uncertainties associated with modeled ST by 12-54% for the four crops
Champalle, Clara. „Cash crops and climate shocks: flexible livelihoods in Southeast Yunnan, China“. Thesis, McGill University, 2013. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=114509.
Der volle Inhalt der QuelleLe paysage rural de la République Populaire de Chine s'est considérablement transformé depuis la collectivisation dans les années 50 jusqu'aux réformes de dé-collectivisation instauré par Deng Xiaoping en 1979. Au milieu des années 80, chaque ménage rural est redevenu responsable de sa propre production agricole et la sécurité alimentaire semble s'être améliorée, même dans les régions les plus reculées. Pour intensifier la transition agraire et le développement rural, l'état a commencé à la fin des années 90 à subventionner les cultures commerciales au niveau provincial, à travers sa « Stratégie de développement de l'ouest du pays ». L'objectif de ce mémoire est premièrement d'examiner l'importance des cultures commerciales subventionnées par l'état pour les agriculteurs, particulièrement issus des minorités ethniques (Yi, Hmong, Yao, et Zhuang) et de la majorité Han dans la Préfecture de Honghe, Yunnan; et deuxièmement d'évaluer les effets des phénomènes climatiques extrêmes sur leurs moyens d'existence et d'étudier les mécanismes de survie auxquels ils ont recours. Pour remplir cet objectif, j'utilise un cadre théorique incorporant les éléments clés des littératures sur les moyens d'existence durables, la sécurité alimentaire, ainsi que la vulnérabilité et la résilience à la variabilité du climat. Mes méthodes comprennent une analyse statistique des données quantitatives des récents phénomènes climatiques extrêmes dans la région et un travail ethnographique dans quatre cantons de la Préfecture de Honghe, notamment des entrevues non structurées avec les agriculteurs et semi-structurées avec les cadres locaux au cours de l'été 2011. Je constate que les cultures commerciales subventionnées par l'état ne s'accompagnent pas toujours d'une amélioration du capital financier des agriculteurs et que ces cultures sont de plus en plus exposées à de fortes précipitations et d'extrêmes températures, qui réduisent l'accès aux capitaux de subsistance, nécessaire au réinvestissement dans les cultures commerciales. Par conséquent, les agriculteurs développent des stratégies de survie et/ou d'adaptation selon leurs moyens d'existence choisis et le type de phénomènes climatiques, mais sont également affectés par leur emplacement et leur ethnicité. En somme, je remarque que l'accès des agriculteurs aux ressources est essentiellement fonction de trois variables : sociale, temporelle et spatiale ; celles-ci souvent ignorées par les cadres gouvernementaux.
Wang, Xuhui. „Impacts of climate change and agricultural managements on major global cereal crops“. Thesis, Paris 6, 2017. http://www.theses.fr/2017PA066625/document.
Der volle Inhalt der QuelleCroplands accounts for one-fifth of global land surface, providing calories for human beings and altering the global biogeochemical cycle and land surface energy balance. The response of croplands to climate change and intensifying human managements is of critical importance to food security and sustainability of the environment. The present manuscript of thesis utilizes various types of data sources (yield statistics, long-term agrometeorological observations, field warming experiments, data-driven global datasets, gridded historical climate dataset and projected climate change) and also modelling approaches (statistical model vs. process model). It presents a series of detection and attribution studies exploring how crop phenology and crop yield respond to climate change and some management practices at regional and global scales, according to data availability. In Chapter 2, a statistical model is constructed with prefecture-level yield statistics and historical climate observations over Northeast China. There are asymmetrical impacts of daytime and nighttime temperatures on maize yield. Maize yield increased by 10.0±7.7% in response to a 1 oC increase of daily minimum temperature (Tmin) averaged in the growing season, but decreased by 13.4±7.1% in response to a 1 oC warming of daily maximum temperature (Tmax). There is a large spatial variation in the yield response to Tmax, which can be partly explained by the spatial gradient of growing season mean temperature (R=-0.67, P<0.01). The response of yield to precipitation is also dependent on moisture conditions. In spite of detection of significant impacts of climate change on yield variations, a large portion of the variations is not explained by climatic variables, highlighting the urgent research need to clearly attribute crop yield variations to change in climate and management practices. Chapter 3 presents the development of a Bayes-based optimization algorithm that is used to optimize key parameters controlling phenological development in ORCHIDEE-crop model for discriminating effects of managements from those of climate change on rice growth duration (LGP). The results from the optimized ORCHIDEE-crop model suggest that climate change has an effect on LGP trends, but with dependency on rice types. Climate trends have shortened LGP of early rice (-2.0±5.0 day/decade), lengthened LGP of late rice (1.1±5.4 day/decade) and have little impacts on LGP of single rice (-0.4±5.4 day/decade). ORCHIDEE-crop simulations further show that change in transplanting date caused widespread LGP change only for early rice sites, offsetting 65% of climate-change-induced LGP shortening. The primary drivers of LGP change are thus different among the three types of rice. Management is predominant driver of LGP change for early and single rice. This chapter demonstrated the capability of the optimized crop model to represent complex regional variations of LGP. Future studies should better document observational errors and management practices in order to reduce large uncertainties that exist in attribution of LGP change and to facilitate further data-model integration. In Chapter 4, a harmonized data set of field warming experiments at 48 sites across the globe for the four most-widely-grown crops (wheat, maize, rice and soybean) is combined with an ensemble of gridded global crop models to produce emergent constrained estimates of the responses of crop yield to changes in temperature (ST). The new constraining framework integrates evidences from field warming experiments and global crop modeling shows with >95% probability that warmer temperatures would reduce yields for maize (-7.1±2.8% K-1), rice (-5.6±2.0% K-1) and soybean (-10.6±5.8% K-1). For wheat, ST was less negative and only 89% likely to be negative (-2.9±2.3% K-1). The field-observation based constraints from the results of the warming experiments reduced uncertainties associated with modeled ST by 12-54% for the four crops
Ozdes, Mehmet. „The effect of climate and aerosol on crop production: a case study of central Asia“. Thesis, Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/48997.
Der volle Inhalt der QuelleNg, Wai-yip, und 吳偉業. „Impact of climatic change during little ice age on agricultural development in north China, 1600-1650“. Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2009. http://hub.hku.hk/bib/B43209397.
Der volle Inhalt der QuelleAlmaraz, Suarez Juan Jose. „Climate change and crop production in southwestern Quebec : mitigation and adaptation“. Thesis, McGill University, 2007. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=103364.
Der volle Inhalt der QuelleLes émissions anthropogènes de gaz à effet de serre sont la cause principale de l'augmentation globale des températures. Les changements climatiques vont affecter la production agricole au Canada, et en retour, l'agriculture pourrait limiter les changements climatiques. L'analyse de données historiques du climat et des rendements de maïs, combinés avec des expériences de serre et en champ ont été entreprises pour étudier l'effet de la variabilité et des changements de climat sur le rendement de maïs, l'adaptabilité des systèmes agricoles aux changements climatiques, l'effet du travail du sol sur les émissions de gaz à effet de serre (C02 et N20) associées avec la production de maïs et de soya, et le potentiel des facteurs Nod d'augmenter la biomasse pour limiter les émissions de CO2. L'analyse des données historiques ont démontré qu'au sud-ouest du Québec, la variabilité des rendements de maïs est fortement associée avec les températures de juillet et les précipitations de mai pendant les dernières trois décennies. Les expériences au champ ont démontré que le panic raide, et le sorghum-sudangrass sont les mieux adaptés aux conditions chaudes et sèches. Le semis direct a augmenté les rendements de maïs lorsque les températures printanières étaient plus chaudes que la normale. Les flux de C02 étaient associés avec la température, mais les flux de N20 étaient associés avec les précipitations. Le travail du sol conventionnel (CT) a produit plus d'émissions de CO2 que le semis direct (NT), particulièrement après le disquage au printemps. Les deuxsystèmes ont montré un large pic d'émission de N20 pendant les périodes les pluspluvieuses. Dans le maïs, les pics de N20 ont été détectés après la fertilisation enazote. NT a montré des émissions de N20 plus importantes que CT en productionde maïs, mais CT a montré des flux de N20 plus important que NT en productionde soya. Les facteurs Nod vaporisés sur le soya ont augmenté la photosynthèse etla biomasse sous conditions controllées. Au champ, le rendement a été augmentépar les facteurs Nod sous CT, mais pas sous NT, et la sécheresse a réduit laréponse du soya aux facteurs Nod.
Sundelin, William. „Growing crops or growing conflicts? : Climate variability, rice production and political violence in Vietnam“. Thesis, Försvarshögskolan, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:fhs:diva-9757.
Der volle Inhalt der QuelleThe seminar was held digitally.
Bücher zum Thema "Crops and climate"
N, Singh S. Climate change and crops. Berlin: Springer, 2009.
Den vollen Inhalt der Quelle findenFahad, Shah, Osman Sönmez, Shah Saud, Depeng Wang, Chao Wu, Muhammad Adnan und Veysel Turan. Developing Climate-Resilient Crops. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003109037.
Der volle Inhalt der QuelleSingh, S. N., Hrsg. Climate Change and Crops. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-88246-6.
Der volle Inhalt der QuelleSaikia, Siddhartha P. Climate change. Dehradun: International Book Distributors, 2010.
Den vollen Inhalt der Quelle findenYadav, S. S. Crop adaptation to climate change. Chichester, West Sussex: Wiley-Blackwell, 2011.
Den vollen Inhalt der Quelle findenUzoma, Nwajiuba Chinedum, Hrsg. Climate change and adaptation in Nigeria. Weikersheim: Margraf, 2008.
Den vollen Inhalt der Quelle findenEitzinger, Josef. Landwirtschaft im Klimawandel: Auswirkungen und Anpassungsstrategien für die Land- und Forstwirtschaft in Mitteleuropa. [Clenze]: Agrimedia, 2009.
Den vollen Inhalt der Quelle findenEitzinger, Josef. Landwirtschaft im Klimawandel: Auswirkungen und Anpassungsstrategien für die Land- und Forstwirtschaft in Mitteleuropa. [Clenze]: Agrimedia, 2009.
Den vollen Inhalt der Quelle findenMota, Fernando Silveira da. Clima e agricultura no Brasil. Porto Alegre, RS: SAGRA, 1986.
Den vollen Inhalt der Quelle findenSingh, Madan Pal. Climate change: Impacts and adaptations in crop plants. New Delhi: Today & Tomorrow's Printers and Publishers, 2011.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Crops and climate"
Zohry, Abd El-Hafeez, und Samiha Ouda. „Climate-Resilient Crops“. In Climate-Smart Agriculture, 115–35. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-93111-7_6.
Der volle Inhalt der QuelleAhad, Arzoo, Sami Ullah Jan, Khola Rafique, Sameera Zafar, Murtaz Aziz Ahmad, Faiza Abbas und Alvina Gul. „Climate Change and Cereal Modeling“. In Cereal Crops, 239–72. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003250845-11.
Der volle Inhalt der QuelleUmesh, M. R., Sangu Angadi, Prasanna Gowda, Rajan Ghimire und Sultan Begna. „Climate-Resilient Minor Crops for Food Security“. In Agronomic Crops, 19–32. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-32-9151-5_2.
Der volle Inhalt der QuelleOuda, Samiha, und Abd El-Hafeez Zohry. „Climate Extremes and Crops“. In Climate-Smart Agriculture, 93–114. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-93111-7_5.
Der volle Inhalt der QuelleDas, Susmita, Adyant Kumar, Manashi Barman, Sukanta Pal und Pintoo Bandopadhyay. „Impact of Climate Variability on Phenology of Rice“. In Agronomic Crops, 13–28. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-0025-1_2.
Der volle Inhalt der QuelleShabir, Sumera, und Noshin Ilyas. „The Possible Influence of Climate Change on Agriculture“. In Agronomic Crops, 579–92. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-0025-1_27.
Der volle Inhalt der QuelleNair, Kodoth Prabhakaran. „The CWR of Minor Fruit Crops“. In Springer Climate, 79–81. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-23037-1_14.
Der volle Inhalt der QuelleIjaz, Muhammad, Abdul Rehman, Komal Mazhar, Ammara Fatima, Sami Ul-Allah, Qasim Ali und Shakeel Ahmad. „Crop Production Under Changing Climate: Past, Present, and Future“. In Agronomic Crops, 149–73. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-32-9151-5_9.
Der volle Inhalt der QuelleJamil, Shakra, Rahil Shahzad, Shakeel Ahmad, Zulfiqar Ali, Sana Shaheen, Hamna Shahzadee, Noreen Fatima et al. „Climate Change and Role of Genetics and Genomics in Climate-Resilient Sorghum“. In Developing Climate-Resilient Crops, 111–38. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003109037-6-6.
Der volle Inhalt der QuelleKhan, Shakeel A., Sanjeev Kumar, M. Z. Hussain und N. Kalra. „Climate Change, Climate Variability and Indian Agriculture: Impacts Vulnerability and Adaptation Strategies“. In Climate Change and Crops, 19–38. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-88246-6_2.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Crops and climate"
Kuznetsova, G. N., und R. S. Polyakova. „PECULIARITIES OF SEED PRODUCTION OF CABBAGE CROPS“. In Sustainable Agricultural Development in a Changing Climate. Federal Scientific Rice Centre, 2023. http://dx.doi.org/10.33775/conf-2023-85-89.
Der volle Inhalt der QuelleMiladinović, Dragana, Ana Marjanović Jeromela, Ankica Kondić-Špika, Goran Bekavac, Sonja Tancic Zivanov, Miroslav Zoric, Sandra Cvejic et al. „Breeding of climate-smart crops at IFVCNS“. In XIth International Congress of Geneticists and Breeders from the Republic of Moldova. Scientific Association of Geneticists and Breeders of the Republic of Moldova, Institute of Genetics, Physiology and Plant Protection, Moldova State University, 2021. http://dx.doi.org/10.53040/cga11.2021.084.
Der volle Inhalt der Quelle„Evaluating cover crops as a climate change adaptation strategy“. In ASABE 1st Climate Change Symposium: Adaptation and Mitigation. American Society of Agricultural and Biological Engineers, 2015. http://dx.doi.org/10.13031/cc.20152144028.
Der volle Inhalt der QuelleFedorchuk, M. „Prospects for growing niche crops in the south of Ukraine“. In international scientific-practical conference. MYKOLAYIV NATIONAL AGRARIAN UNIVERSITY, 2024. http://dx.doi.org/10.31521/978-617-7149-78-0-44.
Der volle Inhalt der QuelleTangwa, Elvis, Vit Voženílek, Jan Brus und Vilem Pechanec. „CLIMATE CHANGE AND THE AGRICULTURAL POTENTIAL OF SELECTED LEGUME CROPS IN EAST AFRICA“. In GEOLINKS International Conference. SAIMA Consult Ltd, 2020. http://dx.doi.org/10.32008/geolinks2020/b1/v2/02.
Der volle Inhalt der QuelleCheverdin, A. Yu, Yu I. Cheverdin und M. Yu Sautkina M.Yu. „DIAZOTROPHIC MICROBIAL PREPARATIONS IN WINTER WHEAT CROPS OF THE CENTRAL CHERNOZEM REGION“. In Sustainable Agricultural Development in a Changing Climate. Federal Scientific Rice Centre, 2023. http://dx.doi.org/10.33775/conf-2023-187-189.
Der volle Inhalt der QuelleHrabovetska, O. A. „PAWPAW, PERSIMMON, UNABI ARE REAL – PROMISING UNCOMMON FRUIT CROPS IN THE SOUTH OF UKRAINE“. In CLIMATE-SMART AGRICULTURE: SCIENCE AND PRACTICE. Baltija Publishing, 2023. http://dx.doi.org/10.30525/978-9934-26-389-7-4.
Der volle Inhalt der Quelle„AgMIP (Crops & Soils)- The crucial role of soil when modeling the impact of climate change on crop production“. In ASABE 1st Climate Change Symposium: Adaptation and Mitigation. American Society of Agricultural and Biological Engineers, 2015. http://dx.doi.org/10.13031/cc.20152119457.
Der volle Inhalt der QuelleVyskub, R. S., V. V. Vashchenko und O. B. Bondareva. „ADAPTIVE SELECTION OF GRAIN CROPS IN THE CONDITIONS OF THE SOUTH-EASTERN STEPPE OF UKRAINE“. In CLIMATE-SMART AGRICULTURE: SCIENCE AND PRACTICE. Baltija Publishing, 2023. http://dx.doi.org/10.30525/978-9934-26-389-7-16.
Der volle Inhalt der QuelleKoloianidi, N. „Productivity of leguminous crops under conditions of climate change“. In international scientific-practical conference. MYKOLAYIV NATIONAL AGRARIAN UNIVERSITY, 2024. http://dx.doi.org/10.31521/978-617-7149-78-0-20.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Crops and climate"
Tobin, Daniel, Maria Janowiak, David Hollinger, Howard Skinner, Christopher Swanston, Rachel Steele, Rama Radhakrishna und Allison Chatrchyan. Northeast and Northern Forests Regional Climate Hub Assessment of Climate Change Vulnerability and Adaptation and Mitigation Strategies. USDA Northeast Climate Hub, Juni 2015. http://dx.doi.org/10.32747/2015.6965350.ch.
Der volle Inhalt der QuelleKistner-Thomas, Erica. Recent Trends in Climate/Weather Impacts on Midwestern Fruit and Vegetable Production. USDA Midwest Climate Hub, November 2018. http://dx.doi.org/10.32747/2018.6893747.ch.
Der volle Inhalt der QuelleFalck-Zepeda, José Benjamin, Patricia Biermayr-Jenzano, Maria Mercedes Roca, Ediner Fuentes-Campos und Enoch Mutebi Kikulwe. Bio-innovations: Genome-edited crops for climate-smart food systems. Washington, DC: International Food Policy Research Institute, 2022. http://dx.doi.org/10.2499/9780896294257_10.
Der volle Inhalt der QuelleOstoja, Steven, Tapan Pathak, Katherine Jarvis-Shean, Mark Battany und George Zhuang. Adapt - On-farm changes in the face of climate change: NRCS Area 3. USDA California Climate Hub, April 2018. http://dx.doi.org/10.32747/2018.7444387.ch.
Der volle Inhalt der QuelleOstoja, Steven, Tapan Pathak, Katherine Jarvis-Shean und Mark Battany. Adapt - On-farm changes in the face of climate change: NRCS Area 1. USDA California Climate Hub, April 2018. http://dx.doi.org/10.32747/2018.7444389.ch.
Der volle Inhalt der QuelleOstoja, Steven, Tapan Pathak, Andre S. Biscaro und Mark Battany. Adapt - On-farm changes in the face of climate change: NRCS area 4. USDA California Climate Hub, April 2018. http://dx.doi.org/10.32747/2018.7435379.ch.
Der volle Inhalt der QuelleOstoja, Steven, Tapan Pathak, Katherine Jarvis-Shean, Mark Battany und Andre S. Biscaro. Adapt - On-farm changes in the face of climate change: NRCS Area 2. USDA California Climate Hub, April 2018. http://dx.doi.org/10.32747/2018.7444388.ch.
Der volle Inhalt der QuelleNoort, M. W. J., und S. Renzetti. Breads from African climate-resilient crops for improving diets and food security. Wageningen: Wageningen Food & Biobased Research, 2023. http://dx.doi.org/10.18174/583371.
Der volle Inhalt der QuelleSands, Ronald, und Man-Keun Kim. Modeling the Competition for Land: Methods and Application to Climate Policy. GTAP Working Paper, April 2008. http://dx.doi.org/10.21642/gtap.wp45.
Der volle Inhalt der QuelleConover, Emily, und Adriana Camacho. The Impact of Receiving Price and Climate Information in the Agricultural Sector. Inter-American Development Bank, Mai 2011. http://dx.doi.org/10.18235/0011202.
Der volle Inhalt der Quelle