Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Crop protection.

Zeitschriftenartikel zum Thema „Crop protection“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Crop protection" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Matthews, G. A. „Crop production and crop protection“. Crop Protection 14, Nr. 8 (Dezember 1995): 689–90. http://dx.doi.org/10.1016/0261-2194(95)90011-x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Shishatskiy, Oleg N. „Global Crop Protection Industry“. Journal of Siberian Federal University. Biology 14, Nr. 4 (Dezember 2021): 541–49. http://dx.doi.org/10.17516/1997-1389-0371.

Der volle Inhalt der Quelle
Annotation:
The problem of the steady food supply to the population is becoming particularly pressing in the face of a projected decrease in the specific area of agricultural land per resident. In an effort to increase crop yields, agriculture depends mainly on chemical plant protection agents (PPAs), which produce strong negative effects. The research activities need to be concentrated on developing the alternative plant protection technologies that will ensure a sufficient crop yield increase. Based on statistical data of the Food and Agriculture Organization of the United Nations (FAO) and studies and analytical reviews on protection of agricultural crops, the present work describes current market trends in the global crop protection industry: the volume and dynamics of the global PPA market, the regional distribution of this market, and the consolidation of key producers. Recent years have seen a decrease in the number of new chemical PPAs entering the market due to the greater research effort devoted to novel crop protection technologies, in particular genetically modified crops (GM crops), biological PPAs, and other alternative technologies, which are being developed and put on the market in response to increasingly stringent regulations in agrochemistry and ecology. Recommendations are made to producers of agrochemicals that will allow them to remain competitive and contribute to satisfaction of the growing demand for agricultural products
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Racke, Ken, Pieter Spanoghe, Nathan De Geyter und Bipul Saha. „Crop Protection Chemistry“. Chemistry International 41, Nr. 4 (01.10.2019): 53–55. http://dx.doi.org/10.1515/ci-2019-0429.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Jamison, Judy. „Crop fungal protection“. Nature Biotechnology 18, Nr. 12 (Dezember 2000): 1233. http://dx.doi.org/10.1038/82314.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Aeschlimann, J. P. „Integrated crop protection“. Agriculture, Ecosystems & Environment 13, Nr. 1 (April 1985): 89–92. http://dx.doi.org/10.1016/0167-8809(85)90107-0.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Umaerus, Vilhelm. „Crop rotation in relation to crop protection“. Netherlands Journal of Plant Pathology 98, S2 (März 1992): 241–49. http://dx.doi.org/10.1007/bf01974491.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Hernández-Soto, Alejandro, und Randall Chacón-Cerdas. „RNAi Crop Protection Advances“. International Journal of Molecular Sciences 22, Nr. 22 (10.11.2021): 12148. http://dx.doi.org/10.3390/ijms222212148.

Der volle Inhalt der Quelle
Annotation:
RNAi technology is a versatile, effective, safe, and eco-friendly alternative for crop protection. There is plenty of evidence of its use through host-induced gene silencing (HIGS) and emerging evidence that spray-induced gene silencing (SIGS) techniques can work as well to control viruses, bacteria, fungi, insects, and nematodes. For SIGS, its most significant challenge is achieving stability and avoiding premature degradation of RNAi in the environment or during its absorption by the target organism. One alternative is encapsulation in liposomes, virus-like particles, polyplex nanoparticles, and bioclay, which can be obtained through the recombinant production of RNAi in vectors, transgenesis, and micro/nanoencapsulation. The materials must be safe, biodegradable, and stable in multiple chemical environments, favoring the controlled release of RNAi. Most of the current research on encapsulated RNAi focuses primarily on oral delivery to control insects by silencing essential genes. The regulation of RNAi technology focuses on risk assessment using different approaches; however, this technology has positive economic, environmental, and human health implications for its use in agriculture. The emergence of alternatives combining RNAi gene silencing with the induction of resistance in crops by elicitation and metabolic control is expected, as well as multiple silencing and biotechnological optimization of its large-scale production.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Hicks, Brian. „Future of crop protection“. Pesticide Outlook 13, Nr. 3 (05.07.2002): 104. http://dx.doi.org/10.1039/b205182f.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Matthews, Graham. „Crop protection in Turkmenistan“. Pesticide Outlook 12, Nr. 4 (06.11.2001): 149. http://dx.doi.org/10.1039/b106291n.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Abelson, Philip H. „Uncertainties About Crop Protection“. Weed Technology 11, Nr. 3 (September 1997): 629–32. http://dx.doi.org/10.1017/s0890037x00045553.

Der volle Inhalt der Quelle
Annotation:
My remarks today will be largely devoted to assessing some of the effects of the Food Quality Protection Act of 1996. As introduced, the act had wide support among grower groups, the food industry, and the pesticide industry. Voting on the bill was unanimous in both House and Senate, and action was completed in 1 wk. The legislation was signed by the President on August 3, 1996. President Clinton wanted to be seen as a strong advocate of children's health. The Republican Congress wanted to show that it was pro-environment.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Wrest Park History Contributors. „Chapter 6 Crop protection“. Biosystems Engineering 103 (Januar 2009): 70–78. http://dx.doi.org/10.1016/j.biosystemseng.2008.11.019.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Matthews, G. A. „Crop protection chemicals reference“. Crop Protection 10, Nr. 1 (Februar 1991): 79. http://dx.doi.org/10.1016/0261-2194(91)90033-n.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

le Patourel, G. „Crop protection chemicals reference“. Crop Protection 11, Nr. 1 (Februar 1992): 95. http://dx.doi.org/10.1016/0261-2194(92)90088-m.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Matthews, G. A. „Crop protection chemicals reference“. Crop Protection 12, Nr. 4 (Juni 1993): 319. http://dx.doi.org/10.1016/0261-2194(93)90056-o.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Greenland, D. J. „Better crop protection information“. Tropical Pest Management 36, Nr. 3 (Januar 1990): 220–22. http://dx.doi.org/10.1080/09670879009371476.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Azoulay, Jean-Philippe. „European Crop Protection Association“. Impact 2017, Nr. 1 (09.01.2017): 92–93. http://dx.doi.org/10.21820/23987073.2017.1.92.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

OHKAWA, Hideo. „Biotechnology and crop protection.“ Kagaku To Seibutsu 25, Nr. 7 (1987): 454–61. http://dx.doi.org/10.1271/kagakutoseibutsu1962.25.454.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Flood, Julie. „Fungicides in Crop Protection.“ Plant Pathology 48, Nr. 6 (Dezember 1999): 837–38. http://dx.doi.org/10.1046/j.1365-3059.1999.0411d.x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Tombo, Gerardo M. Ramos, und Daniel Belluš. „Chirality and Crop Protection“. Angewandte Chemie International Edition in English 30, Nr. 10 (Oktober 1991): 1193–215. http://dx.doi.org/10.1002/anie.199111933.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Spencer, E. Y. „Crop protection chemicals reference“. Pesticide Biochemistry and Physiology 26, Nr. 3 (Dezember 1986): 382. http://dx.doi.org/10.1016/0048-3575(86)90079-9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Doss, R. P. „Crop protection chemicals reference“. Scientia Horticulturae 43, Nr. 1-2 (Juni 1990): 179–80. http://dx.doi.org/10.1016/0304-4238(90)90049-k.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Ramesh, Desikan, Mohanrangan Chandrasekaran, Raga Palanisamy Soundararajan, Paravaikkarasu Pillai Subramanian, Vijayakumar Palled und Deivasigamani Praveen Kumar. „Solar-Powered Plant Protection Equipment: Perspective and Prospects“. Energies 15, Nr. 19 (08.10.2022): 7379. http://dx.doi.org/10.3390/en15197379.

Der volle Inhalt der Quelle
Annotation:
The major challenges in sustainable and profitable agriculture are developing high-yielding crop varieties and reducing crop losses. Presently, there are significant crop losses due to weed/bird/insect/animal attacks. Among the various renewable energy sources, solar energy is utilized for different agricultural operations, especially in plant protection applications. Solar photovoltaic (PV) devices present a positive approach to sustainable crop production by reducing crop loss in various ways. This might result in the extensive use of PV devices in the near future. PV-based plant protection equipment/devices are primarily utilized in protecting crops from birds, weeds, or insects. Solar-powered plant protection equipment such as light traps, bird scarers, sprayers, weeders, and fencing are gaining interest due to their lower operational costs, simple design, no fuel requirements, and zero carbon emissions. Most of these PV devices require 12 V rechargeable batteries with different currents to meet the load, which varies from 2 to 1500 W. This paper briefly discusses the applications of solar-powered plant protection devices in sustainable agriculture and their future prospects.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Hill, Catherine M. „Primate Crop Feeding Behavior, Crop Protection, and Conservation“. International Journal of Primatology 38, Nr. 2 (03.02.2017): 385–400. http://dx.doi.org/10.1007/s10764-017-9951-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Urech, P. „RISK MINIMISATION IN CROP PROTECTION“. Acta Horticulturae, Nr. 525 (März 2000): 39–44. http://dx.doi.org/10.17660/actahortic.2000.525.2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Lamberth, Clemens. „Nucleoside Chemistry in Crop Protection“. HETEROCYCLES 65, Nr. 3 (2005): 667. http://dx.doi.org/10.3987/rev-04-591.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Lamberth, Clemens. „Pyrimidine Chemistry in Crop Protection“. HETEROCYCLES 68, Nr. 3 (2006): 561. http://dx.doi.org/10.3987/rev-05-604.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Lamberth, Clemens. „Pyrazole Chemistry in Crop Protection“. HETEROCYCLES 71, Nr. 7 (2007): 1467. http://dx.doi.org/10.3987/rev-07-613.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Peteu, Serban F., Florin Oancea, Oana A. Sicuia, Florica Constantinescu und Sorina Dinu. „Responsive Polymers for Crop Protection“. Polymers 2, Nr. 3 (19.08.2010): 229–51. http://dx.doi.org/10.3390/polym2030229.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Dimmock, Jim, und Gareth Edwards-Jones. „Crop protection in alternative crops“. Outlooks on Pest Management 17, Nr. 1 (01.02.2006): 24–27. http://dx.doi.org/10.1564/16feb08.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Kidd, Hamish. „New chemistries in crop protection“. Pesticide Outlook 11, Nr. 4 (2000): 142–44. http://dx.doi.org/10.1039/b006241n.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Lamberth, Clemens. „Sulfur chemistry in crop protection“. Journal of Sulfur Chemistry 25, Nr. 1 (Februar 2004): 39–62. http://dx.doi.org/10.1080/17415990310001612290.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Younie, David, und Audrey Litterick. „Crop protection in organic farming“. Pesticide Outlook 13, Nr. 4 (29.08.2002): 158–61. http://dx.doi.org/10.1039/b206511h.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

May, Mike. „Crop Protection in Sugar Beet“. Pesticide Outlook 12, Nr. 5 (07.11.2001): 188–91. http://dx.doi.org/10.1039/b108605g.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Combellack, Harry. „Application technology for crop protection“. Field Crops Research 54, Nr. 1 (August 1997): 77–79. http://dx.doi.org/10.1016/s0378-4290(97)00008-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Gross, Michael. „New directions in crop protection“. Current Biology 21, Nr. 17 (September 2011): R641—R643. http://dx.doi.org/10.1016/j.cub.2011.08.055.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Newton, Michael. „3rd crop protection chemicals reference“. Agriculture, Ecosystems & Environment 24, Nr. 4 (Dezember 1988): 461–62. http://dx.doi.org/10.1016/0167-8809(88)90127-2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Cammell, M. E. „Integrated crop protection in cereals“. Agriculture, Ecosystems & Environment 32, Nr. 3-4 (Oktober 1990): 342–43. http://dx.doi.org/10.1016/0167-8809(90)90175-d.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Lamberth, Clemens. „Alkyne chemistry in crop protection“. Bioorganic & Medicinal Chemistry 17, Nr. 12 (Juni 2009): 4047–63. http://dx.doi.org/10.1016/j.bmc.2008.11.037.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Dayan, Franck E., Charles L. Cantrell und Stephen O. Duke. „Natural products in crop protection“. Bioorganic & Medicinal Chemistry 17, Nr. 12 (Juni 2009): 4022–34. http://dx.doi.org/10.1016/j.bmc.2009.01.046.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Baker, R., G. A. Matthews, J. R. Nechols und R. G. Turner. „Crop protection increases in frequency“. Crop Protection 11, Nr. 6 (Dezember 1992): 491. http://dx.doi.org/10.1016/0261-2194(92)90164-z.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Hatfield, P. L., und P. J. Pinter. „Remote sensing for crop protection“. Crop Protection 12, Nr. 6 (September 1993): 403–13. http://dx.doi.org/10.1016/0261-2194(93)90001-y.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Landers, Andrew. „Application technology for crop protection“. Crop Protection 14, Nr. 3 (Mai 1995): 261–62. http://dx.doi.org/10.1016/0261-2194(95)90007-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

WHEATLEY, G. A. „Changing scenes of crop protection“. Annals of Applied Biology 111, Nr. 1 (August 1987): 1–20. http://dx.doi.org/10.1111/j.1744-7348.1987.tb01428.x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Waltz, Emily. „GM crop protection act fizzles“. Nature Biotechnology 31, Nr. 11 (November 2013): 953. http://dx.doi.org/10.1038/nbt1113-953.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Lamberth, Clemens. „Pyridazine Chemistry in Crop Protection“. Journal of Heterocyclic Chemistry 54, Nr. 6 (14.07.2017): 2974–84. http://dx.doi.org/10.1002/jhet.2945.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Schiller, Hildegard. „Crop protection and sustainable agriculture“. Agriculture, Ecosystems & Environment 51, Nr. 3 (Dezember 1994): 349–51. http://dx.doi.org/10.1016/0167-8809(94)90146-5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Copping, Leonard G. „New chemistries for crop protection“. Pest Management Science 57, Nr. 2 (2001): 114. http://dx.doi.org/10.1002/1526-4998(200102)57:2<114::aid-ps293>3.0.co;2-c.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Lamberth, Clemens. „Heterocyclic chemistry in crop protection“. Pest Management Science 69, Nr. 10 (29.08.2013): 1106–14. http://dx.doi.org/10.1002/ps.3615.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Lamberth, Clemens. „ChemInform Abstract: Chemistry in Crop Protection. Part 6. Amino Acid Chemistry in Crop Protection“. ChemInform 41, Nr. 47 (28.10.2010): no. http://dx.doi.org/10.1002/chin.201047270.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Neill, D. E., und G. B. Follas. „Use of crop sensing technology in crop protection research“. New Zealand Plant Protection 64 (08.01.2011): 287. http://dx.doi.org/10.30843/nzpp.2011.64.5993.

Der volle Inhalt der Quelle
Annotation:
Crop sensing technology is a new tool being rapidly adopted by farmers as a key component of precision agriculture This technology uses sensors to calculate normalized difference vegetative index (NDVI) by emitting red and near infrared light towards the crop and measuring the crops reflectance NDVI is used to evaluate canopy greenness plant biomass and as an indicator of plant health and vigour The methodology relevance and benefits of using this technology in crop protection trials are currently unclear A handheld Greenseeker (Ntech Industries USA) was used to record NDVI on a range of trials from 20082011 to establish whether crop sensing could replace visual assessments for disease and enable yield prediction NDVI readings were compared against other parameters measured in the trials such as disease scores green leaf area percentage and yields In some trials the NDVI followed similar trends to disease green leaf retention and yields However in other cases where clear treatment effects were recorded through visual or yield assessments there were no differences in NDVI between the treatments As NDVI can be affected by a number of factors it was concluded that crop sensing technology can be used as an additional objective measurement in conjunction with standard assessment practice but without further investigation cannot replace traditional assessment methods
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie