Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Crop protection“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Crop protection" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Crop protection"
Matthews, G. A. „Crop production and crop protection“. Crop Protection 14, Nr. 8 (Dezember 1995): 689–90. http://dx.doi.org/10.1016/0261-2194(95)90011-x.
Der volle Inhalt der QuelleShishatskiy, Oleg N. „Global Crop Protection Industry“. Journal of Siberian Federal University. Biology 14, Nr. 4 (Dezember 2021): 541–49. http://dx.doi.org/10.17516/1997-1389-0371.
Der volle Inhalt der QuelleRacke, Ken, Pieter Spanoghe, Nathan De Geyter und Bipul Saha. „Crop Protection Chemistry“. Chemistry International 41, Nr. 4 (01.10.2019): 53–55. http://dx.doi.org/10.1515/ci-2019-0429.
Der volle Inhalt der QuelleJamison, Judy. „Crop fungal protection“. Nature Biotechnology 18, Nr. 12 (Dezember 2000): 1233. http://dx.doi.org/10.1038/82314.
Der volle Inhalt der QuelleAeschlimann, J. P. „Integrated crop protection“. Agriculture, Ecosystems & Environment 13, Nr. 1 (April 1985): 89–92. http://dx.doi.org/10.1016/0167-8809(85)90107-0.
Der volle Inhalt der QuelleUmaerus, Vilhelm. „Crop rotation in relation to crop protection“. Netherlands Journal of Plant Pathology 98, S2 (März 1992): 241–49. http://dx.doi.org/10.1007/bf01974491.
Der volle Inhalt der QuelleHernández-Soto, Alejandro, und Randall Chacón-Cerdas. „RNAi Crop Protection Advances“. International Journal of Molecular Sciences 22, Nr. 22 (10.11.2021): 12148. http://dx.doi.org/10.3390/ijms222212148.
Der volle Inhalt der QuelleHicks, Brian. „Future of crop protection“. Pesticide Outlook 13, Nr. 3 (05.07.2002): 104. http://dx.doi.org/10.1039/b205182f.
Der volle Inhalt der QuelleMatthews, Graham. „Crop protection in Turkmenistan“. Pesticide Outlook 12, Nr. 4 (06.11.2001): 149. http://dx.doi.org/10.1039/b106291n.
Der volle Inhalt der QuelleAbelson, Philip H. „Uncertainties About Crop Protection“. Weed Technology 11, Nr. 3 (September 1997): 629–32. http://dx.doi.org/10.1017/s0890037x00045553.
Der volle Inhalt der QuelleDissertationen zum Thema "Crop protection"
Ashby, Alison Mary. „Agrobacterium tumefaciens : chemotaxis and crop protection“. Thesis, Durham University, 1988. http://etheses.dur.ac.uk/6723/.
Der volle Inhalt der QuelleShi, Xiaoqing. „Biotechnological production of antifungal proteins for crop protection“. Doctoral thesis, Universitat Autònoma de Barcelona, 2021. http://hdl.handle.net/10803/671681.
Der volle Inhalt der QuelleLos hongos patógenos de plantas causan importantes pérdidas en las cosechas, poniendo en peligro la seguridad y calidad alimentaria. Los péptidos antimicrobianos (AMPs) muestran una actividad lítica potente y duradera específicamente frente a microorganismos, por lo que tienen un gran potencial como nuevos fungicidas naturales para el control de los hongos patógenos. Su explotación requiere de sistemas de producción rápidos, eficaces, económicos y seguros. El principal objetivo de este trabajo era desarrollar sistemas de producción sostenibles de AMPs, y su caracterización en el control de infecciones fúngicas para avanzar en su aplicación en la agricultura. Las proteínas antifúngicas (AFPs) secretadas por hongos filamentosos son un grupo de AMPs ricos en cisteínas, muy estables, activos específicamente frente a hongos. En este estudio demostramos que las plantas de Nicotiana bentamiana son una excelente biofactoría de AFPs mediante expresión transitoria usando un nuevo vector derivado del virus de mosaico del tabaco. Utilizando este sistema de producción en plantas, hemos producido eficientemente dos AFPs muy activas frente a hongos fitopatógenos, la AfpA de Penicillium expansum y la AfpB de Penicillium digitatum. Hemos descubierto que el compartimento subcelular donde se acumulan las AFPs tiene un impacto importante en la producción obtenida, probablemente porque su compartimentalización evita la toxicidad hacia las células vegetales. Los valores más altos se obtuvieron cuando las proteínas se acumularon en las vacuolas, alcanzando hasta 0,170 mg/g de hoja en el caso de la proteína más activa AfpA y hasta ocho veces más para la AfpB (1,2 mg/g de hoja). También demostramos que los extractos crudos de plantas que contienen AFP son activos frente a hongos, sin necesidad de purificar las proteínas reduciendo considerablemente el procesamiento del material vegetal y los costes de producción. Por lo tanto, el sistema desarrollado es eficiente para la producción de AFPs, y también es económico y seguro ya que se basa en plantas. Además, hemos desarrollado un sistema alternativo para la producción del péptido antifúngico PAF102 que previament no había podido producirse biotecnológicamente. Este sistema se basa en acumular el péptido en las gotas lipídicas (LDs) mediante la fusión a una proteína oleosina de plantas. Mediante esta estrategia, hemos producido PAF102 en semillas de arroz en cantidades de 20 mg por gramo de semilla. Sin embargo, la producción en semillas es lenta y para acelerar el proceso hemos transferido la tecnología de la fusión a oleosinas de plantas al sistema de Pichia pastoris. Usando este nuevo sistema hemos obtenido rendimientos comercialmente relevantes con producciones de 180 mg/l de cultivo en sólo 4 días. La acumulación de PAF102 en las LDs de las semillas de arroz y de la levadura facilita enormemente su extracción por simple flotación en soluciones densas, permitiendo la recuperación de péptido activo frente a hongos patógenos. Finalmente, hemos demostrado que tanto AfpA y AfpB producidas en plantas, como los extractos de plantas enriquecidos estas proteinas, son eficaces en la prevención de infecciones fúngicas en cultivos económicamente relevantes, tales como la podredumbre gris causada por Botrytis cinerea en hojas y frutos de tomate, el quemado del arroz causado por Magnaporthe oryzae, o las infecciones de las semillas de arroz por Fusarium proliferatum. Nuestros resultados proporcionan un sistema de producción sostenible de AFPs y demuestran su eficacia en la protección de las plantas contra las infecciones fúngicas, apoyando firmemente su uso como "fungicidas verdes" eficaces y respetuosos con el medio ambiente en la protección de cultivos y postcosecha.
Plant diseases caused by pathogenic fungi are responsible of important crop losses endangering food security and safety. Antimicrobial peptides (AMPs), exhibiting potent and durable lytic activity specifically against microorganisms, have a great potential as novel natural fungicides for the control of pathogenic fungi. However, viable exploitation of AMPs requires fast, cost-efficient, and safe production systems. The main goal of this work was to develop a sustainable platform for the production of bioactive AMPs, and to characterize them in the control of fungal infections in plants to advance in their application in agriculture. Antifungal proteins (AFPs) secreted by filamentous fungi are a group of highly stable cysteine-rich AMPs that specifically target fungal cells. In this study, we demonstrate that Nicotiana benthamiana plants are an excellent biofactory for producing AFPs through transient expression using a new vector derived from the tobacco mosaic virus. Using this plant-based production system we efficiently produced two different bioactive AFPs, the Penicillium expansum AfpA and Penicillium digitatum AfpB. We found that the subcellular compartment where AFPs are accumulated has an important impact on protein yield, probably avoiding toxicity towards plant cells. The highest yields were achieved when targeting AFPs to vacuoles, reaching up to 0.170 mg/g of fresh leaves of the highly active AfpA and eight times more of AfpB (1.2 mg/g of leaf). We also show that plant crude extracts containing AFPs are fully active against plant pathogens without requiring further protein purification, thus reducing significantly downstream processing. Therefore, the developed system is efficient for the production of AFPs, and also it is economic and safe since it is based on plants. We also developed an alternative system for the production of the linear PAF102 antifungal peptide that was recalcitrant to be produced in biological systems. This system is based on targeting the peptide to lipid droplets (LDs) through the fusion to a plant oleosin protein. Using this oleosin fusion technology, we produced PAF102 in rice seed LDs, reaching moderate yields of about 20 mg of peptide per gram of grain. Production on rice seeds is long process in order to speed the process, we successfully transferred the plant oleosin fusion technology to the Pichia pastoris system. We produced commercially relevant yields of PAF102 in these yeast LDs, reaching values of 180 mg/l of culture in only 4 days. The accumulation of PAF102 in the LDs of rice seeds and yeast facilitated its downstream extraction and recovery by simple flotation on dense solutions, with the recovered PAF102 being biologically active against pathogenic fungi. Finally, we demonstrate that in planta produced AfpA and AfpB, either purified protein or protein extracts enriched with these two proteins, are efficient in controlling important fungal diseases on economically relevant crops, including Botrytis gray mold disease in tomato leaves and fruits, blast disease in rice plants and Fusarium proliferatum infection in rice seeds. Our results provide a sustainable production system of AFPs, and evidence their efficacy on protecting plants from fungal infection, strongly supporting the use of AFPs as environmental friendly and effective “green fungicides” in crop and postharvest protection.
Universitat Autònoma de Barcelona. Programa de Doctorat en Biologia i Biotecnologia Vegetal
Mahendra, Vidhura. „Selected wavelength spectral filters for horticultural crop protection“. Thesis, University of Reading, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.412177.
Der volle Inhalt der QuelleKamaruddin, Rezuwan. „A naturally ventilated crop protection structure for tropical conditions“. Thesis, Cranfield University, 1999. http://dspace.lib.cranfield.ac.uk/handle/1826/11975.
Der volle Inhalt der QuelleSehsah, El-Sayed Mahmoud El-Beily. „Application techniques for biological crop protection in orchards and vineyards“. Beuren Stuttgart Grauer, 2005. http://d-nb.info/98987236X/04.
Der volle Inhalt der QuelleBhuiyan, Md Serajul Islam. „Tri-trophic-level interactions between herbivorous insects and their natural enemies“. Thesis, University of Southampton, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.295266.
Der volle Inhalt der QuelleChiarolla, Claudio. „Intellectual property and environmental protection of crop biodiversity under international law“. Thesis, Queen Mary, University of London, 2009. http://qmro.qmul.ac.uk/xmlui/handle/123456789/446.
Der volle Inhalt der QuelleAyre, Kevin. „Evaluation of carabids as predators of slugs in arable land“. Thesis, University of Newcastle Upon Tyne, 1995. http://hdl.handle.net/10443/946.
Der volle Inhalt der QuelleAbukhashim, Nagia K. „Some effects of temperature on the biology of Tetranychus urticae (Koch)(Acarina)“. Thesis, University of Newcastle Upon Tyne, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.295532.
Der volle Inhalt der QuelleTodd, Catherine. „Investigations into 2,3-dihydroxy acid intermediates on the branched-chain amino acid biosynthetic pathway“. Thesis, University of Warwick, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.308022.
Der volle Inhalt der QuelleBücher zum Thema "Crop protection"
Weather & crop protection. Zutphen: Roodbont Agricultural Publishers, 2007.
Den vollen Inhalt der Quelle findenLever, Brian George. Crop protection chemicals. New York: Ellis Horwood, 1990.
Den vollen Inhalt der Quelle findenDeguine, Jean-Philippe, Caroline Gloanec, Philippe Laurent, Alain Ratnadass und Jean-Noël Aubertot, Hrsg. Agroecological Crop Protection. Dordrecht: Springer Netherlands, 2017. http://dx.doi.org/10.1007/978-94-024-1185-0.
Der volle Inhalt der QuelleDorrance, Michael J. Practical crop protection. Herausgegeben von Alberta. Soil and Crop Management Branch. Edmonton, Alta: Alberta Agriculture, Food and Rural Development, 1994.
Den vollen Inhalt der Quelle findenN, Burton Earl, und Williams Peter V, Hrsg. Crop protection research advances. New York: Nova Science Publishers, 2008.
Den vollen Inhalt der Quelle findenSchirmer, Ulrich, und Wolfgang Krämer. Modern crop protection compounds. Weinheim: Wiley-VCH, 2007.
Den vollen Inhalt der Quelle findenHedin, Paul A., Julius J. Menn und Robert M. Hollingworth, Hrsg. Biotechnology for Crop Protection. Washington, DC: American Chemical Society, 1988. http://dx.doi.org/10.1021/bk-1988-0379.
Der volle Inhalt der QuelleOliver, R., und H. G. Hewitt, Hrsg. Fungicides in crop protection. Wallingford: CABI, 2014. http://dx.doi.org/10.1079/9781780641669.0000.
Der volle Inhalt der QuelleJeschke, Peter, Matthias Witschel, Wolfgang Krämer und Ulrich Schirmer, Hrsg. Modern Crop Protection Compounds. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2019. http://dx.doi.org/10.1002/9783527699261.
Der volle Inhalt der QuelleKrämer, Wolfgang, Ulrich Schirmer, Peter Jeschke und Matthias Witschel, Hrsg. Modern Crop Protection Compounds. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2011. http://dx.doi.org/10.1002/9783527644179.
Der volle Inhalt der QuelleBuchteile zum Thema "Crop protection"
Reddy, P. Parvatha. „Crop Protection“. In Sustainable Crop Protection under Protected Cultivation, 23–46. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-287-952-3_3.
Der volle Inhalt der QuellePearce, R. Brent, und Dennis R. Keeney. „Crop Protection-Discussion“. In International Crop Science I, 135–37. Madison, WI, USA: Crop Science Society of America, 2015. http://dx.doi.org/10.2135/1993.internationalcropscience.c23.
Der volle Inhalt der QuelleSomasundaram, E., D. Udhaya Nandhini und M. Meyyappan. „Organic Crop Protection“. In Principles of Organic Farming, 165–238. London: CRC Press, 2021. http://dx.doi.org/10.1201/9781003260844-7.
Der volle Inhalt der QuelleDeguine, Jean-Philippe, Toulassi Nurbel, Caroline Gloanec und Philippe Laurent. „Application of Agroecological Crop Protection to Vegetable Crops: The GAMOUR Experience“. In Agroecological Crop Protection, 47–75. Dordrecht: Springer Netherlands, 2017. http://dx.doi.org/10.1007/978-94-024-1185-0_2.
Der volle Inhalt der QuelleGloanec, Caroline, Jean-Philippe Deguine, Didier Vincenot, Philippe Laurent, Maxime Jacquot und Rachel Graindorge. „Application of Agroecological Crop Protection to Fruit Crops: The BIOPHYTO Experience“. In Agroecological Crop Protection, 77–107. Dordrecht: Springer Netherlands, 2017. http://dx.doi.org/10.1007/978-94-024-1185-0_3.
Der volle Inhalt der QuelleDeguine, Jean-Philippe. „Agroecological Crop Protection, a Crop Protection Strategy for the Future“. In Agroecological Crop Protection, 247–49. Dordrecht: Springer Netherlands, 2017. http://dx.doi.org/10.1007/978-94-024-1185-0_6.
Der volle Inhalt der QuelleKate, Kerry ten. „Crop Protection“. In The Commercial use of Biodiversity, 188–227. Routledge, 2019. http://dx.doi.org/10.4324/9780429341540-7.
Der volle Inhalt der Quelle„Harmonising Control Methods: Mirage and Reality“. In Crop Protection, 107–30. CRC Press, 2009. http://dx.doi.org/10.1201/b10767-10.
Der volle Inhalt der Quelle„Ecological Bases of the Management of Populations“. In Crop Protection, 131–52. CRC Press, 2009. http://dx.doi.org/10.1201/b10767-11.
Der volle Inhalt der Quelle„Habitat Management: The Factor Uniting Agronomy and Ecology“. In Crop Protection, 153–76. CRC Press, 2009. http://dx.doi.org/10.1201/b10767-12.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Crop protection"
Karthika, S., Kalyana Rangan V, Aditya K, Anand Anil Kumar und D. Selvakumar. „IOT BASED CROP PROTECTION SYSTEM“. In 2021 6th International Conference on Communication and Electronics Systems (ICCES). IEEE, 2021. http://dx.doi.org/10.1109/icces51350.2021.9489031.
Der volle Inhalt der QuellePachlatko, J. „Natural Products in Crop Protection“. In The 2nd International Electronic Conference on Synthetic Organic Chemistry. Basel, Switzerland: MDPI, 1998. http://dx.doi.org/10.3390/ecsoc-2-01701.
Der volle Inhalt der QuelleGogul Dev, N. S., K. S. Sreenesh und P. K. Binu. „IoT Based Automated Crop Protection System“. In 2019 2nd International Conference on Intelligent Computing, Instrumentation and Control Technologies (ICICICT). IEEE, 2019. http://dx.doi.org/10.1109/icicict46008.2019.8993406.
Der volle Inhalt der QuelleBERNER, Bogusława, und Jerzy CHOJNACKI. „Use of Drones in Crop Protection“. In IX International ScientificSymposium "Farm Machinery and Processes Management in Sustainable Agriculture". Departament of Machinery Exploittation and Management of Production Processes, University of Life Sciences in Lublin, 2017. http://dx.doi.org/10.24326/fmpmsa.2017.9.
Der volle Inhalt der Quelle„5.7 Application Techniques for Crop Protection“. In CIGR Handbook of Agricultural Engineering Volume VI: Information Technology . St. Joseph, MI: American Society of Agricultural and Biological Engineers, 2006. http://dx.doi.org/10.13031/2013.21682.
Der volle Inhalt der QuelleMeissle, Michael. „Can Bt crops contribute to sustainable crop protection? A European perspective“. In 2016 International Congress of Entomology. Entomological Society of America, 2016. http://dx.doi.org/10.1603/ice.2016.95555.
Der volle Inhalt der QuelleHanna, Mark, Robert Hartzler, Don Erbach und Kevin Paarlberg. „High Speed Row Crop Management“. In Proceedings of the 1992 Crop Production and Protection Conference. Iowa State University, Digital Press, 1995. http://dx.doi.org/10.31274/icm-180809-493.
Der volle Inhalt der QuelleLee, Michael. „DNA Fingerprinting of Crop Germplasm“. In Proceedings of the 1992 Crop Production and Protection Conference. Iowa State University, Digital Press, 1993. http://dx.doi.org/10.31274/icm-180809-450.
Der volle Inhalt der QuelleWintersteen, W. K., und J. S. Hornstein. „Worker Protection Standard Update“. In Proceedings of the 1992 Crop Production and Protection Conference. Iowa State University, Digital Press, 1994. http://dx.doi.org/10.31274/icm-180809-460.
Der volle Inhalt der QuelleWintersteen, W. K., und J. S. Hornstein. „Worker Protection Standard Update“. In Proceedings of the 1992 Crop Production and Protection Conference. Iowa State University, Digital Press, 1993. http://dx.doi.org/10.31274/icm-180809-443.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Crop protection"
Wise, Kiersten, Anna Freije, Carl Bradley, Martin Chilvers, Loren Giesler, Daren Mueller, Adam Sisson, Damon Smith und Albert Tenuta. Crop Protection Network: An Infrastructure for Multi-state Extension Efforts. United States: Crop Protection Netework, März 2017. http://dx.doi.org/10.31274/cpn-20190620-045.
Der volle Inhalt der QuellePomeroy, Robert, und Ryan Simkovsky. Integrated Pest Management (IPM) for Early Detection Algal Crop Protection (Final Report). Office of Scientific and Technical Information (OSTI), April 2022. http://dx.doi.org/10.2172/1862344.
Der volle Inhalt der QuelleNitchenko, L. B., und V. A. Plotnikov. THE SYSTEM OF CHEMICAL CROP PROTECTION AGAINST WEEDS, PATHOGENS AND INSECTSIN THE DATABASE OF RESOURCE SAVING TECHNOLOGIES OF CROP CULTIVATION. ФГБОУ ВО Курская ГСХА, 2018. http://dx.doi.org/10.18411/issn1997-0749.2018-07-07.
Der volle Inhalt der QuelleTorok, Tamas. Novel enabling technologies of gene isolation and plant transformation for improved crop protection. Office of Scientific and Technical Information (OSTI), Februar 2013. http://dx.doi.org/10.2172/1149940.
Der volle Inhalt der QuelleBuddendorf, Bas, Mechteld ter Horst und Ivo Roessink. Investigating the need for environmental risk assessment of chemical crop protection practices in seaweed. Wageningen: Wageningen Environmental Research, 2021. http://dx.doi.org/10.18174/550814.
Der volle Inhalt der QuelleEdelman, Meir, und Autar K. Mattoo. The Rapidly-Metabolized Herbicide Binding Protein of the Thylakoids: Relationship to Phytosynthesis and Crop Protection. United States Department of Agriculture, Juli 1986. http://dx.doi.org/10.32747/1986.7566753.bard.
Der volle Inhalt der QuelleEdelman, Meir, und Autar Mattoo. The Rapidly-Metabolized Herbicide Binding Protein of the Thylacoids: Relationship to Photosynthesis and Crop Protection. United States Department of Agriculture, Februar 1993. http://dx.doi.org/10.32747/1993.7603813.bard.
Der volle Inhalt der QuelleEvenhuis, A., und H. T. A. M. Schepers. Efficacy to control potato late blight by applying biological crop protection products : EuroBlight field experiment AGV7716. Wageningen: Stichting Wageningen Research, Wageningen Plant Research, Business Unit Field Crops, 2020. http://dx.doi.org/10.18174/541281.
Der volle Inhalt der Quellevan Boheemen, K., J. Riepma und J. F. M. Huijsmans. Precision Agriculture and Crop Protection = (Precisielandbouw en Gewasbescherming) : Definitions and the relation between precision-applications and the authorisation procedure of PPPs. Wageningen: Stichting Wageningen Research, Wageningen Plant Research, Business Unit Agrosystems Research, 2022. http://dx.doi.org/10.18174/566499.
Der volle Inhalt der QuelleShahak, Yosepha, und Donald R. Ort. Physiological Bases for Impaired Photosynthetic Performance of Chilling-Sensitive Fruit Trees. United States Department of Agriculture, Mai 2001. http://dx.doi.org/10.32747/2001.7575278.bard.
Der volle Inhalt der Quelle