Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „CrMnFeCoNi“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "CrMnFeCoNi" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "CrMnFeCoNi"
Gadelmeier, Christian, Sebastian Haas, Tim Lienig, Anna Manzoni, Michael Feuerbacher und Uwe Glatzel. „Temperature Dependent Solid Solution Strengthening in the High Entropy Alloy CrMnFeCoNi in Single Crystalline State“. Metals 10, Nr. 11 (23.10.2020): 1412. http://dx.doi.org/10.3390/met10111412.
Der volle Inhalt der QuelleKang, You Bin, Kap Ho Lee und Sun Ig Hong. „Creep Behaviors of CrMnFeCoNi High Entropy Alloy at Intermediate Temperatures“. Key Engineering Materials 737 (Juni 2017): 21–26. http://dx.doi.org/10.4028/www.scientific.net/kem.737.21.
Der volle Inhalt der QuelleKrapivka, M. O., Yu P. Mazur, M. P. Semen’ko und S. O. Firstov. „Structure of the High-Entropy CrMnFeCoNi and CrMnFeCoNi$_{2}$Cu Alloys and Thermal Stability of Its Electrical Transport Properties“. METALLOFIZIKA I NOVEISHIE TEKHNOLOGII 37, Nr. 6 (17.08.2016): 731–40. http://dx.doi.org/10.15407/mfint.37.06.0731.
Der volle Inhalt der QuelleSemen’ko, М. P., Yu P. Mazur und R. V. Ostapenko. „Features Thermomagnetic Behavior of CrMnFeCoNi High Entropy Alloy“. Journal of Nano- and Electronic Physics 8, Nr. 3 (2016): 03029–1. http://dx.doi.org/10.21272/jnep.8(3).03029.
Der volle Inhalt der QuellePeng, Hailong, Yangcenzi Xie, Zicheng Xie, Yunfeng Wu, Wenkun Zhu, Shuquan Liang und Liangbing Wang. „Large-scale and facile synthesis of a porous high-entropy alloy CrMnFeCoNi as an efficient catalyst“. Journal of Materials Chemistry A 8, Nr. 35 (2020): 18318–26. http://dx.doi.org/10.1039/d0ta04940a.
Der volle Inhalt der QuelleXiao, L. L., Z. Q. Zheng, S. W. Guo, P. Huang und F. Wang. „Ultra-strong nanostructured CrMnFeCoNi high entropy alloys“. Materials & Design 194 (September 2020): 108895. http://dx.doi.org/10.1016/j.matdes.2020.108895.
Der volle Inhalt der QuelleWu, Z., S. A. David, Z. Feng und H. Bei. „Weldability of a high entropy CrMnFeCoNi alloy“. Scripta Materialia 124 (November 2016): 81–85. http://dx.doi.org/10.1016/j.scriptamat.2016.06.046.
Der volle Inhalt der QuelleFu, Wujing, Wei Zheng, Yongjiang Huang, Fangmin Guo, Songshan Jiang, Peng Xue, Yang Ren, Hongbo Fan, Zhiliang Ning und Jianfei Sun. „Cryogenic mechanical behaviors of CrMnFeCoNi high-entropy alloy“. Materials Science and Engineering: A 789 (Juli 2020): 139579. http://dx.doi.org/10.1016/j.msea.2020.139579.
Der volle Inhalt der QuellePickering, E. J., R. Muñoz-Moreno, H. J. Stone und N. G. Jones. „Precipitation in the equiatomic high-entropy alloy CrMnFeCoNi“. Scripta Materialia 113 (März 2016): 106–9. http://dx.doi.org/10.1016/j.scriptamat.2015.10.025.
Der volle Inhalt der QuelleLaplanche, G., U. F. Volkert, G. Eggeler und E. P. George. „Oxidation Behavior of the CrMnFeCoNi High-Entropy Alloy“. Oxidation of Metals 85, Nr. 5-6 (04.03.2016): 629–45. http://dx.doi.org/10.1007/s11085-016-9616-1.
Der volle Inhalt der QuelleDissertationen zum Thema "CrMnFeCoNi"
Sun, Xun. „Ab initio Investigation of Al-doped CrMnFeCoNi High-Entropy Alloys“. Licentiate thesis, KTH, Materialvetenskap, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-251330.
Der volle Inhalt der QuelleNovotný, David. „Lomové chování kovových slitin s nízkou úrovní houževnatosti“. Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2021. http://www.nusl.cz/ntk/nusl-442806.
Der volle Inhalt der QuelleLiang, Shuen-Shin, und 梁順鑫. „Magnetic Properties of CrMnFeCoNi Multi-Element Nanoparticle“. Thesis, 2006. http://ndltd.ncl.edu.tw/handle/96196351246668505003.
Der volle Inhalt der Quelle國立清華大學
材料科學工程學系
94
In this study, the superhydride(LiB(Et)3H) reducing agent was used to reduce CrCl3, MnCl2, Fe(acac)2, Co(acac)2 and Ni(acac)2 at high temperature to synthesize the MnFe, MnFeCo, MnFeCoNi, and CrMnFeCoNi magnetic nanoparticles, and nanoparticles were dispersed by oleic acid in hexane. The crystal structure of nanoparticles were identified by XRD. It showed that as-prepared nanoparticles were amorphous besides MnFe which appeared peaks of unknown structure. After annealing, MnFe nanoparticles and MnFeCo nanoparticles became the BCC and MnO2 phases. The structure of annealed MnFeCoNi, Mn-rich and Mn-poor nanoparticles were FCC. However, some unknown peaks were observed in Mn-rich nanoparticles annealed at 600°C. The sizes of nanoparticles increased with annealing temperature. According to the LSW theory, the cubed diameter is proportional to the exponential of-Q/RT. For MnFe and Mn-rich nanopartcle, the active energys of the coarsening are 15.8(KJ/mol) and 24.5(KJ/mol) which suit for the surface diffusion. Below the 500°C, the active energy is 13.3(KJ/mol) for Mn-poor nanoparticles, and above the 500°C, it is 311.8(KJ/mol). It is clear that Mn-poor nanoparticles coarsen by surface diffusion at low temperature and by bulk diffusion at high temperature. Form the measurement, magnetic nanoparticles showed low saturated magnetization(Ms), low cohesive field(Hc), and normal susceptibility of the paramagnetic phase in the superparamagnetic region. In the single domain region, there were normal Ms, high Hc, and low susceptibility. In the multi-domain region, there were high Ms, normal Hc and high susceptibility of superparamagnetic phase.
Gonçalves, Tiago Miguel Curado. „Soldadura TIG da Liga de Alta Entropia CrMnFeCoNi“. Master's thesis, 2019. http://hdl.handle.net/10362/75026.
Der volle Inhalt der QuelleHsieh, Kang-Tien, und 謝岡典. „First-principles and classical modeling study of the phase stability and phase transformation mechanism of CrMnFeCoNi high-entropy alloy“. Thesis, 2018. http://ndltd.ncl.edu.tw/handle/4u9r84.
Der volle Inhalt der Quelle國立臺灣大學
材料科學與工程學研究所
106
Density functional theory (DFT) and modified embedded atom method (MEAM) are applied in this thesis with aim of investigating the fundamental reasons of phase stability and phase transition process of CrMnFeCoNi quinary high-entropy alloy (HEA). These two atomistic approaches are used in different aspects of researches due to their accuracy and computational demands. In the first part of the thesis, the phase stability of the quinary CrMnFeCoNi, quaternary CrFeCoNi and ternary FeCoCr alloy systems are investigated by DFT static calculations and ab initio molecular dynamics (AIMD). A new idea of reverse Monte Carlo (RMC) method is presented to systematically construct different structures with different local chemical ordering. Quinary CrMnFeCoNi alloy is initially considered as a random solid solution, but phase separation phenomenon is observed in recent studies. Our results show that the experimentally observed phase separation is an enthalpy driven process and the entropy in high-entropy alloys may not be that “high”. We further suggest that the quaternary CrFeCoNi alloy is more stable than its quinary parent and that Mn plays a crucial role in the relative phase stability of the quinary alloy. Futhermore, the local chemistry ordering may greatly affect the stacking fault energies of the system. The lacking of proper atomistic potential model can greatly prohibit the outgrowth of material studies. In the second part of the thesis, a set of MEAM parameters is developed and validated. When comparing with the results of existing parameters, our results show better agreement with ab initio calculations and experimental values. The FCC-to-HCP phase transformation during high-pressure compression is investigated by large scale molecular dynamics (MD). The results suggest that the locally anisotropic pressure can activate FCC-to-HCP phase transformation while hydrostatic pressure cannot. Among <001>, <011> and <111> directions, the stress applied on <001> is the most effective in turning FCC into HCP, reaching a 66% transformation. An extra mechanism is found to be responsible for this stacking fault mediated phase transformation process. Moreover, by biaxial compression with and without free surface, we suggest that the homogeneous nucleation of dislocations plays a more important role than heterogeneous nucleation in FCC-to-HCP phase transformation for Cantor alloy.