Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „CPU throttling“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "CPU throttling" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "CPU throttling"
Owahid, Abdullah A., und Eugene B. John. „Wasted dynamic power and correlation to instruction set architecture for CPU throttling“. Journal of Supercomputing 75, Nr. 5 (11.10.2018): 2436–54. http://dx.doi.org/10.1007/s11227-018-2637-6.
Der volle Inhalt der QuelleBenoit-Cattin, Théo, Delia Velasco-Montero und Jorge Fernández-Berni. „Impact of Thermal Throttling on Long-Term Visual Inference in a CPU-Based Edge Device“. Electronics 9, Nr. 12 (10.12.2020): 2106. http://dx.doi.org/10.3390/electronics9122106.
Der volle Inhalt der QuelleKwon, Ohchul, Wonjae Jang, Giyeon Kim und Chang-Gun Lee. „Optimal Planning of Dynamic Thermal Management for NANS (N-App N-Screen) Services“. Electronics 7, Nr. 11 (08.11.2018): 311. http://dx.doi.org/10.3390/electronics7110311.
Der volle Inhalt der QuelleChen, Jing, Madhavan Manivannan, Mustafa Abduljabbar und Miquel Pericàs. „ERASE: Energy Efficient Task Mapping and Resource Management for Work Stealing Runtimes“. ACM Transactions on Architecture and Code Optimization 19, Nr. 2 (30.06.2022): 1–29. http://dx.doi.org/10.1145/3510422.
Der volle Inhalt der QuelleKirov, Denis E., Natalia V. Toutova, Anatoly S. Vorozhtsov und Iliya A. Andreev. „FEATURE SELECTION FOR PREDICTING LIVE MIGRATION CHARACTERISTICS OF VIRTUAL MACHINES“. T-Comm 15, Nr. 7 (2021): 62–70. http://dx.doi.org/10.36724/2072-8735-2021-15-7-62-70.
Der volle Inhalt der QuelleAlkharabsheh, Sami, Udaya L. N. Puvvadi, Bharath Ramakrishnan, Kanad Ghose und Bahgat Sammakia. „Failure Analysis of Direct Liquid Cooling System in Data Centers“. Journal of Electronic Packaging 140, Nr. 2 (09.05.2018). http://dx.doi.org/10.1115/1.4039137.
Der volle Inhalt der QuelleBrilli, Gianluca, Roberto Cavicchioli, Marco Solieri, Paolo Valente und Andrea Marongiu. „Evaluating Controlled Memory Request Injection for Efficient Bandwidth Utilization and Predictable Execution in Heterogeneous SoCs“. ACM Transactions on Embedded Computing Systems, 19.09.2022. http://dx.doi.org/10.1145/3548773.
Der volle Inhalt der Quelle„Enhancement of Plant Disease Detection Framework using Cloud Computing and GPU Computing“. International Journal of Engineering and Advanced Technology 9, Nr. 1 (30.10.2019): 3139–41. http://dx.doi.org/10.35940/ijeat.a9541.109119.
Der volle Inhalt der QuelleMaity, Srijeeta, Anirban Majumder, Rudrajyoti Roy, Ashish Hota und Soumyajit Dey. „Harnessing Machine Learning in Dynamic Thermal Management in Embedded CPU-GPU Platforms“. ACM Transactions on Design Automation of Electronic Systems, 20.12.2024. https://doi.org/10.1145/3708890.
Der volle Inhalt der QuellePandey, Shailja, Lokesh Siddhu und Preeti Ranjan Panda. „NeuroCool: Dynamic Thermal Management of 3D DRAM for Deep Neural Networks through Customized Prefetching“. ACM Transactions on Design Automation of Electronic Systems, 23.10.2023. http://dx.doi.org/10.1145/3630012.
Der volle Inhalt der QuelleDissertationen zum Thema "CPU throttling"
Perera, Jayasuriya Kuranage Menuka. „AI-driven Zero-Touch solutions for resource management in cloud-native 5G networks“. Electronic Thesis or Diss., Ecole nationale supérieure Mines-Télécom Atlantique Bretagne Pays de la Loire, 2024. http://www.theses.fr/2024IMTA0427.
Der volle Inhalt der QuelleThe deployment of 5G networks has introduced cloud-native architectures and automated management systems, offering communication service providers scalable, flexible, and agile infrastructure. These advancements enable dynamic resource allocation, scaling resources up during high demand and down during low usage, optimizing CapEx and OpEx. However, limited observability and poor workload characterization hinder resource management. Overprovisioning during off-peak periods raises costs, while underprovisioning during peak demand degrades QoS. Despite industry solutions, the trade-off between cost efficiency and QoS remains unresolved. This thesis addresses these challenges by proposing proactive autoscaling solutions for network functions in cloud-native 5G. It focuses on accurately forecasting resource usage, intelligently differentiating scaling events (scaling up, down, or none), and optimizing timing to achieve a balance between cost and QoS. Additionally, CPU throttling, a significant barrier to this balance, is mitigated through a novel approach. The developed framework ensures efficient resource allocation, reducing operational costs while maintaining high QoS. These contributions establish a foundation for sustainable and efficient 5G network operations, setting a benchmark for future cloud-native architectures
Konferenzberichte zum Thema "CPU throttling"
Kuranage, Menuka Perera Jayasuriya, Elisabeth Hanser, Ahmed Bouabdallah, Loutfi Nuaymi und Philippe Bertin. „CPU throttling-aware AI-based autoscaling for Kubernetes“. In 2024 IEEE 35th International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), 1–7. IEEE, 2024. https://doi.org/10.1109/pimrc59610.2024.10817283.
Der volle Inhalt der QuelleKnorst, Tiago, Michael Guilherme Jordan, Guilherme Korol, Mateus Beck Rutzig und Antonio Carlos Schneider Beck. „An Automatic Framework for Collaborative CPU Thread Throttling and FPGA HLS-Versioning“. In 2024 XIV Brazilian Symposium on Computing Systems Engineering (SBESC), 1–6. IEEE, 2024. https://doi.org/10.1109/sbesc65055.2024.10771920.
Der volle Inhalt der QuelleKnorst, Tiago, Michael G. Jordan, Arthur F. Lorenzen, Mateus Beck Rutzig und Antonio Carlos Schneider Beck. „ETCG: Energy-Aware CPU Thread Throttling for CPU-GPU Collaborative Environments“. In 2021 34th SBC/SBMicro/IEEE/ACM Symposium on Integrated Circuits and Systems Design (SBCCI). IEEE, 2021. http://dx.doi.org/10.1109/sbcci53441.2021.9529986.
Der volle Inhalt der QuelleRai, Siddharth, und Mainak Chaudhuri. „Improving CPU Performance Through Dynamic GPU Access Throttling in CPU-GPU Heterogeneous Processors“. In 2017 IEEE International Parallel and Distributed Processing Symposium: Workshops (IPDPSW). IEEE, 2017. http://dx.doi.org/10.1109/ipdpsw.2017.37.
Der volle Inhalt der QuelleKnorst, Tiago, Michael G. Jordan, Arthur F. Lorenzon, Mateus Beck Rutzig und Antonio Carlos Schneider Beck. „ETCF – Energy-Aware CPU Thread Throttling and Workload Balancing Framework for CPU-FPGA Collaborative Environments“. In 2021 XI Brazilian Symposium on Computing Systems Engineering (SBESC). IEEE, 2021. http://dx.doi.org/10.1109/sbesc53686.2021.9628345.
Der volle Inhalt der QuelleOwahid, Abdullah A., und Eugene B. John. „RTL Level Instruction Profiling for CPU Throttling to Reduce Wasted Dynamic Power“. In 2017 International Conference on Computational Science and Computational Intelligence (CSCI). IEEE, 2017. http://dx.doi.org/10.1109/csci.2017.281.
Der volle Inhalt der QuelleKnorst, Tiago, Guilherme Korol, Michael Guilherme Jordan, Julio Costella Vicenzi, Arthur Lorenzon, Mateus Beck Rutzig und Antonio Carlos Schneider Beck. „On the benefits of Collaborative Thread Throttling and HLS-Versioning in CPU-FPGA Environments“. In 2022 35th SBC/SBMicro/IEEE/ACM Symposium on Integrated Circuits and Systems Design (SBCCI). IEEE, 2022. http://dx.doi.org/10.1109/sbcci55532.2022.9893223.
Der volle Inhalt der QuelleAlkharabsheh, Sami, Bharath Ramakrishnan und Bahgat Sammakia. „Failure Analysis of Direct Liquid Cooling System in Data Centers“. In ASME 2017 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems collocated with the ASME 2017 Conference on Information Storage and Processing Systems. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/ipack2017-74174.
Der volle Inhalt der QuelleDawson, Michael K., und Jeffrey W. Herrmann. „Metareasoning Approaches for Thermal Management During Image Processing“. In ASME 2022 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/detc2022-88459.
Der volle Inhalt der QuelleHeydari, Ali, und Kathy Russell. „Miniature Vapor Compression Refrigeration Systems for Active Cooling of High Performance Computers“. In ASME 2001 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2001. http://dx.doi.org/10.1115/imece2001/epp-24710.
Der volle Inhalt der Quelle