Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „CPU-GPU Partitioning“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "CPU-GPU Partitioning" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "CPU-GPU Partitioning"
Benatia, Akrem, Weixing Ji, Yizhuo Wang und Feng Shi. „Sparse matrix partitioning for optimizing SpMV on CPU-GPU heterogeneous platforms“. International Journal of High Performance Computing Applications 34, Nr. 1 (14.11.2019): 66–80. http://dx.doi.org/10.1177/1094342019886628.
Der volle Inhalt der QuelleNarayana, Divyaprabha Kabbal, und Sudarshan Tekal Subramanyam Babu. „Optimal task partitioning to minimize failure in heterogeneous computational platform“. International Journal of Electrical and Computer Engineering (IJECE) 15, Nr. 1 (01.02.2025): 1079. http://dx.doi.org/10.11591/ijece.v15i1.pp1079-1088.
Der volle Inhalt der QuelleHuijing Yang und Tingwen Yu. „Two novel cache management mechanisms on CPU-GPU heterogeneous processors“. Research Briefs on Information and Communication Technology Evolution 7 (15.06.2021): 1–8. http://dx.doi.org/10.56801/rebicte.v7i.113.
Der volle Inhalt der QuelleFang, Juan, Mengxuan Wang und Zelin Wei. „A memory scheduling strategy for eliminating memory access interference in heterogeneous system“. Journal of Supercomputing 76, Nr. 4 (10.01.2020): 3129–54. http://dx.doi.org/10.1007/s11227-019-03135-7.
Der volle Inhalt der QuelleMERRILL, DUANE, und ANDREW GRIMSHAW. „HIGH PERFORMANCE AND SCALABLE RADIX SORTING: A CASE STUDY OF IMPLEMENTING DYNAMIC PARALLELISM FOR GPU COMPUTING“. Parallel Processing Letters 21, Nr. 02 (Juni 2011): 245–72. http://dx.doi.org/10.1142/s0129626411000187.
Der volle Inhalt der QuelleVilches, Antonio, Rafael Asenjo, Angeles Navarro, Francisco Corbera, Rub́en Gran und María Garzarán. „Adaptive Partitioning for Irregular Applications on Heterogeneous CPU-GPU Chips“. Procedia Computer Science 51 (2015): 140–49. http://dx.doi.org/10.1016/j.procs.2015.05.213.
Der volle Inhalt der QuelleSung, Hanul, Hyeonsang Eom und HeonYoung Yeom. „The Need of Cache Partitioning on Shared Cache of Integrated Graphics Processor between CPU and GPU“. KIISE Transactions on Computing Practices 20, Nr. 9 (15.09.2014): 507–12. http://dx.doi.org/10.5626/ktcp.2014.20.9.507.
Der volle Inhalt der QuelleWang, Shunjiang, Baoming Pu, Ming Li, Weichun Ge, Qianwei Liu und Yujie Pei. „State Estimation Based on Ensemble DA–DSVM in Power System“. International Journal of Software Engineering and Knowledge Engineering 29, Nr. 05 (Mai 2019): 653–69. http://dx.doi.org/10.1142/s0218194019400023.
Der volle Inhalt der QuelleBarreiros, Willian, Alba C. M. A. Melo, Jun Kong, Renato Ferreira, Tahsin M. Kurc, Joel H. Saltz und George Teodoro. „Efficient microscopy image analysis on CPU-GPU systems with cost-aware irregular data partitioning“. Journal of Parallel and Distributed Computing 164 (Juni 2022): 40–54. http://dx.doi.org/10.1016/j.jpdc.2022.02.004.
Der volle Inhalt der QuelleSingh, Amit Kumar, Alok Prakash, Karunakar Reddy Basireddy, Geoff V. Merrett und Bashir M. Al-Hashimi. „Energy-Efficient Run-Time Mapping and Thread Partitioning of Concurrent OpenCL Applications on CPU-GPU MPSoCs“. ACM Transactions on Embedded Computing Systems 16, Nr. 5s (10.10.2017): 1–22. http://dx.doi.org/10.1145/3126548.
Der volle Inhalt der QuelleDissertationen zum Thema "CPU-GPU Partitioning"
Öhberg, Tomas. „Auto-tuning Hybrid CPU-GPU Execution of Algorithmic Skeletons in SkePU“. Thesis, Linköpings universitet, Programvara och system, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-149605.
Der volle Inhalt der QuelleThomas, Béatrice. „Adéquation Algorithme Architecture pour la gestion des réseaux électriques“. Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASG104.
Der volle Inhalt der QuelleThe growth of distributed energy resources raises the challenge of scaling up network management algorithms. This difficulty may be overcome in operating conditions with the help of a rich literature that frequently calls upon the distribution of computations. However, this issue persists during preliminary simulations validating the performances, the operation's safety, and the infrastructure's sizing. A hardware-software co-design approach is conducted here for a Peer-to-Peer market to address this scaling issue while computing simulations on a single machine. With the increasing number of distributed agents, the impact on the grid cannot be neglected anymore. Thus, this work will focus on an endogenous market. The mapping between several algorithms and different partitioning models on Central and Graphic Processing Units (CPU-GPU) has been conducted. The complexity and performance of these algorithms have been analyzed on CPU and GPU. The implementations have shown that the GPU is more numerically unstable than the CPU. Nevertheless, when precision is not critical, GPU gives substantial speedup. Thus, markets without grid constraints are 98% faster on GPU. Even with the grid constraints, the GPU is 1000 times faster with the DC hypothesis and ten times faster on the AC radial grid. This dimension-dependent acceleration increases with the grid size and the agent's count
Li, Cheng-Hsuan, und 李承軒. „Weighted LLC Latency-Based Run-Time Cache Partitioning for Heterogeneous CPU-GPU Architecture“. Thesis, 2014. http://ndltd.ncl.edu.tw/handle/33311478280299879988.
Der volle Inhalt der Quelle國立臺灣大學
資訊工程學研究所
102
Integrating the CPU and GPU on the same chip has become the development trend for microprocessor design. In integrated CPU-GPU architecture, utilizing the shared last-level cache (LLC) is a critical design issue due to the pressure on shared resources and the different characteristics of CPU and GPU applications. Because of the latency-hiding capability provided by the GPU and the huge discrepancy in concurrent executing threads between the CPU and GPU, LLC partitioning can no longer be achieved by simply minimizing the overall cache misses as in homogeneous CPUs. State-of-the-art cache partitioning mechanism distinguishes those cache-insensitive GPU applications from those cache-sensitive ones and optimize only the cache misses for CPU applications when the GPU is cache-insensitive. However, optimizing only the cache hit rate for CPU applications generates more cache misses from the GPU and leads to longer queuing delay in the underlying DRAM system. In terms of memory access latency, the loss due to longer queuing delay may out-weight the benefit from higher cache hit ratio. Therefore, we find that even though the performance of the GPU application may not be sensitive to cache resources, CPU applications'' cache hit rate is not the only factor which should be considered in partitioning the LLC. Cache miss penalty, i.e., off-chip latency, is also an important factor in designing LLC partitioning mechanism for integrated CPU-GPU architecture. In this paper, we proposed a Weighted LLC Latency-Based Run-Time Cache Partitioning for integrated CPU-GPU architecture. In order to correlate cache partition to overall performance more accurately, we develops a mechanism to predict the off-chip latency based on the number of total cache misses, and a GPU cache-sensitivity monitor, which quantitatively profiles GPU''s performance sensitivity to memory access latency. The experimental results show that the proposed mechanism improves the overall throughput by 9.7% over TLP-aware cache partitioning (TAP), 6.2% over Utility-based Cache Partitioning (UCP), and 10.9% over LRU on 30 heterogeneous workloads.
Mishra, Ashirbad. „Efficient betweenness Centrality Computations on Hybrid CPU-GPU Systems“. Thesis, 2016. http://etd.iisc.ac.in/handle/2005/2718.
Der volle Inhalt der QuelleMishra, Ashirbad. „Efficient betweenness Centrality Computations on Hybrid CPU-GPU Systems“. Thesis, 2016. http://hdl.handle.net/2005/2718.
Der volle Inhalt der QuelleBuchteile zum Thema "CPU-GPU Partitioning"
Clarke, David, Aleksandar Ilic, Alexey Lastovetsky und Leonel Sousa. „Hierarchical Partitioning Algorithm for Scientific Computing on Highly Heterogeneous CPU + GPU Clusters“. In Euro-Par 2012 Parallel Processing, 489–501. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-32820-6_49.
Der volle Inhalt der QuelleSaba, Issa, Eishi Arima, Dai Liu und Martin Schulz. „Orchestrated Co-scheduling, Resource Partitioning, and Power Capping on CPU-GPU Heterogeneous Systems via Machine Learning“. In Architecture of Computing Systems, 51–67. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-21867-5_4.
Der volle Inhalt der QuelleFei, Xiongwei, Kenli Li, Wangdong Yang und Keqin Li. „CPU-GPU Computing“. In Innovative Research and Applications in Next-Generation High Performance Computing, 159–93. IGI Global, 2016. http://dx.doi.org/10.4018/978-1-5225-0287-6.ch007.
Der volle Inhalt der Quelle„Topology-Aware Load-Balance Schemes for Heterogeneous Graph Processing“. In Advances in Computer and Electrical Engineering, 113–43. IGI Global, 2018. http://dx.doi.org/10.4018/978-1-5225-3799-1.ch005.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "CPU-GPU Partitioning"
Goodarzi, Bahareh, Martin Burtscher und Dhrubajyoti Goswami. „Parallel Graph Partitioning on a CPU-GPU Architecture“. In 2016 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW). IEEE, 2016. http://dx.doi.org/10.1109/ipdpsw.2016.16.
Der volle Inhalt der QuelleCho, Younghyun, Florian Negele, Seohong Park, Bernhard Egger und Thomas R. Gross. „On-the-fly workload partitioning for integrated CPU/GPU architectures“. In PACT '18: International conference on Parallel Architectures and Compilation Techniques. New York, NY, USA: ACM, 2018. http://dx.doi.org/10.1145/3243176.3243210.
Der volle Inhalt der QuelleKim, Dae Hee, Rakesh Nagi und Deming Chen. „Thanos: High-Performance CPU-GPU Based Balanced Graph Partitioning Using Cross-Decomposition“. In 2020 25th Asia and South Pacific Design Automation Conference (ASP-DAC). IEEE, 2020. http://dx.doi.org/10.1109/asp-dac47756.2020.9045588.
Der volle Inhalt der QuelleWang, Xin, und Wei Zhang. „Cache locking vs. partitioning for real-time computing on integrated CPU-GPU processors“. In 2016 IEEE 35th International Performance Computing and Communications Conference (IPCCC). IEEE, 2016. http://dx.doi.org/10.1109/pccc.2016.7820644.
Der volle Inhalt der QuelleFang, Juan, Shijian Liu und Xibei Zhang. „Research on Cache Partitioning and Adaptive Replacement Policy for CPU-GPU Heterogeneous Processors“. In 2017 16th International Symposium on Distributed Computing and Applications to Business, Engineering and Science (DCABES). IEEE, 2017. http://dx.doi.org/10.1109/dcabes.2017.12.
Der volle Inhalt der QuelleWachter, Eduardo Weber, Geoff V. Merrett, Bashir M. Al-Hashimi und Amit Kumar Singh. „Reliable mapping and partitioning of performance-constrained openCL applications on CPU-GPU MPSoCs“. In ESWEEK'17: THIRTEENTH EMBEDDED SYSTEM WEEK. New York, NY, USA: ACM, 2017. http://dx.doi.org/10.1145/3139315.3157088.
Der volle Inhalt der QuelleXiao, Chunhua, Wei Ran, Fangzhu Lin und Lin Zhang. „Dynamic Fine-Grained Workload Partitioning for Irregular Applications on Discrete CPU-GPU Systems“. In 2021 IEEE Intl Conf on Parallel & Distributed Processing with Applications, Big Data & Cloud Computing, Sustainable Computing & Communications, Social Computing & Networking (ISPA/BDCloud/SocialCom/SustainCom). IEEE, 2021. http://dx.doi.org/10.1109/ispa-bdcloud-socialcom-sustaincom52081.2021.00148.
Der volle Inhalt der QuelleMagalhães, W. F., H. M. Gomes, L. B. Marinho, G. S. Aguiar und P. Silveira. „Investigating Mobile Edge-Cloud Trade-Offs of Object Detection with YOLO“. In VII Symposium on Knowledge Discovery, Mining and Learning. Sociedade Brasileira de Computação - SBC, 2019. http://dx.doi.org/10.5753/kdmile.2019.8788.
Der volle Inhalt der QuelleNegrut, Dan, Toby Heyn, Andrew Seidl, Dan Melanz, David Gorsich und David Lamb. „ENABLING COMPUTATIONAL DYNAMICS IN DISTRIBUTED COMPUTING ENVIRONMENTS USING A HETEROGENEOUS COMPUTING TEMPLATE“. In 2024 NDIA Michigan Chapter Ground Vehicle Systems Engineering and Technology Symposium. 2101 Wilson Blvd, Suite 700, Arlington, VA 22201, United States: National Defense Industrial Association, 2024. http://dx.doi.org/10.4271/2024-01-3314.
Der volle Inhalt der QuelleHeyn, Toby, Andrew Seidl, Hammad Mazhar, David Lamb, Alessandro Tasora und Dan Negrut. „Enabling Computational Dynamics in Distributed Computing Environments Using a Heterogeneous Computing Template“. In ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/detc2011-48347.
Der volle Inhalt der Quelle