Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „CO₂ hydrogenation“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "CO₂ hydrogenation" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "CO₂ hydrogenation"
Godoy, Sebastian, Prashant Deshlahra, Francisco Villagra-Soza, Alejandro Karelovic und Romel Jimenez. „Effects of Site Geometry and Local Composition on Hydrogenation of Surface Carbon to Methane on Ni, Co, and NiCo Catalysts“. Catalysts 12, Nr. 11 (07.11.2022): 1380. http://dx.doi.org/10.3390/catal12111380.
Der volle Inhalt der QuelleZuo, Zheng, und Xinzheng Yang. „Mechanistic Insights into Selective Hydrogenation of C=C Bonds Catalyzed by CCC Cobalt Pincer Complexes: A DFT Study“. Catalysts 11, Nr. 2 (26.01.2021): 168. http://dx.doi.org/10.3390/catal11020168.
Der volle Inhalt der QuelleStepanova, Liudmila N., Roman M. Mironenko, Mikhail V. Trenikhin, Aleksandra N. Serkova, Aleksei N. Salanov und Aleksandr V. Lavrenov. „CoCuMgAl-Mixed-Oxide-Based Catalysts with Fine-Tunable Composition for the Hydrogenation of Furan Compounds“. Journal of Composites Science 8, Nr. 2 (02.02.2024): 57. http://dx.doi.org/10.3390/jcs8020057.
Der volle Inhalt der QuelleTanirbergenova Sandugash Kudaibergenovna, Тugelbayeva Dildara Abdikadyrovna, Erezhep Nurzay, Zhylybayeva Nurzhamal Kydyrkhankyzy und Dinistanova Balaussa Kanatbayevna. „OPTIMIZATION OF TECHNOLOGICAL PARAMETERS OF HYDRAGENERATION PROCESS OF ACETYLENE USING A PILOT CATALYTIC PLANT“. SERIES CHEMISTRY AND TECHNOLOGY 5, Nr. 443 (15.10.2020): 134–40. http://dx.doi.org/10.32014/2020.2518-1491.90.
Der volle Inhalt der QuelleLeroux, Killian, Jean-Claude Guillemin und Lahouari Krim. „Solid-state formation of CO and H2CO via the CHOCHO + H reaction“. Monthly Notices of the Royal Astronomical Society 491, Nr. 1 (13.11.2019): 289–301. http://dx.doi.org/10.1093/mnras/stz3051.
Der volle Inhalt der QuelleLi, Meng, und Dong Ding. „(Invited) Tuning Selective CO2 Electrohydrogenation Under Mid Temperature and Pressure“. ECS Meeting Abstracts MA2024-01, Nr. 37 (09.08.2024): 2184. http://dx.doi.org/10.1149/ma2024-01372184mtgabs.
Der volle Inhalt der QuelleStuchlý, Vladimír, und Karel Klusáček. „Temperature-programmed hydrogenation of surface carbonaceous deposits on a Ni/SiO2 methanation catalyst“. Collection of Czechoslovak Chemical Communications 55, Nr. 2 (1990): 354–63. http://dx.doi.org/10.1135/cccc19900354.
Der volle Inhalt der QuelleAbasov, S. I., S. B. Agaeva, M. T. Mamedova, Y. S. Isaeva, A. A. Iskenderova und D. B. Tagiyev. „EFFECT OF AN ALKYL SUBSTITUTE ON HYDROCONVERSION OF INDIVIDUAL AROMATIC HYDROCARBONS ON Co/HZSM-5/SO42-–ZrO2 COMPOSITE CATALYST“. Azerbaijan Chemical Journal, Nr. 2 (07.05.2024): 36–43. http://dx.doi.org/10.32737/0005-2531-2024-2-36-43.
Der volle Inhalt der QuelleSu, Diefeng, Zhongzhe Wei, Shanjun Mao, Jing Wang, Yi Li, Haoran Li, Zhirong Chen und Yong Wang. „Reactivity and mechanism investigation of selective hydrogenation of 2,3,5-trimethylbenzoquinone on in situ generated metallic cobalt“. Catalysis Science & Technology 6, Nr. 12 (2016): 4503–10. http://dx.doi.org/10.1039/c5cy02171e.
Der volle Inhalt der QuelleKongsuebchart, Wilasinee, Apipon Methachittipan, Thatpon Kongviwatanakul, Piyasan Praserthdam, Okorn Mekasuwandumrong und Joongjai Panpranot. „Solvothermal-Derived Nanocrystalline TiO2 Supported Co Catalysts in the Hydrogenation of Carbonmonoxide“. Advanced Materials Research 634-638 (Januar 2013): 595–98. http://dx.doi.org/10.4028/www.scientific.net/amr.634-638.595.
Der volle Inhalt der QuelleDissertationen zum Thema "CO₂ hydrogenation"
Musadi, Maya Ramadianti. „Catalytic hydrogenation of CO₂ for sustainable transport“. Thesis, University of Manchester, 2009. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.505377.
Der volle Inhalt der QuelleRennison, A. J. „CO hydrogenation on reduced solid solution catalysts“. Thesis, University of Bath, 1987. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.378000.
Der volle Inhalt der QuelleBalakrishnan, Nianthrini. „Theoretical Studies of Co Based Catalysts on CO Hydrogenation and Oxidation“. Scholar Commons, 2013. http://scholarcommons.usf.edu/etd/4434.
Der volle Inhalt der QuelleNozonke, Dumani. „Iron modification of rhodium nano-crystallites for CO hydrogenation“. Master's thesis, University of Cape Town, 2013. http://hdl.handle.net/11427/16858.
Der volle Inhalt der QuelleSchweicher, Julien. „Kinetic and mechanistic studies of CO hydrogenation over cobalt-based catalysts“. Doctoral thesis, Universite Libre de Bruxelles, 2010. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/210036.
Der volle Inhalt der QuelleTwo different types of catalysts have been investigated during this thesis: cobalt with magnesia used as support or dispersant (Co/MgO) and cobalt with silica used as support (Co/SiO2). Each catalyst from the first class is prepared by precipitation of a mixed Co/Mg oxalate in acetone. This coprecipitation is followed by a thermal decomposition under reductive atmosphere leading to a mixed Co/MgO catalyst. On the other hand, Co/SiO2 catalysts are prepared by impregnation of a commercial silica support with a chloroform solution containing Co nanoparticles. This impregnation is then followed by a thermal activation under reductive atmosphere.
The mixed Co/Mg oxalates and the resulting Co/MgO catalysts have been extensively characterized in order to gain a better understanding of the composition, the structure and the morphology of these materials: thermal treatments under reductive and inert atmospheres (followed by MS, DRIFTS, TGA and DTA), BET surface area measurements, XRD and electron microscopy studies have been performed. Moreover, an original in situ technique for measuring the H2 chemisorption surface area of catalysts has been developed and used over our catalysts.
The performances of the Co/MgO and Co/SiO2 catalysts have then been evaluated in the CO+H2 reaction at atmospheric pressure. Chemical Transient Kinetics (CTK) experiments have been carried out in order to obtain information about the reaction kinetics and mechanism and the nature of the catalyst active surface under reaction conditions. The influence of several experimental parameters (temperature, H2 and CO partial pressures, total volumetric flow rate) and the effect of passivation are also discussed with regard to the catalyst behavior.
Our results indicate that the FT active surface of Co/MgO 10/1 (molar ratio) is entirely covered by carbon, oxygen and hydrogen atoms, most probably associated as surface complexes (possibly formate species). Thus, this active surface does not present the properties of a metallic Co surface (this has been proved by performing original experiments consisting in switching from the CO+H2 reaction to the propane hydrogenolysis reaction (C3H8+H2) which is sensitive to the metallic nature of the catalyst). CTK experiments have also shown that gaseous CO is the monomer responsible for chain lengthening in the FT reaction (and not any CHx surface intermediates as commonly believed). Moreover, CO chemisorption has been found to be irreversible under reaction conditions.
The CTK results obtained over Co/SiO2 are quite different and do not permit to draw sharp conclusions concerning the FT reaction mechanism. More detailed studies would have to be carried out over these samples.
Finally, Co/MgO catalysts have also been studied on a combined DRIFTS/MS experimental set-up in Belfast. CTK and Steady-State Isotopic Transient Kinetic Analysis (SSITKA) experiments have been carried out. While formate and methylene (CH2) groups have been detected by DRIFTS during the FT reaction, the results indicate that these species play no role as active intermediates. These formates are most probably located on MgO or at the Co/MgO interface, while methylene groups stand for skeleton CH2 in either hydrocarbon or carboxylate. Unfortunately, formate/methylene species have not been detected by DRIFTS over pure Co catalyst without MgO, because of the full signal absorption.
Doctorat en Sciences de l'ingénieur
info:eu-repo/semantics/nonPublished
DAUBREGE, FRANCK. „Etude de la mise en regime des catalyseurs a base de cuivre et de cobalt destines a la synthese d'alcools superieurs a partir de co/h#2“. Paris 6, 1990. http://www.theses.fr/1990PA066465.
Der volle Inhalt der QuelleYao, Libo. „Sustainable, energy-efficient hydrogenation processes for selective chemical syntheses“. University of Akron / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=akron1626172267871778.
Der volle Inhalt der QuelleAoyama, Yoshimasa. „Hybridization of 4d Metal Nanoparticles with Metal-Organic Framework and the Investigation of the Catalytic Property“. Kyoto University, 2020. http://hdl.handle.net/2433/254504.
Der volle Inhalt der QuelleJi, Qinqin. „The synthesis of higher alcohols from CO2 hydrogenation with Co, Cu, Fe-based catalysts“. Thesis, Strasbourg, 2017. http://www.theses.fr/2017STRAF023/document.
Der volle Inhalt der QuelleCO2 is a clean carbon source for the chemical reactions, many researchers have studied the utilization of CO2. Higher alcohols are clean fuel additives. The synthesis of higher alcohols from CO hydrogenation has also been studied by many researchers, but there are few literatures about the synthesis of higher alcohols from CO2 hydrogenation, which is a complex and difficult reaction. The catalysts that used for higher alcohols synthesis need at least two active phases and goodcooperation. In our study, we tested the Co. Cu. Fe spinel-based catalysts and the effect of supports (CNTs and TUD-1) and promoters (K, Na, Cs) to the HAS reaction. We found that catalyst CuFe-precursor-800 is beneficial for the synthesis of C2+ hydrocarbons and higher alcohols. In the CO2 hydrogenation, Co acts as a methanation catalyst rather than acting as a FT catalyst, because of the different reaction mechanism between CO hydrogenation and CO2 hydrogenation. In order to inhibit the formation of huge amount of hydrocarbons, it is better to choose catalysts without Co in the CO2 hydrogenation reaction. Compared the functions of CNTs and TUD-1, we found that CNTs is a perfect support for the synthesis of long-chain products (higher alcohols and C2+ hydrocarbons). The TUD-1 support are more suitable for synthesis of single-carbon products (methane and methanol).The addition of alkalis as promoters does not only lead to increase the conversion of CO2 and H2, but also sharply increased the selectivity to the desired products, higher alcohols. The catalyst 0.5K30CuFeCNTs owns the highest productivities (370.7 g∙kg-1∙h-1) of higher alcohols at 350 °C and 50 bar
FERREIRA, ELINER A. „Estudo das propriedades magnéticas e da microestrutura em imãs permanentes à base de Pr-Fe-B-Co-Nd obtidos pelos processos HD e HDDR“. reponame:Repositório Institucional do IPEN, 2008. http://repositorio.ipen.br:8080/xmlui/handle/123456789/11694.
Der volle Inhalt der QuelleMade available in DSpace on 2014-10-09T14:06:59Z (GMT). No. of bitstreams: 0
Dissertação (Mestrado)
IPEN/D
Instituto de Pesquisas Energéticas e Nucleares - IPEN/CNEN-SP
Bücher zum Thema "CO₂ hydrogenation"
Gascoin, F. Co hydrogenation over Ru-Co/SiO2 catalysts. Manchester: UMIST, 1994.
Den vollen Inhalt der Quelle findenMoman, A. A. CO hydrogenation over Ru-Cs/SiO2 catalysts. Manchester: UMIST, 1994.
Den vollen Inhalt der Quelle findenTungkamani, S. CO hydrogenation over Ru-Rb/SiO2 catalysts. Manchester: UMIST, 1996.
Den vollen Inhalt der Quelle findenFatolas, K. CO Hydrogenation over Ru - Mn/SiO2 catalysts. Manchester: UMIST, 1996.
Den vollen Inhalt der Quelle findenVerbrugge, Alwin S. CO hydrogenation over Ru-Cu/SiO2 catalysts. Manchester: UMIST, 1996.
Den vollen Inhalt der Quelle findenBraca, Giuseppe, Hrsg. Oxygenates by Homologation or CO Hydrogenation with Metal Complexes. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-0874-4.
Der volle Inhalt der Quelle1937-, Braca Giuseppe, Hrsg. Oxygenates by homologation or CO hydrogenation with metal complexes. Dordrecht [The Netherlands]: Kluwer Academic Publishers, 1994.
Den vollen Inhalt der Quelle findenScott, M. W. CO hydrogenation over Ru-Mn supported BI-metallic catalyst. Manchester: UMIST, 1995.
Den vollen Inhalt der Quelle findenKollenburg, O. Van. CO hydrogenation over Ni/SiO2 catalysts calcined at different temperatures. Manchester: UMIST, 1996.
Den vollen Inhalt der Quelle findenReynier, Stephan Francois A. Synthesis and hydrogenation activity of heterogeneous dichlorodicarbonylbis (triphenylphosphine) ruthenium(II), (Ph3P)2RuCl2(CO)2, catalysts. Ottawa: National Library of Canada, 1996.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "CO₂ hydrogenation"
Zhang, Y., Y. Tsushio, Hirotoshi Enoki und Etsuo Akiba. „Hydrogenation Properties of Mg-Co and Its Related Alloys“. In Materials Science Forum, 2453–56. Stafa: Trans Tech Publications Ltd., 2005. http://dx.doi.org/10.4028/0-87849-960-1.2453.
Der volle Inhalt der QuelleHolladay, Johnathan E., Todd A. Werpy und Danielle S. Muzatko. „Catalytic Hydrogenation of Glutamic Acid“. In Proceedings of the Twenty-Fifth Symposium on Biotechnology for Fuels and Chemicals Held May 4–7, 2003, in Breckenridge, CO, 857–69. Totowa, NJ: Humana Press, 2004. http://dx.doi.org/10.1007/978-1-59259-837-3_70.
Der volle Inhalt der QuelleBraca, Giuseppe. „Mono Alcohols, Glycols, and their Ethers and Esters by CO Hydrogenation“. In Oxygenates by Homologation or CO Hydrogenation with Metal Complexes, 1–88. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-0874-4_1.
Der volle Inhalt der QuelleBraca, Giuseppe. „Alcohols and Derivatives by Homologation with Syngas“. In Oxygenates by Homologation or CO Hydrogenation with Metal Complexes, 89–190. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-0874-4_2.
Der volle Inhalt der QuelleBraca, Giuseppe. „Hydrocarbonylation of Aldehydes and their Derivatives“. In Oxygenates by Homologation or CO Hydrogenation with Metal Complexes, 191–219. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-0874-4_3.
Der volle Inhalt der QuelleWesner, D. A., F. P. Coenen und H. P. Bonzel. „Structural Changes on Ni Surfaces Induced by Catalytic CO Hydrogenation“. In Springer Series in Surface Sciences, 612–17. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-73343-7_100.
Der volle Inhalt der QuelleAnderson, James A., und Mahmoud M. Khader. „An in Situ Infrared Study of Hydrogenation of CO over Rh/ZrO2“. In Progress in Fourier Transform Spectroscopy, 363–65. Vienna: Springer Vienna, 1997. http://dx.doi.org/10.1007/978-3-7091-6840-0_83.
Der volle Inhalt der QuelleYang, Qingxin, und Evgenii V. Kondratenko. „Status of Catalyst Development for CO2 Hydrogenation to Platform Chemicals CH3OH and CO“. In Green Chemistry and Sustainable Technology, 81–104. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-99-8822-8_4.
Der volle Inhalt der QuellePanagiotopoulou, Paraskevi, und Xenophon E. Verykios. „Metal–support interactions of Ru-based catalysts under conditions of CO and CO2 hydrogenation“. In Catalysis, 1–23. Cambridge: Royal Society of Chemistry, 2020. http://dx.doi.org/10.1039/9781788019477-00001.
Der volle Inhalt der QuelleOskam, A., R. R. Andréa, D. J. Stufkens und M. A. Vuurman. „Identification of H2-, D2-, N2- Bonded Intermediates in the Cr(CO)6 Photocatalyzed Hydrogenation Reactions“. In Photochemistry and Photophysics of Coordination Compounds, 243–46. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-72666-8_44.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "CO₂ hydrogenation"
Cui, Z., Y. Zheng und Y. Hao. „Water-Promoted Ethanol Production via CO2 Hydrogenation through Plasma Catalysis over Cu-based Catalyst“. In 2024 IEEE International Conference on Plasma Science (ICOPS), 1. IEEE, 2024. http://dx.doi.org/10.1109/icops58192.2024.10626062.
Der volle Inhalt der QuelleDou, L., Y. Gao, Y. Xu, C. Zhang und T. Shao. „A sustainable route for CH3OH synthesis via plasma-enabled CO2 hydrogenation: the effects of H2O additive and packing materials“. In 2024 IEEE International Conference on Plasma Science (ICOPS), 1. IEEE, 2024. http://dx.doi.org/10.1109/icops58192.2024.10627361.
Der volle Inhalt der QuelleWang, Yi, Lei Sun, Yan Li, Yi-fan Zhang, De-dong Han, Li-feng Liu, Jin-feng Kang, Xing Zhang und Ru-qi Han. „Hydrogenation Induced Room-Temperature Ferromagnetism in Co-doped ZnO Nanocrystals“. In 2007 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 2007. http://dx.doi.org/10.7567/ssdm.2007.p-12-1.
Der volle Inhalt der QuelleTang Qingjie, Liu Bo und Fan Shao. „Effect of manganese on Iron-Ruthenium complex catalyst for CO hydrogenation“. In Environment (ICMREE). IEEE, 2011. http://dx.doi.org/10.1109/icmree.2011.5930645.
Der volle Inhalt der QuelleHUANG, PENGMIAN, ZILI LIU und MIAO ZHENG. „SELECTIVE HYDROGENATION OF CINNAMALDEHYDE TO CINNAMYL ALCOHOL OVER CO-FE/Γ-AL2O3 CATALYSTS“. In Proceedings of the 4th International Conference. WORLD SCIENTIFIC, 2004. http://dx.doi.org/10.1142/9789812702623_0174.
Der volle Inhalt der QuelleShopska, Maya, Alfonso Caballero, Silviya Todorova, Katerina Aleksieva, Krassimir Tenchev, Hristo Kolev, Martin Fabian und Georgi Kadinov. „Comparative Investigation of (10%Co+0.5%Pd)/TiO2(Al2O3) Catalysts in CO Hydrogenation at Low and High Pressure“. In The 2nd International Electronic Conference on Catalysis Sciences—A Celebration of Catalysts 10th Anniversary. Basel Switzerland: MDPI, 2021. http://dx.doi.org/10.3390/eccs2021-11105.
Der volle Inhalt der QuelleWatanabe, Naoki, Hiroshi Hidaka und Akira Kouchi. „Relative Reaction Rates of Hydrogenation and Deuteration of Solid CO at Very Low Temperatures“. In ASTROCHEMISTRY: From Laboratory Studies to Astronomical Observations. AIP, 2006. http://dx.doi.org/10.1063/1.2359547.
Der volle Inhalt der QuelleJoshi, Niharika, Indu Kaul, Nirmalya Ballav und Prasenjit Ghosh. „Spin enhancement and band gap opening of ferrimagnetic graphene on fcc-Co(111) surface upon hydrogenation“. In SOLID STATE PHYSICS: PROCEEDINGS OF THE 57TH DAE SOLID STATE PHYSICS SYMPOSIUM 2012. AIP, 2013. http://dx.doi.org/10.1063/1.4791227.
Der volle Inhalt der QuelleKoh, Mei Kee, Munirah Md Zain und Abdul Rahman Mohamed. „Exploring transition metal (Cr, Mn, Fe, Co, Ni) promoted copper-catalyst for carbon dioxide hydrogenation to methanol“. In 6TH INTERNATIONAL CONFERENCE ON ENVIRONMENT (ICENV2018): Empowering Environment and Sustainable Engineering Nexus Through Green Technology. AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5117066.
Der volle Inhalt der QuellePinkard, Brian R., Elizabeth G. Rasmussen, John C. Kramlich, Per G. Reinhall und Igor V. Novosselov. „Supercritical Water Gasification of Ethanol for Fuel Gas Production“. In ASME 2019 13th International Conference on Energy Sustainability collocated with the ASME 2019 Heat Transfer Summer Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/es2019-3950.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "CO₂ hydrogenation"
Bartholomew, C. H. Effects of dispersion and support on adsorption, catalytic and electronic properties of cobalt/alumina Co hydrogenation catalysts. Office of Scientific and Technical Information (OSTI), September 1990. http://dx.doi.org/10.2172/5575665.
Der volle Inhalt der QuelleAuthor, Not Given. Hydrogenation of Clean Carbon Monoxide (CO) and Carbon Dioxide (CO2) Gas Streams to Higher Molecular Weight Alcohols. Office of Scientific and Technical Information (OSTI), Februar 2012. http://dx.doi.org/10.2172/1035373.
Der volle Inhalt der QuelleBartholomew, C. H. Effects of dispersion and support on adsorption, catalytic and electronic properties of cobalt/alumina Co hydrogenation catalysts. Final progress report, August 1, 1987--July 31, 1990. Office of Scientific and Technical Information (OSTI), September 1990. http://dx.doi.org/10.2172/10135056.
Der volle Inhalt der QuelleKung, Kyle Yi. Sum frequency generation vibrational spectroscopy studies of adsorbates on Pt(111): Studies of CO at high pressures and temperatures, coadsorbed with olefins and its role as a poison in ethylene hydrogenation. Office of Scientific and Technical Information (OSTI), Dezember 2000. http://dx.doi.org/10.2172/790020.
Der volle Inhalt der QuelleRucker, T. G. The effect of additives on the reactivity of palladium surfaces for the chemisorption and hydrogenation of carbon monoxide: A surface science and catalytic study. [LaMO/sub 3/(M = Cr, Mn, Fe, Co, Rh)]. Office of Scientific and Technical Information (OSTI), Juni 1987. http://dx.doi.org/10.2172/6389716.
Der volle Inhalt der Quelle