Auswahl der wissenschaftlichen Literatur zum Thema „Covalent Organic Network“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Covalent Organic Network" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Covalent Organic Network"

1

Yuan, Shushan, Xin Li, Junyong Zhu, Gang Zhang, Peter Van Puyvelde und Bart Van der Bruggen. „Covalent organic frameworks for membrane separation“. Chemical Society Reviews 48, Nr. 10 (2019): 2665–81. http://dx.doi.org/10.1039/c8cs00919h.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Tanski, J. M., und K. Ludford. „Covalent aryloxide metal-organic network materials“. Acta Crystallographica Section A Foundations of Crystallography 61, a1 (23.08.2005): c356. http://dx.doi.org/10.1107/s0108767305084837.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Jiao, Yushuai, Yan Nan, Zhenhua Wu, Xueying Wang, Jiaxu Zhang, Boyu Zhang, Shouying Huang und Jiafu Shi. „Mechanochemical synthesis of enzyme@covalent organic network nanobiohybrids“. Applied Materials Today 26 (März 2022): 101381. http://dx.doi.org/10.1016/j.apmt.2022.101381.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Raja, Arsalan A., und Cafer T. Yavuz. „Charge induced formation of crystalline network polymers“. RSC Adv. 4, Nr. 104 (2014): 59779–84. http://dx.doi.org/10.1039/c4ra10594j.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Yu, Kai, Hua Yang, Binh H. Dao, Qian Shi und Christopher M. Yakacki. „Dissolution of covalent adaptable network polymers in organic solvent“. Journal of the Mechanics and Physics of Solids 109 (Dezember 2017): 78–94. http://dx.doi.org/10.1016/j.jmps.2017.08.006.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Hua, Jiachuan, Chang Liu, Bin Fei und Zunfeng Liu. „Self-Healable and Super-Tough Double-Network Hydrogel Fibers from Dynamic Acylhydrazone Bonding and Supramolecular Interactions“. Gels 8, Nr. 2 (08.02.2022): 101. http://dx.doi.org/10.3390/gels8020101.

Der volle Inhalt der Quelle
Annotation:
Macroscopic hydrogel fibers are highly desirable for smart textiles, but the fabrication of self-healable and super-tough covalent/physical double-network hydrogels is rarely reported. Herein, copolymers containing ketone groups were synthesized and prepared into a dynamic covalent hydrogel via acylhydrazone chemistry. Double-network hydrogels were constructed via the dynamic covalent crosslinking of copolymers and the supramolecular interactions of iota-carrageenan. Tensile tests on double-network and parental hydrogels revealed the successful construction of strong and tough hydrogels. The double-network hydrogel precursor was wet spun to obtain macroscopic fibers with controlled drawing ratios. The resultant fibers reached a high strength of 1.35 MPa or a large toughness of 1.22 MJ/m3. Highly efficient self-healing performances were observed in hydrogel fibers and their bulk specimens. Through the simultaneous healing of covalent and supramolecular networks under acidic and heated conditions, fibers achieved rapid and near-complete healing with 96% efficiency. Such self-healable and super-tough hydrogel fibers were applied as shape memory fibers for repetitive actuating in response to water, indicating their potential in intelligent fabrics.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Li, Suriguga, und Heng Guo Wang. „A covalent organic framework based on multi-carbonyl as anode material for lithium-organic batteries“. Journal of Physics: Conference Series 2578, Nr. 1 (01.08.2023): 012016. http://dx.doi.org/10.1088/1742-6596/2578/1/012016.

Der volle Inhalt der Quelle
Annotation:
Abstract A covalent organic framework (COF) with multi-carbonyl was synthesized by a condensation reaction between 1,3,5-triformyl chlorobutanediol (TFP) and 2.5-diamino benzene sulfonic acid (PaSO3H), It is using as anode materials for lithium-ion batteries (LIBs). Benefiting from the rigid porous network structure of COFs (TFP-PaSO3H) and the synergistic effect of covalent bonds, it shows good electrochemical performance, including a high reversible capacity of 427.7 mAh g−1 at 200 mA g−1 after 300 cycles. This contribution shows a broad application prospect of COF anode in lithium-organic batteries.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Cui, Jieshun, und Zhengtao Xu. „An electroactive porous network from covalent metal–dithiolene links“. Chem. Commun. 50, Nr. 30 (2014): 3986–88. http://dx.doi.org/10.1039/c4cc00408f.

Der volle Inhalt der Quelle
Annotation:
Direct reaction between a hexathiol and PtCl2 leads to the formation of a covalent metal–organic framework (CMOF) featuring substantial porosity, redox activity and ion exchange capability.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Boscher, Nicolas D., Minghui Wang, Alberto Perrotta, Katja Heinze, Mariadriana Creatore und Karen K. Gleason. „Metal-Organic Covalent Network Chemical Vapor Deposition for Gas Separation“. Advanced Materials 28, Nr. 34 (14.06.2016): 7479–85. http://dx.doi.org/10.1002/adma.201601010.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Atas, Mehmet Sahin, Sami Dursun, Hasan Akyildiz, Murat Citir, Cafer T. Yavuz und Mustafa Selman Yavuz. „Selective removal of cationic micro-pollutants using disulfide-linked network structures“. RSC Advances 7, Nr. 42 (2017): 25969–77. http://dx.doi.org/10.1039/c7ra04775d.

Der volle Inhalt der Quelle
Annotation:
Micropollutants are found in all water sources, even after thorough treatments that include membrane filtration. We have developed swellable di-sulfide covalent organic polymers (COPs) with great affinity towards cationic textile micropollutants.
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Dissertationen zum Thema "Covalent Organic Network"

1

Para, Franck. „Nanostructures organiques en régimes supra-moléculaire et covalent sur substrats diélectriques : propriétés structurales et optiques“. Electronic Thesis or Diss., Aix-Marseille, 2020. http://www.theses.fr/2020AIXM0289.

Der volle Inhalt der Quelle
Annotation:
Cette thèse porte sur l’étude de l’influence de la structure de la matière à l’échelle atomique sur ses propriétés macroscopiques. Dans ce contexte, l’équipe Nanostructuration de l’IM2NP s’attache à synthétiser et à caractériser des nano-matériaux organiques fonctionnalisés sur surfaces solides. Ce travail se concentre spécifiquement sur l’étude des propriétés structurales et optiques de nanostructures organiques obtenues par croissance sur des substrats diélectriques d’halogénures alcalins mono-cristallins, sous ultra-vide et à température ambiante. Les caractérisations expérimentales sont menées en Microscopie à Force Atomique en mode non-contact (propriétés structurales) et en Spectroscopie de Réflectivité Différentielle (propriétés optiques d’absorption UV-visible). Deux régimes très distincts de croissance ont été étudiés, avec, pour chacun d’eux, des molécules différentes. Le premier système concerne des nanostructures supra-moléculaires de bis-pyrènes sur KCl(001) et NaCl(001). L’étude combinée de leurs propriétés structurales et optiques, depuis le régime sous mono-couche jusqu’au régime multi-couches, permet d’extraire quantitativement la fonction diélectrique des couches aux différents stades de leur croissance. Le second système concerne une thématique plus récemment découverte dans la communauté : la synthèse sur surface (ou polymérisation sur surface), pour laquelle après adsorption, les molécules se lient entre elles de manière covalente, formant ainsides nanostructures plus cohésives qu’en régime supramoléculaire. Nous avons ainsi démontré la formation de structures covalentes par polymérisation radicalaire de dimaléimides sur KCl(001) sous illumination UV
This thesis deals with the study of the influence of the structure of matter at the atomic scale on its macroscopic properties. Thereto, the IM2NP Nanostructuration team masters the synthesis and characterization of functionalized organic nanostructureson solid surfaces. Specifically, this work focuses on the study of the structural and optical properties of organic nanostructures grown on dielectric single-crystalline alkaly halides substrates under ultra-high vacuum and ambient temperature. Experiments are carried out by non-contact Atomic Force Microscopy (structural properties) and by Differential Reflectance Spectroscopy (optical properties of UV-visible absorption). Two distinct growth regimes have been investigated, with different molecules each. The first system involves supramolecular nanostructures of bis-pyrenes molecules grown on KCl(001) and NaCl(001). The combined study of their structural and optical properties, from the sub-monolayer to the multilayer regime, allows us to quantitatively extract the dielectric function of the layers at the different stages of their growth. The second system deals with a more recent topic in the surface science community, namely on-surface synthesis. In this case, upon adsorption, the molecules bind together covalently, which results in nanostructures that are more cohesive than in the supramolecular regime. We have evidenced the formation of covalent structures by free-radical polymers of dimaleimide on KCl(001) under UV illumination
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Zhang, Borui. „Novel Dynamic Materials Tailored by Macromolecular Engineering“. Miami University / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=miami1564157701522666.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Jensen, Sean. „The assembly of molecular networks at surfaces : towards novel enantioselective heterogeneous catalysts“. Thesis, University of St Andrews, 2010. http://hdl.handle.net/10023/2153.

Der volle Inhalt der Quelle
Annotation:
Understanding the supramolecular interactions governing the self-assembly of molecular building blocks upon surfaces is fundamental to the design of new devices such as sensors or catalysts. Successful heterogeneous enantioselective catalysts have relied upon the adsorption of ‘chiral modifiers’, usually chiral amino acids, onto reactive metal surfaces. One of the most researched examples is the hydrogenation of β-ketoesters using nickel-based catalysts. The stability of the chiral modifiers upon catalyst surfaces is a major obstacle to the industrial scale-up of this reaction. In this study, the replacement of conventional modifiers with porous, chiral and functionalised self-assembled networks is investigated. Perylene-3,4,9,10-tetracarboxylic diimide (PTCDI) and melamine (1,3,5-triazine,-2,4,6-triamine) have been shown to form hydrogen bonded networks on Ag-Si(111)√3x√3R30° in ultra-high vacuum (UHV) and Au(111) substrates in UHV and ambient conditions, these networks are capable of hosting guest molecules. These networks are investigated further in this study. In UHV, the behaviour of the components and network formation on Ni(111) is probed using scanning tunnelling microscopy (STM) and temperature-programmed desorption (TPD). The stability of the PTCDI-melamine network on Au(111) was analysed using TPD. Metal coordination interactions between each of the network components and nickel upon the Au(111) surface were examined by STM before testing the ability of the network to act as a template for metal growth. Finally, a number of polymerisation reactions are investigated with a view to replacing chiral modifiers with porous, chiral, functionalised covalent networks. Periodic covalent networks should possess the greater chemical and thermal stability required for more widespread use. In UHV and ambient conditions, STM is used to monitor the progress of surface-confined reactions on Au(111) and characterise the resultant covalent structures.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Beaudoin, Daniel. „Préparation de réseaux organiques covalents monocristallins par polymérisation de composés polynitroso aromatiques“. Thèse, 2014. http://hdl.handle.net/1866/12300.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Bücher zum Thema "Covalent Organic Network"

1

Li, Jing, und Xiao-Ying Huang. Nanostructured crystals: An unprecedented class of hybrid semiconductors exhibiting structure-induced quantum confinement effect and systematically tunable properties. Herausgegeben von A. V. Narlikar und Y. Y. Fu. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533053.013.16.

Der volle Inhalt der Quelle
Annotation:
This article describes the structure-induced quantum confinement effect in nanostructured crystals, a unique class of hybrid semiconductors that incorporate organic and inorganic components into a single-crystal lattice via covalent (coordinative) bonds to form extended one-, two- and three-dimensional network structures. These structures are comprised of subnanometer-sized II-VI semiconductor segments (inorganic component) and amine molecules (organic component) arranged into perfectly ordered arrays. The article first provides an overview of II-VI and III-V semiconductors, II-VI colloidal quantum dots, inorganic-organic hybrid materials before discussing the design and synthesis of I-VI-based inorganic-organic hybrid nanostructures. It also considers the crystal structures, quantum confinement effect, bandgaps, and optical properties, thermal properties, thermal expansion behavior of nanostructured crystals.
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Buchteile zum Thema "Covalent Organic Network"

1

González-Martín, R., I. Negrín-Santamaría, M. Saura-Cayuela und M. J. Trujillo-Rodríguez. „Supramolecular Solvents (SUPRASs) in Green Sample Preparation“. In Green Sample Preparation Techniques, 254–78. The Royal Society of Chemistry, 2023. http://dx.doi.org/10.1039/bk9781839166419-00254.

Der volle Inhalt der Quelle
Annotation:
Supramolecular solvents (SUPRASs) are water-immiscible nanostructured liquids composed of a 3D network of amphiphilic aggregates that maintain their structures via non-covalent interactions. These solvents are prepared from aquo/organic solutions of amphiphiles at concentrations above their critical aggregation concentration. Under these conditions, amphiphiles initially self-aggregate to form micelles or vesicles. Coacervation of these nano-aggregates into the 3D network of the SUPRAS is induced by different strategies, including variations in the composition of the initial mixture and modifications of temperature, pH, or ionic strength. SUPRASs are appealing alternative solvents in sample preparation. Thus, SUPRASs have several features (i.e., solvation capabilities, viscosity, chemical stability, and easy preparation) that favor their incorporation as extraction solvents in several microextraction methods. Besides, SUPRASs can be considered within the group of green and sustainable materials because they can be designed to present both low flammability and low vapor pressure, and can be prepared from natural, green, and cost-effective sources. This book chapter provides an overview of the use of SUPRASs in green sample preparation, including their utilization in all modes of liquid-phase microextraction (i.e., dispersive liquid–liquid microextraction, hollow fiber liquid-phase microextraction, and single-drop microextraction), solid-phase extraction (with special attention to magnetic solid-phase extraction), and solid–liquid microextraction.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Zhang, Tao, und Yuxiang Zhao. „Interfacial Synthesis of 2D COF Thin Films“. In Covalent Organic Frameworks [Working Title]. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.106968.

Der volle Inhalt der Quelle
Annotation:
Two-dimensional covalent organic frameworks (2D COFs) are emerging crystalline 2D organic material comprising planar and covalent networks with long-ranging structural order. Benefiting from their intrinsic porosity, crystallinity, and electrical properties, 2D COFs have displayed great potential for separation, energy conversion, and electronic fields. For the most of these applications, large-area and highly-ordered 2D COFs thin films are required. As such, considerable efforts have been devoted to exploring the fabrication of 2D COF thin films with controllable architectures and properties. In this chapter, we aim to provide the recent advances in the fabrication of 2D COF thin films and highlight the advantages and limitations of different methods focusing on chemical bonding, morphology, and crystal structure.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Chowdhry, Babur Z., und Stephen E. Harding. „Protein-ligand interactions and their analysis“. In Protein-Ligand Interactions: hydrodynamics and calorimetry, 1–18. Oxford University PressOxford, 2000. http://dx.doi.org/10.1093/oso/9780199637492.003.0001.

Der volle Inhalt der Quelle
Annotation:
Abstract In each cell of an organism, a myriad of reactions, covalent and non-covalent, occur at any given point in time. These reactions are co-ordinated and regulated, both spatially and temporally. Each reaction has a specific purpose, occurs as a result of finely-tuned inter- and intramolecular recognition mechanisms, and forms part of an intricate network of interdependent multi-component linear/ non-linear reactions in interconnected compartments (organelles etc.) of the cell. Moreover the frontiers of viability of such reactions-and the living organ isms that depend on them-are marked by extreme conditions: 1-12 for pH, -5-110 °C for temperature, 0.1-120 MPa for hydrostatic pressure, and 0.6-1.0 for water activity. Amongst the many molecules that participate in such reactions in the complex-and, as yet hardly understood, milieu of the cell-are proteins.
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "Covalent Organic Network"

1

Twieg, R., C. G. Willson und D. Yoon. „Polymers with large and stable optical nonlinearities“. In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1990. http://dx.doi.org/10.1364/oam.1990.the4.

Der volle Inhalt der Quelle
Annotation:
Newly emerging polymeric second order NLO materials have the potential to supplant inorganic crystals as the materials of choice for a variety of applications in modem optoelectronics technology, especially when high speed modulation and switching is involved. The main advantages forseen for the polymer based materials are their large intrinsic figures of merit and their compatibility with and tremendous advantages for fabrication of complicated structures on large substrates. Significant regular and systematic progress has been made in the design and discovery of novel nonlinear organic chromophores with large microscopic nonlinearities and additionally, significant progress has also been made in the creation of active nonlinear waveguides by polling of these dyes in a polymer matrix. Ultimately, optoelectronic applications mandate integration of the optical and electronic components and, therefore, the optical materials must meet many of the same criterion that organic electronic materials already do. For example, issues of mechanical, dielectric, and thermal stability properties must now be considered. Our efforts to identify robust dye/polymer combinations will be discussed, particularly initial approaches involving covalent attachment of chromophores to crosslinking epoxy networks.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie