Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Covalent adaptable networks“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Covalent adaptable networks" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Covalent adaptable networks"
McBride, Matthew K., Brady T. Worrell, Tobin Brown, Lewis M. Cox, Nancy Sowan, Chen Wang, Maciej Podgorski, Alina M. Martinez und Christopher N. Bowman. „Enabling Applications of Covalent Adaptable Networks“. Annual Review of Chemical and Biomolecular Engineering 10, Nr. 1 (07.06.2019): 175–98. http://dx.doi.org/10.1146/annurev-chembioeng-060718-030217.
Der volle Inhalt der QuelleKloxin, Christopher J., und Christopher N. Bowman. „Covalent adaptable networks: smart, reconfigurable and responsive network systems“. Chem. Soc. Rev. 42, Nr. 17 (12.04.2013): 7161–73. http://dx.doi.org/10.1039/c3cs60046g.
Der volle Inhalt der QuelleWu, Yahe, Yen Wei und Yan Ji. „Polymer actuators based on covalent adaptable networks“. Polymer Chemistry 11, Nr. 33 (2020): 5297–320. http://dx.doi.org/10.1039/d0py00075b.
Der volle Inhalt der QuelleBowman, Christopher, Filip Du Prez und Julia Kalow. „Introduction to chemistry for covalent adaptable networks“. Polymer Chemistry 11, Nr. 33 (2020): 5295–96. http://dx.doi.org/10.1039/d0py90102d.
Der volle Inhalt der QuelleGamardella, Francesco, Sara Muñoz, Silvia De la Flor, Xavier Ramis und Angels Serra. „Recyclable Organocatalyzed Poly(Thiourethane) Covalent Adaptable Networks“. Polymers 12, Nr. 12 (04.12.2020): 2913. http://dx.doi.org/10.3390/polym12122913.
Der volle Inhalt der QuelleLee, Kathryn K., und Leslie S. Hamachi. „Big Diels: 3D printing covalent adaptable networks“. Matter 4, Nr. 8 (August 2021): 2634–37. http://dx.doi.org/10.1016/j.matt.2021.06.025.
Der volle Inhalt der QuelleMelchor Bañales, Alberto J., und Michael B. Larsen. „Thermal Guanidine Metathesis for Covalent Adaptable Networks“. ACS Macro Letters 9, Nr. 7 (11.06.2020): 937–43. http://dx.doi.org/10.1021/acsmacrolett.0c00352.
Der volle Inhalt der QuelleGuo, Xinru, Feng Liu, Meng Lv, Fengbiao Chen, Fei Gao, Zhenhua Xiong, Xuejiao Chen, Liang Shen, Faman Lin und Xuelang Gao. „Self-Healable Covalently Adaptable Networks Based on Disulfide Exchange“. Polymers 14, Nr. 19 (21.09.2022): 3953. http://dx.doi.org/10.3390/polym14193953.
Der volle Inhalt der QuelleBowman, Christopher N., und Christopher J. Kloxin. „Covalent Adaptable Networks: Reversible Bond Structures Incorporated in Polymer Networks“. Angewandte Chemie International Edition 51, Nr. 18 (02.03.2012): 4272–74. http://dx.doi.org/10.1002/anie.201200708.
Der volle Inhalt der QuelleGu, Yu, Yinli Liu und Mao Chen. „High-level hierarchical morphology reinforcing covalent adaptable networks“. Chem 7, Nr. 8 (August 2021): 1990–92. http://dx.doi.org/10.1016/j.chempr.2021.07.004.
Der volle Inhalt der QuelleDissertationen zum Thema "Covalent adaptable networks"
Hammer, Larissa. „Design and Characterization of Double Dynamic Networks Based on Boronic Ester and Imine Dynamic Covalent Bonds“. Electronic Thesis or Diss., Université Paris sciences et lettres, 2021. http://www.theses.fr/2021UPSLS077.
Der volle Inhalt der QuelleDual dynamic networks (DDNs) are polymeric materials that combine two (or more) distinct crosslinkers in one system. By coupling different crosslinking strategies, precisely tailored materials can be designed. This thesis explores the implementation of the vitrimer concept into DDNs. Elastomeric vitrimers consisting of two interpenetrated dynamic networks that rely on boronic ester metathesis and on imine-aldehyde exchange, respectively, were designed to this aim. Both reactions proceed via a degenerate mechanism and are orthogonal to each other. By the engagement of two types of dynamic covalent crosslinks, two distinct dynamics are established in each subnetwork. To obtain and evaluate the final DDN, the respective subnetworks were synthesized beforehand, and characterized as single networks. The characteristics of the single networks were tailored individually to fulfill their specific needs in terms of dynamic behavior, processability and dimensional stability. These properties were adjusted by changing the molar mass of the thermoplastic precursors, their degree of functionality, their crosslinking density, or the lifetime of the dynamic bonds. The two networks were successfully united into a DDN. In a comparative study, insights were obtained how the individual subnetworks contribute to the DDN’s properties, and whether synergetic effects arise. In fact, the interpenetrated nature of the vitrimer DDN allows increasing at the time creep resistance and elongation at break, which is really challenging to achieve, yet highly desirable for most elastomers. Over and beyond, the obtained materials show great potential for mechanical and chemical recycling
Chakma, Progyateg. „Introducing Adaptability in Polymer Networks Through Dynamic Thiol-Michael Chemistry and Nucleophilic Substitution“. Miami University / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=miami1593636035333397.
Der volle Inhalt der Quelle