Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Coupled Level Set Volume-of-Fluid (CLSVoF))“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Coupled Level Set Volume-of-Fluid (CLSVoF))" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Coupled Level Set Volume-of-Fluid (CLSVoF))"
Shang, Zhi, Jing Lou und Hongying Li. „Simulations of Flow Transitions in a Vertical Pipe Using Coupled Level Set and VOF Method“. International Journal of Computational Methods 14, Nr. 02 (22.02.2017): 1750013. http://dx.doi.org/10.1142/s021987621750013x.
Der volle Inhalt der QuelleZhang, Guanlan, Jinqiang Gao und Chuansong Wu. „Numerical Simulation of Friction Stir Welding of Dissimilar Al/Mg Alloys Using Coupled Level Set and Volume of Fluid Method“. Materials 17, Nr. 12 (19.06.2024): 3014. http://dx.doi.org/10.3390/ma17123014.
Der volle Inhalt der QuelleKim, Huichan, und Sunho Park. „Coupled Level-Set and Volume of Fluid (CLSVOF) Solver for Air Lubrication Method of a Flat Plate“. Journal of Marine Science and Engineering 9, Nr. 2 (22.02.2021): 231. http://dx.doi.org/10.3390/jmse9020231.
Der volle Inhalt der QuelleQi, Fengsheng, Shuqi Zhou, Liangyu Zhang, Zhongqiu Liu, Sherman C. P. Cheung und Baokuan Li. „Numerical Study on Interfacial Structure and Mixing Characteristics in Converter Based on CLSVOF Method“. Metals 13, Nr. 5 (02.05.2023): 880. http://dx.doi.org/10.3390/met13050880.
Der volle Inhalt der QuelleSuh, Young-Ho, und Gi-Hun Son. „Numerical Study of Droplet Impact on Solid Surfaces Using a Coupled Level Set and Volume-of-Fluid Method“. Transactions of the Korean Society of Mechanical Engineers B 27, Nr. 6 (01.06.2003): 744–52. http://dx.doi.org/10.3795/ksme-b.2003.27.6.744.
Der volle Inhalt der QuelleYokoi, Kensuke, Ryo Onishi, Xiao-Long Deng und Mark Sussman. „Density-Scaled Balanced Continuum Surface Force Model with a Level Set Based Curvature Interpolation Technique“. International Journal of Computational Methods 13, Nr. 04 (04.07.2016): 1641004. http://dx.doi.org/10.1142/s0219876216410048.
Der volle Inhalt der QuelleXiao, Mingkun, Guang Yang, Yonghua Huang und Jingyi Wu. „Evaluation of different interface-capturing methods for cryogenic two-phase flows under microgravity“. Physics of Fluids 34, Nr. 11 (November 2022): 112124. http://dx.doi.org/10.1063/5.0127146.
Der volle Inhalt der QuelleLiu, Yong, Jia Li, Yu Tian, Xia Yu, Jian Liu und Bao-Ming Zhou. „CLSVOF Method to Study the Formation Process of Taylor Cone in Crater-Like Electrospinning of Nanofibers“. Journal of Nanomaterials 2014 (2014): 1–12. http://dx.doi.org/10.1155/2014/635609.
Der volle Inhalt der QuelleYu, C. H., G. Z. Yang, Z. H. Gu und Y. L. Li. „Numerical investigation of multi rising bubbles using a Coupled Level Set and Volume Of Fluid (CLSVOF) method“. Applied Ocean Research 138 (September 2023): 103629. http://dx.doi.org/10.1016/j.apor.2023.103629.
Der volle Inhalt der QuelleYahyaee, Ali, Amir Sajjad Bahman, Klaus Olesen und Henrik Sørensen. „Level-Set Interface Description Approach for Thermal Phase Change of Nanofluids“. Nanomaterials 12, Nr. 13 (29.06.2022): 2228. http://dx.doi.org/10.3390/nano12132228.
Der volle Inhalt der QuelleDissertationen zum Thema "Coupled Level Set Volume-of-Fluid (CLSVoF))"
Valdez, Arnaut Héctor Gabriel. „Simulation des écoulements diphasiques en présence d'effets thermiques“. Electronic Thesis or Diss., Normandie, 2024. http://www.theses.fr/2024NORMIR38.
Der volle Inhalt der QuelleThe development of accurate numerical approaches is required to study flows driven by surface tension gradients induced by temperature variations. Previous studies have employed various methods, including Smoothed Particle Hydrodynamics, Volume-of-fluid, levelset, and front tracking. These approaches have been demonstrated to be adopted for treating this kind of physical phenomena. The present study proposes an implementation on ARCHER, the inhouse code solver for Navier-Stokes equations, which is based on the coupled levelset and volume-of-fluid method. The impact of fluctuations in surface tension in response to temperature gradients is incorporated. Furthermore, the Boussinesq approximation is introduced to account for the buoyancy effect. Two canonical cases were subject to examination to validate this novel implementation. The first case study considers a flat interface between two fluids with a temperature gradient aligned with the interface. This results in the generation of a flow that can be analytically described for a range of scenarii, which was then reproduced through numerical simulation. The second case considers a spherical or circular bubble subjected to a temperature gradient. This results in the migration of the dispersed phase. Once more, the analytical solution is employed to validate the developed numerical approach. Finally, the impact of temperature gradients is studied by considering the Rayleigh Bénard-Marangoni instability at two limits: when driven by buoyancy and when driven by Marangoni stress. The observation of instability cells and the deformation of the interface were also noted. Finally, the final section of the manuscript addresses two-phase flow instabilities precipitated by the presence of temperature gradients. Thermoconvective instabilities induced by variations in density (buoyancy) and/or surface tension (Marangoni effect) were examined by considering boundary cases. In this study, instability cells and interface deformation were observed using the numerical approach developed
Shyam, Sunder *. „Dynamics of Bubbles and Drops in the Presence of an Electric Field“. Thesis, 2015. http://etd.iisc.ac.in/handle/2005/3833.
Der volle Inhalt der QuelleShyam, Sunder *. „Dynamics of Bubbles and Drops in the Presence of an Electric Field“. Thesis, 2015. http://etd.iisc.ernet.in/2005/3833.
Der volle Inhalt der Quelle蔡修齊. „Coupled Level Set and Volume-of-Fluid Method“. Thesis, 2008. http://ndltd.ncl.edu.tw/handle/60595371681048985862.
Der volle Inhalt der Quelle國立交通大學
應用數學系所
96
In this paper we introduce level set method to solve heat equation on interface with Cartesian coordinate. Then we couple level set method and Volume-of-Fluid method to simulate two-phase flow for interface property and conserve the volume of inner area. Finally we add insoluble surfactant on the interface when simulating two-phase flows and observe the impact of surfactant on interface.
Ningegowda, B. M. „Coupled level set and volume of fluid mehtod for numerical simulation of boiling flows“. Thesis, 2016. http://localhost:8080/iit/handle/2074/7174.
Der volle Inhalt der QuelleBuchteile zum Thema "Coupled Level Set Volume-of-Fluid (CLSVoF))"
Mookherjee, Orkodip, Shantanu Pramanik und Atul Sharma. „Comparative CmFD Study on Geometric and Algebraic Coupled Level Set and Volume of Fluid Methods“. In Fluid Mechanics and Fluid Power, Volume 5, 3–15. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-99-6074-3_1.
Der volle Inhalt der QuelleKwakkel, M., W. P. Breugem und B. J. Boersma. „DNS of Turbulent Bubbly Downflow with a Coupled Level-Set/Volume-of-Fluid Method“. In Direct and Large-Eddy Simulation IX, 647–53. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-14448-1_81.
Der volle Inhalt der QuelleDeka, H., G. Biswas und A. Dalal. „A Coupled Level Set and Volume-of-Fluid Method for Modeling Two-Phase Flows“. In Advances in Mechanical Engineering, 65–73. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-0124-1_7.
Der volle Inhalt der QuelleVu, Tai-Duy, und Sung-Goon Park. „Numerical Simulation of Two-Phase Flow Using Coupled Level-Set and Volume-of-Fluid Method“. In Lecture Notes in Mechanical Engineering, 253–59. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-6211-8_35.
Der volle Inhalt der QuelleTalebanfard, N., und B. J. Boersma. „Direct Numerical Simulation of Heat Transfer in Colliding Droplets by a Coupled Level Set and Volume of Fluid Method“. In Direct and Large-Eddy Simulation IX, 687–93. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-14448-1_86.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Coupled Level Set Volume-of-Fluid (CLSVoF))"
Xia, Huihuang, und Marc Kamlah. „Modelling Droplet Evaporation with an Improved Coupled Level Set and Volume of Fluid (I-Clsvof) Framework“. In The 8th World Congress on Mechanical, Chemical, and Material Engineering. Avestia Publishing, 2022. http://dx.doi.org/10.11159/htff22.127.
Der volle Inhalt der QuelleVaudor, Geoffroy, Alain Berlemont, Thibaut Ménard und Mathieu Doring. „A Consistent Mass and Momentum Flux Computation Method Using Rudman-Type Technique With a CLSVOF Solver“. In ASME 2014 4th Joint US-European Fluids Engineering Division Summer Meeting collocated with the ASME 2014 12th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/fedsm2014-21802.
Der volle Inhalt der QuelleRay, Bahni, Gautam Biswas und Ashutosh Sharma. „Vortex Ring Formation on Drop Coalescence With Underlying Liquid“. In ASME 2013 Heat Transfer Summer Conference collocated with the ASME 2013 7th International Conference on Energy Sustainability and the ASME 2013 11th International Conference on Fuel Cell Science, Engineering and Technology. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/ht2013-17711.
Der volle Inhalt der QuelleDeka, Hiranya, Gautam Biswas und Amaresh Dalal. „Formation and Penetration of Vortex Ring on Drop Coalescence“. In ASME 2016 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/imece2016-66786.
Der volle Inhalt der QuelleHaghshenas, Majid, und Ranganathan Kumar. „Curvature Estimation Modeling Using Machine Learning for CLSVOF Method: Comparison With Conventional Methods“. In ASME-JSME-KSME 2019 8th Joint Fluids Engineering Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/ajkfluids2019-5415.
Der volle Inhalt der QuelleTong, Albert Y., und Zhaoyuan Wang. „A Numerical Method for Capillarity-Driven Free Surface Flows“. In ASME 2005 Fluids Engineering Division Summer Meeting. ASMEDC, 2005. http://dx.doi.org/10.1115/fedsm2005-77274.
Der volle Inhalt der QuelleGuan, Yin, und Albert Y. Tong. „Numerical Modeling of Droplet Splitting and Merging in a Parallel-Plate Electrowetting-on-Dielectric (EWOD) Device“. In ASME 2013 4th International Conference on Micro/Nanoscale Heat and Mass Transfer. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/mnhmt2013-22152.
Der volle Inhalt der QuelleWang, Zhaoyuan, und Albert Y. Tong. „A Sharp Surface Tension Modeling Method for Capillarity-Dominant Two-Phase Incompressible Flows“. In ASME 2007 International Mechanical Engineering Congress and Exposition. ASMEDC, 2007. http://dx.doi.org/10.1115/imece2007-42455.
Der volle Inhalt der QuelleTarlet, Dominique, Philippe Desjonquères, Thibault Ménard und Jérôme Bellettre. „Comparison between numerical and experimental water-in-oil dispersion in a microchannel“. In ILASS2017 - 28th European Conference on Liquid Atomization and Spray Systems. Valencia: Universitat Politècnica València, 2017. http://dx.doi.org/10.4995/ilass2017.2017.4717.
Der volle Inhalt der QuelleWang, Zhaoyuan, und Albert Y. Tong. „Deformation and Oscillations of a Single Gas Bubble Rising in a Narrow Vertical Tube“. In ASME 4th International Conference on Nanochannels, Microchannels, and Minichannels. ASMEDC, 2006. http://dx.doi.org/10.1115/icnmm2006-96246.
Der volle Inhalt der Quelle