Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Counterfactual explanations“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Counterfactual explanations" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Counterfactual explanations"
Sia, Suzanna, Anton Belyy, Amjad Almahairi, Madian Khabsa, Luke Zettlemoyer und Lambert Mathias. „Logical Satisfiability of Counterfactuals for Faithful Explanations in NLI“. Proceedings of the AAAI Conference on Artificial Intelligence 37, Nr. 8 (26.06.2023): 9837–45. http://dx.doi.org/10.1609/aaai.v37i8.26174.
Der volle Inhalt der QuelleAsher, Nicholas, Lucas De Lara, Soumya Paul und Chris Russell. „Counterfactual Models for Fair and Adequate Explanations“. Machine Learning and Knowledge Extraction 4, Nr. 2 (31.03.2022): 316–49. http://dx.doi.org/10.3390/make4020014.
Der volle Inhalt der QuelleVanNostrand, Peter M., Huayi Zhang, Dennis M. Hofmann und Elke A. Rundensteiner. „FACET: Robust Counterfactual Explanation Analytics“. Proceedings of the ACM on Management of Data 1, Nr. 4 (08.12.2023): 1–27. http://dx.doi.org/10.1145/3626729.
Der volle Inhalt der QuelleKenny, Eoin M., und Mark T. Keane. „On Generating Plausible Counterfactual and Semi-Factual Explanations for Deep Learning“. Proceedings of the AAAI Conference on Artificial Intelligence 35, Nr. 13 (18.05.2021): 11575–85. http://dx.doi.org/10.1609/aaai.v35i13.17377.
Der volle Inhalt der QuelleLeofante, Francesco, und Nico Potyka. „Promoting Counterfactual Robustness through Diversity“. Proceedings of the AAAI Conference on Artificial Intelligence 38, Nr. 19 (24.03.2024): 21322–30. http://dx.doi.org/10.1609/aaai.v38i19.30127.
Der volle Inhalt der QuelleDelaney, Eoin, Arjun Pakrashi, Derek Greene und Mark T. Keane. „Counterfactual Explanations for Misclassified Images: How Human and Machine Explanations Differ (Abstract Reprint)“. Proceedings of the AAAI Conference on Artificial Intelligence 38, Nr. 20 (24.03.2024): 22696. http://dx.doi.org/10.1609/aaai.v38i20.30596.
Der volle Inhalt der QuelleBaron, Sam, Mark Colyvan und David Ripley. „A Counterfactual Approach to Explanation in Mathematics“. Philosophia Mathematica 28, Nr. 1 (02.12.2019): 1–34. http://dx.doi.org/10.1093/philmat/nkz023.
Der volle Inhalt der QuelleSchleich, Maximilian, Zixuan Geng, Yihong Zhang und Dan Suciu. „GeCo“. Proceedings of the VLDB Endowment 14, Nr. 9 (Mai 2021): 1681–93. http://dx.doi.org/10.14778/3461535.3461555.
Der volle Inhalt der QuelleBarzekar, Hosein, und Susan McRoy. „Achievable Minimally-Contrastive Counterfactual Explanations“. Machine Learning and Knowledge Extraction 5, Nr. 3 (03.08.2023): 922–36. http://dx.doi.org/10.3390/make5030048.
Der volle Inhalt der QuelleChapman-Rounds, Matt, Umang Bhatt, Erik Pazos, Marc-Andre Schulz und Konstantinos Georgatzis. „FIMAP: Feature Importance by Minimal Adversarial Perturbation“. Proceedings of the AAAI Conference on Artificial Intelligence 35, Nr. 13 (18.05.2021): 11433–41. http://dx.doi.org/10.1609/aaai.v35i13.17362.
Der volle Inhalt der QuelleDissertationen zum Thema "Counterfactual explanations"
Jeyasothy, Adulam. „Génération d'explications post-hoc personnalisées“. Electronic Thesis or Diss., Sorbonne université, 2024. http://www.theses.fr/2024SORUS027.
Der volle Inhalt der QuelleThis thesis is in the field of eXplainable AI (XAI). We focus on post-hoc interpretability methods that aim to explain to a user the prediction for a specific data made by a trained decision model. To increase the interpretability of explanations, this thesis studies the integration of user knowledge into these methods, and thus aims to improve the understandability of the explanation by generating personalized explanations tailored to each user. To this end, we propose a general formalism that explicitly integrates knowledge via a new criterion in the interpretability objectives. This formalism is then declined for different types of knowledge and different types of explanations, particularly counterfactual examples, leading to the proposal of several algorithms (KICE, Knowledge Integration in Counterfactual Explanation, rKICE for its variant including knowledge expressed by rules and KISM, Knowledge Integration in Surrogate Models). The issue of aggregating classical quality and knowledge compatibility constraints is also studied, and we propose to use Gödel's integral as an aggregation operator. Finally, we discuss the difficulty of generating a single explanation suitable for all types of users and the notion of diversity in explanations
Broadbent, Alex. „A reverse counterfactual analysis of causation“. Thesis, University of Cambridge, 2007. https://www.repository.cam.ac.uk/handle/1810/226170.
Der volle Inhalt der QuelleKuo, Chia-Yu, und 郭家諭. „Explainable Risk Prediction System for Child Abuse Event by Individual Feature Attribution and Counterfactual Explanation“. Thesis, 2019. http://ndltd.ncl.edu.tw/handle/yp2nr3.
Der volle Inhalt der Quelle國立交通大學
統計學研究所
107
There always have a trade-off: Performance or Interpretability. The complex model, such as ensemble learning can achieve outstanding prediction accuracy. However, it is not easy to interpret the complex model. Understanding why a model made a prediction help us to trust the black-box model, and also help users to make decisions. This work plans to use the techniques of explainable machine learning to develop the appropriate model for empirical data with high prediction and good interpretability. In this study, we use the data provided by Taipei City Center for Prevention of Domestic Violence and Sexual Assault (臺北市家庭暴力暨性侵害防治中心) to develop the risk prediction model to predict the recurrence probability of violence accident for the same case before this case is resolved. This prediction model can also provide individual feature explanation and the counterfactual explanation to help social workers conduct an intervention for violence prevention.
Bücher zum Thema "Counterfactual explanations"
Reutlinger, Alexander. Extending the Counterfactual Theory of Explanation. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198777946.003.0005.
Der volle Inhalt der QuelleGerstenberg, Tobias, und Joshua B. Tenenbaum. Intuitive Theories. Herausgegeben von Michael R. Waldmann. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199399550.013.28.
Der volle Inhalt der QuelleKutach, Douglas. The Asymmetry of Influence. Herausgegeben von Craig Callender. Oxford University Press, 2011. http://dx.doi.org/10.1093/oxfordhb/9780199298204.003.0009.
Der volle Inhalt der QuelleFrench, Steven, und Juha Saatsi. Symmetries and Explanatory Dependencies in Physics. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198777946.003.0010.
Der volle Inhalt der QuelleSolstad, Torgrim, und Oliver Bott. Causality and Causal Reasoning in Natural Language. Herausgegeben von Michael R. Waldmann. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199399550.013.32.
Der volle Inhalt der QuelleBrady, Henry E. Causation and Explanation in Social Science. Herausgegeben von Janet M. Box-Steffensmeier, Henry E. Brady und David Collier. Oxford University Press, 2009. http://dx.doi.org/10.1093/oxfordhb/9780199286546.003.0010.
Der volle Inhalt der QuelleMcGregor, Rafe. A Criminology Of Narrative Fiction. Policy Press, 2021. http://dx.doi.org/10.1332/policypress/9781529208054.001.0001.
Der volle Inhalt der QuelleSilberstein, Michael, W. M. Stuckey und Timothy McDevitt. Relational Blockworld and Quantum Mechanics. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198807087.003.0005.
Der volle Inhalt der QuelleSt John, Taylor. Introduction. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198789918.003.0001.
Der volle Inhalt der QuelleStock, Kathleen. Fiction, Belief, and ‘Imaginative Resistance’. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198798347.003.0005.
Der volle Inhalt der QuelleBuchteile zum Thema "Counterfactual explanations"
Dandl, Susanne, Christoph Molnar, Martin Binder und Bernd Bischl. „Multi-Objective Counterfactual Explanations“. In Parallel Problem Solving from Nature – PPSN XVI, 448–69. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-58112-1_31.
Der volle Inhalt der QuelleKuratomi, Alejandro, Ioanna Miliou, Zed Lee, Tony Lindgren und Panagiotis Papapetrou. „JUICE: JUstIfied Counterfactual Explanations“. In Discovery Science, 493–508. Cham: Springer Nature Switzerland, 2022. http://dx.doi.org/10.1007/978-3-031-18840-4_35.
Der volle Inhalt der QuelleGuyomard, Victor, Françoise Fessant, Thomas Guyet, Tassadit Bouadi und Alexandre Termier. „Generating Robust Counterfactual Explanations“. In Machine Learning and Knowledge Discovery in Databases: Research Track, 394–409. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-43418-1_24.
Der volle Inhalt der QuelleGerber, Doris. „Counterfactual Causality and Historical Explanations“. In Explanation in Action Theory and Historiography, 167–78. 1 [edition]. | New York : Taylor & Francis, 2019. | Series: Routledge studies in contemporary philosophy ; 121: Routledge, 2019. http://dx.doi.org/10.4324/9780429506048-9.
Der volle Inhalt der QuelleMishra, Pradeepta. „Counterfactual Explanations for XAI Models“. In Practical Explainable AI Using Python, 265–78. Berkeley, CA: Apress, 2021. http://dx.doi.org/10.1007/978-1-4842-7158-2_10.
Der volle Inhalt der QuelleJeanneret, Guillaume, Loïc Simon und Frédéric Jurie. „Diffusion Models for Counterfactual Explanations“. In Computer Vision – ACCV 2022, 219–37. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-26293-7_14.
Der volle Inhalt der QuelleBoumazouza, Ryma, Fahima Cheikh-Alili, Bertrand Mazure und Karim Tabia. „A Symbolic Approach for Counterfactual Explanations“. In Lecture Notes in Computer Science, 270–77. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-58449-8_21.
Der volle Inhalt der QuelleJacob, Paul, Éloi Zablocki, Hédi Ben-Younes, Mickaël Chen, Patrick Pérez und Matthieu Cord. „STEEX: Steering Counterfactual Explanations with Semantics“. In Lecture Notes in Computer Science, 387–403. Cham: Springer Nature Switzerland, 2022. http://dx.doi.org/10.1007/978-3-031-19775-8_23.
Der volle Inhalt der QuelleVan Looveren, Arnaud, und Janis Klaise. „Interpretable Counterfactual Explanations Guided by Prototypes“. In Machine Learning and Knowledge Discovery in Databases. Research Track, 650–65. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-86520-7_40.
Der volle Inhalt der QuelleLi, Peiyu, Soukaïna Filali Boubrahimi und Shah Muhammad Hamdi. „Motif-Guided Time Series Counterfactual Explanations“. In Pattern Recognition, Computer Vision, and Image Processing. ICPR 2022 International Workshops and Challenges, 203–15. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-37731-0_16.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Counterfactual explanations"
Leofante, Francesco, Elena Botoeva und Vineet Rajani. „Counterfactual Explanations and Model Multiplicity: a Relational Verification View“. In 20th International Conference on Principles of Knowledge Representation and Reasoning {KR-2023}. California: International Joint Conferences on Artificial Intelligence Organization, 2023. http://dx.doi.org/10.24963/kr.2023/78.
Der volle Inhalt der QuelleZhao, Wenqi, Satoshi Oyama und Masahito Kurihara. „Generating Natural Counterfactual Visual Explanations“. In Twenty-Ninth International Joint Conference on Artificial Intelligence and Seventeenth Pacific Rim International Conference on Artificial Intelligence {IJCAI-PRICAI-20}. California: International Joint Conferences on Artificial Intelligence Organization, 2020. http://dx.doi.org/10.24963/ijcai.2020/742.
Der volle Inhalt der QuelleAlbini, Emanuele, Jason Long, Danial Dervovic und Daniele Magazzeni. „Counterfactual Shapley Additive Explanations“. In FAccT '22: 2022 ACM Conference on Fairness, Accountability, and Transparency. New York, NY, USA: ACM, 2022. http://dx.doi.org/10.1145/3531146.3533168.
Der volle Inhalt der QuelleJeanneret, Guillaume, Loïc Simon und Frédéric Jurie. „Adversarial Counterfactual Visual Explanations“. In 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2023. http://dx.doi.org/10.1109/cvpr52729.2023.01576.
Der volle Inhalt der QuelleDervakos, Edmund, Konstantinos Thomas, Giorgos Filandrianos und Giorgos Stamou. „Choose your Data Wisely: A Framework for Semantic Counterfactuals“. In Thirty-Second International Joint Conference on Artificial Intelligence {IJCAI-23}. California: International Joint Conferences on Artificial Intelligence Organization, 2023. http://dx.doi.org/10.24963/ijcai.2023/43.
Der volle Inhalt der QuelleAryal, Saugat, und Mark T. Keane. „Even If Explanations: Prior Work, Desiderata & Benchmarks for Semi-Factual XAI“. In Thirty-Second International Joint Conference on Artificial Intelligence {IJCAI-23}. California: International Joint Conferences on Artificial Intelligence Organization, 2023. http://dx.doi.org/10.24963/ijcai.2023/732.
Der volle Inhalt der QuelleRodriguez, Pau, Massimo Caccia, Alexandre Lacoste, Lee Zamparo, Issam Laradji, Laurent Charlin und David Vazquez. „Beyond Trivial Counterfactual Explanations with Diverse Valuable Explanations“. In 2021 IEEE/CVF International Conference on Computer Vision (ICCV). IEEE, 2021. http://dx.doi.org/10.1109/iccv48922.2021.00109.
Der volle Inhalt der QuelleTran, Khanh Hiep, Azin Ghazimatin und Rishiraj Saha Roy. „Counterfactual Explanations for Neural Recommenders“. In SIGIR '21: The 44th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, NY, USA: ACM, 2021. http://dx.doi.org/10.1145/3404835.3463005.
Der volle Inhalt der QuelleZemni, Mehdi, Mickaël Chen, Éloi Zablocki, Hédi Ben-Younes, Patrick Pérez und Matthieu Cord. „OCTET: Object-aware Counterfactual Explanations“. In 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2023. http://dx.doi.org/10.1109/cvpr52729.2023.01446.
Der volle Inhalt der QuelleArtelt, Andre, Valerie Vaquet, Riza Velioglu, Fabian Hinder, Johannes Brinkrolf, Malte Schilling und Barbara Hammer. „Evaluating Robustness of Counterfactual Explanations“. In 2021 IEEE Symposium Series on Computational Intelligence (SSCI). IEEE, 2021. http://dx.doi.org/10.1109/ssci50451.2021.9660058.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Counterfactual explanations"
Gandelman, Néstor. A Comparison of Saving Rates: Micro Evidence from Seventeen Latin American and Caribbean Countries. Inter-American Development Bank, Juli 2015. http://dx.doi.org/10.18235/0011701.
Der volle Inhalt der Quelle