Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Cosmological phase transitions“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Cosmological phase transitions" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Cosmological phase transitions"
KIM, SANG PYO. „DYNAMICAL THEORY OF PHASE TRANSITIONS AND COSMOLOGICAL EW AND QCD PHASE TRANSITIONS“. Modern Physics Letters A 23, Nr. 17n20 (28.06.2008): 1325–35. http://dx.doi.org/10.1142/s0217732308027692.
Der volle Inhalt der QuelleAthron, Peter, Csaba Balázs und Lachlan Morris. „Supercool subtleties of cosmological phase transitions“. Journal of Cosmology and Astroparticle Physics 2023, Nr. 03 (01.03.2023): 006. http://dx.doi.org/10.1088/1475-7516/2023/03/006.
Der volle Inhalt der QuelleBuckley, Matthew R., Peizhi Du, Nicolas Fernandez und Mitchell J. Weikert. „Dark radiation isocurvature from cosmological phase transitions“. Journal of Cosmology and Astroparticle Physics 2024, Nr. 07 (01.07.2024): 031. http://dx.doi.org/10.1088/1475-7516/2024/07/031.
Der volle Inhalt der QuelleHogan, C. J. „Gravitational radiation from cosmological phase transitions“. Monthly Notices of the Royal Astronomical Society 218, Nr. 4 (01.02.1986): 629–36. http://dx.doi.org/10.1093/mnras/218.4.629.
Der volle Inhalt der QuelleMÉGEVAND, ARIEL. „GRAVITATIONAL WAVES FROM COSMOLOGICAL PHASE TRANSITIONS“. International Journal of Modern Physics A 24, Nr. 08n09 (10.04.2009): 1541–44. http://dx.doi.org/10.1142/s0217751x09044966.
Der volle Inhalt der QuelleKurki-Suonio, H., und M. Laine. „Supersonic deflagrations in cosmological phase transitions“. Physical Review D 51, Nr. 10 (15.05.1995): 5431–37. http://dx.doi.org/10.1103/physrevd.51.5431.
Der volle Inhalt der QuelleVachaspati, Tanmay. „Magnetic fields from cosmological phase transitions“. Physics Letters B 265, Nr. 3-4 (August 1991): 258–61. http://dx.doi.org/10.1016/0370-2693(91)90051-q.
Der volle Inhalt der QuelleDurrer, Ruth. „Gravitational waves from cosmological phase transitions“. Journal of Physics: Conference Series 222 (01.04.2010): 012021. http://dx.doi.org/10.1088/1742-6596/222/1/012021.
Der volle Inhalt der QuelleAthron, Peter, Lachlan Morris und Zhongxiu Xu. „How robust are gravitational wave predictions from cosmological phase transitions?“ Journal of Cosmology and Astroparticle Physics 2024, Nr. 05 (01.05.2024): 075. http://dx.doi.org/10.1088/1475-7516/2024/05/075.
Der volle Inhalt der QuelleJinno, Ryusuke, Thomas Konstandin, Henrique Rubira und Isak Stomberg. „Higgsless simulations of cosmological phase transitions and gravitational waves“. Journal of Cosmology and Astroparticle Physics 2023, Nr. 02 (01.02.2023): 011. http://dx.doi.org/10.1088/1475-7516/2023/02/011.
Der volle Inhalt der QuelleDissertationen zum Thema "Cosmological phase transitions"
Ferreira, Pedro Tonnies Gil. „Observational consequences of cosmological phase transitions“. Thesis, Imperial College London, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.338692.
Der volle Inhalt der QuelleLarsson, Sebastian E. „Topological defects from cosmological phase transitions“. Thesis, University of Oxford, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.298309.
Der volle Inhalt der QuelleAdams, Jennifer Anne. „Cosmological phase transitions : techniques and phenomenology“. Thesis, University of Oxford, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.306935.
Der volle Inhalt der QuelleLilley, Matthew James. „Cosmological phase transitions and primordial magnetic fields“. Thesis, University of Cambridge, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.621001.
Der volle Inhalt der QuelleFaure, Rémi. „Neutrinos, cosmological phase transitions and the matter-antimatter asymmetry of the Universe“. Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASP081.
Der volle Inhalt der QuelleThe baryon asymmetry in our Universe is an unsolved problem in cosmology. A popular approach for explaining it is leptogenesis with sterile neutrinos, which are particles motivated in order to explain the masses of active neutrinos in the Standard Model. It is possible to include in these scenarios a cosmological phase transition which gives rise to the sterile neutrino masses. This idea is phenomenologically interesting, as such a phase transition could produce detectable gravitational waves. At the temperature T of the phase transition, sterile neutrinos acquire a mass M. Two mechanisms are considered. For non-relativistic sterile neutrinos M>T, deviating from equilibrium due to the phase transition, they will quickly decay and produce a lepton asymmetry. The rapidity of the phase transition allows a larger sterile neutrino population than in usual scenarios and enhances the created asymmetry. Numerical analyses describe the successful regions in parameter space for leptogenesis. For relativistic sterile neutrinos M
Dichtl, Maximilian. „Aspects of cosmological first order phase transitions : propagation of ultra-relativistic shells, heavy dark matter, and baryogenesis“. Electronic Thesis or Diss., Sorbonne université, 2024. http://www.theses.fr/2024SORUS181.
Der volle Inhalt der QuelleFirst order phase transitions (PT) in the early universe happen via the nucleation of bubbles whose walls can expand at ultra-relativistic velocities. Interactions of the thermal bath at the wall produce particles which accumulate in shells at the wall. The shells evolve until they collide with those from neighboring bubbles. In this thesis we first study the evolution of these shells, including for the first time number changing interactions of the shell within itself and with the thermal bath. In particular, we calculate the rates of the dominant 3 → 2 scattering processes, and find they can be more important than all other processes considered in previous literature. We identify the regions of parameter space of the PT where the shells free stream, i.e. they have negligible interactions within themselves and with the bath. We then use these results to predict the rate and energy with which particles of opposite bubbles collide. We find that these particle collisions can reach scattering energies much larger than the scale of the PT, which in turn can be used to produce highly energetic particles or particles much heavier than the scale of the PT, realising a cosmological 'bubbletron'. As an example, we show that one can produce heavy dark matter with masses above 10^3 TeV for scales of the PT of around 10 MeV, and with masses above the GUT scale for scales of the PT above about 10^9 GeV. PTs with ultra-relativistic walls are also relevant for any other process relying on out-of-equilibrium particle production. If the interaction between particles in the shell also violates Baryon number, C, and CP, then all three Sakharov conditions are satisifed, and one can use these PTs to explain the baryon asymmetry of the universe. We do so by proposing a mechanism of baryogenesis from supercooled confining PTs. We also compute the gravitational wave signature due to the PT in all the above scenarios. We find they could be seen by pulsar timing arrays and gravitational wave interferometers like LISA and the Einstein Telescope, realizing a new link between these telescopes and the possible origin of dark matter and of the baryon asymmetry of the universe
Martin, Adrian Peter. „Cosmological phase transition phenomena“. Thesis, University of Cambridge, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.389880.
Der volle Inhalt der QuelleChowdhury, Talal Ahmed. „A Possible Link between the Electroweak Phase Transition and the Dark Matter of the Universe“. Doctoral thesis, SISSA, 2014. http://hdl.handle.net/20.500.11767/3883.
Der volle Inhalt der QuelleManning, Adrian Gordon. „Quantum Fields in Curved Spacetime with Cosmological and Gravitational Wave Implications“. Thesis, The University of Sydney, 2018. http://hdl.handle.net/2123/17804.
Der volle Inhalt der QuelleScott, Pat. „Searches for Particle Dark Matter Dark stars, dark galaxies, dark halos and global supersymmetric fits /“. Doctoral thesis, Stockholm : Department of Physics, Stockholm University, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-38221.
Der volle Inhalt der QuelleAt the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 5: Accepted. Paper 6: Submitted. Härtill 6 uppsatser.
Bücher zum Thema "Cosmological phase transitions"
Nagasawa, Michiyasu. Cosmological phase transitions and evolution of topological defects. [S.l.]: University of Tokyo, 1993.
Den vollen Inhalt der Quelle findenNational Aeronautics and Space Administration (NASA) Staff. Late Time Cosmological Phase Transitions 1: Particle Physics Models and Cosmic Evolution. Independently Published, 2018.
Den vollen Inhalt der Quelle findenMaggiore, Michele. Stochastic backgrounds of cosmological origin. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198570899.003.0013.
Der volle Inhalt der QuelleMaggiore, Michele. Gravitational Waves. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198570899.001.0001.
Der volle Inhalt der QuelleLate time cosmological phase transition I: Particle physics models and cosmic evolution. Batavia, Ill: Fermi National Accelerator Laboratory, 1991.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Cosmological phase transitions"
Kolb, Edward W. „Cosmological Phase Transitions“. In Gravitation in Astrophysics, 307–27. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4613-1897-2_11.
Der volle Inhalt der QuelleSchramm, David N. „Late-Time Cosmological Phase Transitions“. In Primordial Nucleosynthesis and Evolution of Early Universe, 225–42. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3410-1_31.
Der volle Inhalt der QuelleBoyanovsky, D., H. J. Vega und M. Simionato. „Primordial magnetic fields from cosmological phase transitions“. In The Early Universe and the Cosmic Microwave Background: Theory and Observations, 65–100. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-007-1058-0_5.
Der volle Inhalt der QuelleBäuerle, C., Yu M. Bunkov, S. N. Fisher und H. Godfrin. „The ‘Grenoble’ Cosmological Experiment“. In Topological Defects and the Non-Equilibrium Dynamics of Symmetry Breaking Phase Transitions, 105–20. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-011-4106-2_6.
Der volle Inhalt der QuelleKhlopov, Maxim Yu, und Sergei G. Rubin. „High Density Regions from First-Order Phase Transitions“. In Cosmological Pattern of Microphysics in the Inflationary Universe, 171–98. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/978-1-4020-2650-8_8.
Der volle Inhalt der QuelleGoldenfeld, Nigel. „Dynamics of Cosmological phase transitions: What can we learn from condensed matter physics?“ In Formation and Interactions of Topological Defects, 93–104. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4615-1883-9_4.
Der volle Inhalt der QuelleBunkov, Yu M. „“Aurore De Venise” — Cosmological Scenario of the A-B Phase Transition in Superfluid 3He“. In Topological Defects and the Non-Equilibrium Dynamics of Symmetry Breaking Phase Transitions, 121–37. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-011-4106-2_7.
Der volle Inhalt der QuelleGouttenoire, Yann. „First-Order Cosmological Phase Transition“. In Beyond the Standard Model Cocktail, 267–355. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-11862-3_6.
Der volle Inhalt der QuelleBecker, Jörg D., und Lutz Castell. „Ur Theory and Cosmological Phase Transition“. In Time, Quantum and Information, 421–25. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-662-10557-3_29.
Der volle Inhalt der QuelleStock, Reinhard. „Relativistic Nucleus-Nucleus Collisions and the QCD Matter Phase Diagram“. In Particle Physics Reference Library, 311–453. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-38207-0_7.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Cosmological phase transitions"
Quirós, Mariano. „Cosmological phase transitions and baryogenesis“. In The sixth Mexican workshop on particles and fields. American Institute of Physics, 1998. http://dx.doi.org/10.1063/1.56628.
Der volle Inhalt der QuelleRummukainen, Kari, Stephan J. Huber, Mark B. Hindmarsh und David Weir. „Gravitational waves from cosmological first order phase transitions“. In The 33rd International Symposium on Lattice Field Theory. Trieste, Italy: Sissa Medialab, 2016. http://dx.doi.org/10.22323/1.251.0233.
Der volle Inhalt der QuelleBoyanovsky, D. „Primordial Magnetic Fields from Out of Equilibrium Cosmological Phase Transitions“. In MAGNETIC FIELDS IN THE UNIVERSE: From Laboratory and Stars to Primordial Structures. AIP, 2005. http://dx.doi.org/10.1063/1.2077205.
Der volle Inhalt der QuelleRakic, Aleksandar, Dennis Simon, Julian Adamek und Jens Niemeyer. „Cosmological first-order phase transitions beyond the standard inflationary scenario“. In International Workshop on Cosmic Structure and Evolution. Trieste, Italy: Sissa Medialab, 2010. http://dx.doi.org/10.22323/1.097.0007.
Der volle Inhalt der QuelleDumin, Yu V. „ON THE INFLUENCE OF EINSTEIN–PODOLSKY–ROSEN EFFECT ON THE DOMAIN WALL FORMATION DURING THE COSMOLOGICAL PHASE TRANSITIONS“. In Proceedings of the Tenth Lomonosov Conference on Elementary Particle Physics. WORLD SCIENTIFIC, 2003. http://dx.doi.org/10.1142/9789812704948_0037.
Der volle Inhalt der QuelleRomero-Rodríguez, Alba. „Implications for first-order cosmological phase transitions and the formation of primordial black holes from the third LIGO-Virgo observing run“. In The European Physical Society Conference on High Energy Physics. Trieste, Italy: Sissa Medialab, 2022. http://dx.doi.org/10.22323/1.398.0113.
Der volle Inhalt der QuelleHWANG, W. Y. P. „SOME THOUGHTS ON THE COSMOLOGICAL QCD PHASE TRANSITION“. In Statistical Physics, High Energy, Condensed Matter and Mathematical Physics - The Conference in Honor of C. N. Yang'S 85th Birthday. WORLD SCIENTIFIC, 2008. http://dx.doi.org/10.1142/9789812794185_0005.
Der volle Inhalt der QuelleSinha, Bikash. „Relics of the Cosmological Quark-Hadron Phase Transition“. In Proceedings of the Sixth International Workshop. WORLD SCIENTIFIC, 2001. http://dx.doi.org/10.1142/9789812799814_0007.
Der volle Inhalt der QuelleTawfik, A., und Shaaban Khalil. „Cosmological Consequences of QCD Phase Transition(s) in Early Universe“. In THE DARK SIDE OF THE UNIVERSE: 4th International Workshop on the Dark Side of the Universe. AIP, 2009. http://dx.doi.org/10.1063/1.3131505.
Der volle Inhalt der QuelleAderaldo, Vinicius Simoes, und Victor Goncalves. „Cosmological implications of the QCD phase transition in the Early Universe“. In XV International Workshop on Hadron Physics. Trieste, Italy: Sissa Medialab, 2022. http://dx.doi.org/10.22323/1.408.0026.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Cosmological phase transitions"
Kolb, E. W. Cosmological phase transitions. Office of Scientific and Technical Information (OSTI), September 1986. http://dx.doi.org/10.2172/5086987.
Der volle Inhalt der QuelleLindesay, James V., und H. Pierre Noyes. Evidence for a Cosmological Phase Transition on the TeVScale. Office of Scientific and Technical Information (OSTI), August 2005. http://dx.doi.org/10.2172/878749.
Der volle Inhalt der Quelle