Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Correspondence image matching“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Correspondence image matching" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Correspondence image matching"
LEE, CHUNG-MONG, TING-CHUEN PONG und JAMES R. SLAGLE. „A KNOWLEDGE-BASED SYSTEM FOR THE IMAGE CORRESPONDENCE PROBLEM“. International Journal of Pattern Recognition and Artificial Intelligence 04, Nr. 01 (März 1990): 45–55. http://dx.doi.org/10.1142/s0218001490000046.
Der volle Inhalt der QuelleZhao, Zeng-Shun, Xiang Feng, Sheng-Hua Teng, Yi-Bin Li und Chang-Shui Zhang. „Multiscale Point Correspondence Using Feature Distribution and Frequency Domain Alignment“. Mathematical Problems in Engineering 2012 (2012): 1–14. http://dx.doi.org/10.1155/2012/382369.
Der volle Inhalt der QuelleFang, Bin, Kun Yu, Jie Ma und Pei An. „EMCM: A Novel Binary Edge-Feature-Based Maximum Clique Framework for Multispectral Image Matching“. Remote Sensing 11, Nr. 24 (15.12.2019): 3026. http://dx.doi.org/10.3390/rs11243026.
Der volle Inhalt der QuelleChen, Lin, Rong Sheng Lu, Yan Qiong Shi und Jian Sheng Tian. „A Differential Evolution Stereo Matching Method in Digital Image Correlation“. Key Engineering Materials 625 (August 2014): 297–304. http://dx.doi.org/10.4028/www.scientific.net/kem.625.297.
Der volle Inhalt der QuelleHödel, M., T. Koch, L. Hoegner und U. Stilla. „MONOCULAR-DEPTH ASSISTED SEMI-GLOBAL MATCHING“. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences IV-2/W7 (16.09.2019): 55–62. http://dx.doi.org/10.5194/isprs-annals-iv-2-w7-55-2019.
Der volle Inhalt der QuelleChen, Peizhi, und Xin Li. „Effective Volumetric Feature Modeling and Coarse Correspondence via Improved 3DSIFT and Spectral Matching“. Mathematical Problems in Engineering 2014 (2014): 1–10. http://dx.doi.org/10.1155/2014/378159.
Der volle Inhalt der QuelleKAMEYAMA, KEISUKE, KAZUO TORAICHI und YUKIO KOSUGI. „CONSTRUCTIVE RELAXATION MATCHING INVOLVING DYNAMICAL MODEL SWITCHING AND ITS APPLICATION TO SHAPE MATCHING“. International Journal of Image and Graphics 02, Nr. 04 (Oktober 2002): 655–67. http://dx.doi.org/10.1142/s0219467802000822.
Der volle Inhalt der QuelleKUMAR, S. SRINIVAS, und B. N. CHATTERJI. „STEREO MATCHING ALGORITHMS BASED ON FUZZY APPROACH“. International Journal of Pattern Recognition and Artificial Intelligence 16, Nr. 07 (November 2002): 883–99. http://dx.doi.org/10.1142/s0218001402002040.
Der volle Inhalt der QuellePhillips, P. J., J. Huang und S. M. Dunn. „Computational Micrograph Registration with Sieve Processes“. Proceedings, annual meeting, Electron Microscopy Society of America 54 (11.08.1996): 440–41. http://dx.doi.org/10.1017/s0424820100164660.
Der volle Inhalt der QuelleHu, Zhi Ping, und Yuan Jun He. „A New Method on Matching Correspondence Features in Image Warping“. Applied Mechanics and Materials 20-23 (Januar 2010): 1353–58. http://dx.doi.org/10.4028/www.scientific.net/amm.20-23.1353.
Der volle Inhalt der QuelleDissertationen zum Thema "Correspondence image matching"
Sampaio, de Rezende Rafael. „New methods for image classification, image retrieval and semantic correspondence“. Thesis, Paris Sciences et Lettres (ComUE), 2017. http://www.theses.fr/2017PSLEE068/document.
Der volle Inhalt der QuelleThe problem of image representation is at the heart of computer vision. The choice of feature extracted of an image changes according to the task we want to study. Large image retrieval databases demand a compressed global vector representing each image, whereas a semantic segmentation problem requires a clustering map of its pixels. The techniques of machine learning are the main tool used for the construction of these representations. In this manuscript, we address the learning of visual features for three distinct problems: Image retrieval, semantic correspondence and image classification. First, we study the dependency of a Fisher vector representation on the Gaussian mixture model used as its codewords. We introduce the use of multiple Gaussian mixture models for different backgrounds, e.g. different scene categories, and analyze the performance of these representations for object classification and the impact of scene category as a latent variable. Our second approach proposes an extension to the exemplar SVM feature encoding pipeline. We first show that, by replacing the hinge loss by the square loss in the ESVM cost function, similar results in image retrieval can be obtained at a fraction of the computational cost. We call this model square-loss exemplar machine, or SLEM. Secondly, we introduce a kernelized SLEM variant which benefits from the same computational advantages but displays improved performance. We present experiments that establish the performance and efficiency of our methods using a large array of base feature representations and standard image retrieval datasets. Finally, we propose a deep neural network for the problem of establishing semantic correspondence. We employ object proposal boxes as elements for matching and construct an architecture that simultaneously learns the appearance representation and geometric consistency. We propose new geometrical consistency scores tailored to the neural network’s architecture. Our model is trained on image pairs obtained from keypoints of a benchmark dataset and evaluated on several standard datasets, outperforming both recent deep learning architectures and previous methods based on hand-crafted features. We conclude the thesis by highlighting our contributions and suggesting possible future research directions
Yalcin, Bayramoglu Neslihan. „Range Data Recognition: Segmentation, Matching, And Similarity Retrieval“. Phd thesis, METU, 2011. http://etd.lib.metu.edu.tr/upload/12613586/index.pdf.
Der volle Inhalt der Quellehowever, there is still a gap in the 3D semantic analysis between the requirements of the applications and the obtained results. In this thesis we studied 3D semantic analysis of range data. Under this broad title we address segmentation of range scenes, correspondence matching of range images and the similarity retrieval of range models. Inputs are considered as single view depth images. First, possible research topics related to 3D semantic analysis are introduced. Planar structure detection in range scenes are analyzed and some modifications on available methods are proposed. Also, a novel algorithm to segment 3D point cloud (obtained via TOF camera) into objects by using the spatial information is presented. We proposed a novel local range image matching method that combines 3D surface properties with the 2D scale invariant feature transform. Next, our proposal for retrieving similar models where the query and the database both consist of only range models is presented. Finally, analysis of heat diffusion process on range data is presented. Challenges and some experimental results are presented.
Olofsson, Anders. „Modern Stereo Correspondence Algorithms : Investigation and Evaluation“. Thesis, Linköping University, Information Coding, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-57853.
Der volle Inhalt der QuelleMany different approaches have been taken towards solving the stereo correspondence problem and great progress has been made within the field during the last decade. This is mainly thanks to newly evolved global optimization techniques and better ways to compute pixel dissimilarity between views. The most successful algorithms are based on approaches that explicitly model smoothness assumptions made about the physical world, with image segmentation and plane fitting being two frequently used techniques.
Within the project, a survey of state of the art stereo algorithms was conducted and the theory behind them is explained. Techniques found interesting were implemented for experimental trials and an algorithm aiming to achieve state of the art performance was implemented and evaluated. For several cases, state of the art performance was reached.
To keep down the computational complexity, an algorithm relying on local winner-take-all optimization, image segmentation and plane fitting was compared against minimizing a global energy function formulated on pixel level. Experiments show that the local approach in several cases can match the global approach, but that problems sometimes arise – especially when large areas that lack texture are present. Such problematic areas are better handled by the explicit modeling of smoothness in global energy minimization.
Lastly, disparity estimation for image sequences was explored and some ideas on how to use temporal information were implemented and tried. The ideas mainly relied on motion detection to determine parts that are static in a sequence of frames. Stereo correspondence for sequences is a rather new research field, and there is still a lot of work to be made.
Fookes, Clinton Brian. „Medical Image Registration and Stereo Vision Using Mutual Information“. Queensland University of Technology, 2003. http://eprints.qut.edu.au/15876/.
Der volle Inhalt der QuelleDahlqvist, Marcus. „Adaptive Losses for Camera Pose Supervision“. Thesis, Linköpings universitet, Datorseende, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-177339.
Der volle Inhalt der QuelleSetkov, Aleksandr. „IVORA (Image and Computer Vision for Augmented Reality) : Color invariance and correspondences for the definition of a camera/video-projector system“. Thesis, Université Paris-Saclay (ComUE), 2015. http://www.theses.fr/2015SACLS168/document.
Der volle Inhalt der QuelleSpatial Augmented Reality (SAR) aims at spatially superposing virtual information on real-world objects. Over the last decades, it has gained a lot of success and been used in manifold applications in various domains, such as medicine, prototyping, entertainment etc. However, to obtain projections of a good quality one has to deal with multiple problems, among them the most important are the limited projector output gamut, ambient illumination, color background, and arbitrary geometric surface configurations of the projection scene. These factors result in image distortions which require additional compensation steps.Smart-projections are at the core of PAR applications. Equipped with a projection and acquisitions devices, they control the projection appearance and introduce corrections on the fly to compensate distortions. Although active structured-light techniques have been so far the de-facto method to address such problems, this PhD thesis addresses a relatively new unintrusive content-based approach for geometric compensation of multiple planar surfaces and for object recognition in SAR.Firstly, this thesis investigates the use of color-invariance for feature matching quality enhancement in projection-acquisition scenarios. The performance of most state-of-the art methods are studied along with the proposed local histogram equalization-based descriptor. Secondly, to better address the typical conditions encountered when using a projector-camera system, two datasets of real-world projections were specially prepared for experimental purposes. Through a series of evaluation frameworks, the performance of all considered algorithms is thoroughly analyzed, providing several inferences on that which algorithms are more appropriate in each condition. Thirdly, this PhD work addresses the problem of multiple-surface fitting used to compensate different homography distortions in acquired images. A combination of feature matching and Optical Flow tracking is proposed in order to achieve a more low-weight geometric compensation. Fourthly, an example of new application to object recognition from acquired projections is showed. Finally, a real-time implementation of considered methods on GPU shows prospects for the unintrusive feature matching-based geometric compensation in SAR applications
Mišta, Petr. „Hledání objektů v obraze“. Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2009. http://www.nusl.cz/ntk/nusl-217759.
Der volle Inhalt der Quelle„Bending invariant correspondence matching on 3D models with feature descriptor“. 2010. http://library.cuhk.edu.hk/record=b5896651.
Der volle Inhalt der QuelleThesis (M.Phil.)--Chinese University of Hong Kong, 2010.
Includes bibliographical references (leaves 91-96).
Abstracts in English and Chinese.
Abstract --- p.2
List of Figures --- p.6
Acknowledgement --- p.10
Chapter Chapter 1 --- Introduction --- p.11
Chapter 1.1 --- Problem definition --- p.11
Chapter 1.2. --- Proposed algorithm --- p.12
Chapter 1.3. --- Main features --- p.14
Chapter Chapter 2 --- Literature Review --- p.16
Chapter 2.1 --- Local Feature Matching techniques --- p.16
Chapter 2.2. --- Global Iterative alignment techniques --- p.19
Chapter 2.3 --- Other Approaches --- p.20
Chapter Chapter 3 --- Correspondence Matching --- p.21
Chapter 3.1 --- Fundamental Techniques --- p.24
Chapter 3.1.1 --- Geodesic Distance Approximation --- p.24
Chapter 3.1.1.1 --- Dijkstra ´ةs algorithm --- p.25
Chapter 3.1.1.2 --- Wavefront Propagation --- p.26
Chapter 3.1.2 --- Farthest Point Sampling --- p.27
Chapter 3.1.3 --- Curvature Estimation --- p.29
Chapter 3.1.4 --- Radial Basis Function (RBF) --- p.32
Chapter 3.1.5 --- Multi-dimensional Scaling (MDS) --- p.35
Chapter 3.1.5.1 --- Classical MDS --- p.35
Chapter 3.1.5.2 --- Fast MDS --- p.38
Chapter 3.2 --- Matching Processes --- p.40
Chapter 3.2.1 --- Posture Alignment --- p.42
Chapter 3.2.1.1 --- Sign Flip Correction --- p.43
Chapter 3.2.1.2 --- Input model Alignment --- p.49
Chapter 3.2.2 --- Surface Fitting --- p.52
Chapter 3.2.2.1 --- Optimizing Surface Fitness --- p.54
Chapter 3.2.2.2 --- Optimizing Surface Smoothness --- p.56
Chapter 3.2.3 --- Feature Matching Refinement --- p.59
Chapter 3.2.3.1 --- Feature descriptor --- p.61
Chapter 3.2.3.3 --- Feature Descriptor matching --- p.63
Chapter Chapter 4 --- Experimental Result --- p.66
Chapter 4.1 --- Result of the Fundamental Techniques --- p.66
Chapter 4.1.1 --- Geodesic Distance Approximation --- p.67
Chapter 4.1.2 --- Farthest Point Sampling (FPS) --- p.67
Chapter 4.1.3 --- Radial Basis Function (RBF) --- p.69
Chapter 4.1.4 --- Curvature Estimation --- p.70
Chapter 4.1.5 --- Multi-Dimensional Scaling (MDS) --- p.71
Chapter 4.2 --- Result of the Core Matching Processes --- p.73
Chapter 4.2.1 --- Posture Alignment Step --- p.73
Chapter 4.2.2 --- Surface Fitting Step --- p.78
Chapter 4.2.3 --- Feature Matching Refinement --- p.82
Chapter 4.2.4 --- Application of the proposed algorithm --- p.84
Chapter 4.2.4.1 --- Design Automation in Garment Industry --- p.84
Chapter 4.3 --- Analysis --- p.86
Chapter 4.3.1 --- Performance --- p.86
Chapter 4.3.2 --- Accuracy --- p.87
Chapter 4.3.3 --- Approach Comparison --- p.88
Chapter Chapter 5 --- Conclusion --- p.89
Chapter 5.1 --- Strength and contributions --- p.89
Chapter 5.2 --- Limitation and future works --- p.90
References --- p.91
Jones, Michael J., und Tomaso Poggio. „Model-Based Matching by Linear Combinations of Prototypes“. 1996. http://hdl.handle.net/1721.1/7183.
Der volle Inhalt der QuelleTaati, BABAK. „Generation and Optimization of Local Shape Descriptors for Point Matching in 3-D Surfaces“. Thesis, 2009. http://hdl.handle.net/1974/5107.
Der volle Inhalt der QuelleThesis (Ph.D, Electrical & Computer Engineering) -- Queen's University, 2009-09-01 11:07:32.084
Buchteile zum Thema "Correspondence image matching"
Wang, Hongfang, und Edwin R. Hancock. „Improving Correspondence Matching Using Label Consistency Constraints“. In Pattern Recognition and Image Analysis, 235–42. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11492429_29.
Der volle Inhalt der QuelleHaseeb, Muhammad, und Edwin R. Hancock. „Eigenvector Sign Correction for Spectral Correspondence Matching“. In Image Analysis and Processing – ICIAP 2013, 41–50. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-41184-7_5.
Der volle Inhalt der QuelleWang, Hongfang, und Edwin R. Hancock. „Kernel Spectral Correspondence Matching Using Label Consistency Constraints“. In Image Analysis and Processing – ICIAP 2005, 503–10. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11553595_62.
Der volle Inhalt der QuelleWu, Song, und Michael S. Lew. „Image Correspondences Matching Using Multiple Features Fusion“. In Lecture Notes in Computer Science, 737–46. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-49409-8_61.
Der volle Inhalt der QuelleKoschan, Andreas. „Dense stereo correspondence using polychromatic block matching“. In Computer Analysis of Images and Patterns, 538–42. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/3-540-57233-3_71.
Der volle Inhalt der QuelleGilinsky, Alexandra, und Lihi Zelnik-Manor. „SIFTpack: A Compact Representation for Efficient SIFT Matching“. In Dense Image Correspondences for Computer Vision, 109–33. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-23048-1_6.
Der volle Inhalt der QuelleCortés, Xavier, Francesc Serratosa und Carlos Francisco Moreno-García. „Ground Truth Correspondence Between Nodes to Learn Graph-Matching Edit-Costs“. In Computer Analysis of Images and Patterns, 113–24. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-23192-1_10.
Der volle Inhalt der QuelleXu, Jinwei, und Jiankun Hu. „Direct Feature Point Correspondence Discovery for Multiview Images: An Alternative Solution When SIFT-Based Matching Fails“. In Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, 137–47. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-49580-4_13.
Der volle Inhalt der QuelleLiu, Jianfei, HaeWon Jung und Johnny Tam. „Accurate Correspondence of Cone Photoreceptor Neurons in the Human Eye Using Graph Matching Applied to Longitudinal Adaptive Optics Images“. In Lecture Notes in Computer Science, 153–61. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-66185-8_18.
Der volle Inhalt der QuelleFysh, Matthew C. „Factors Limiting Face Matching at Passport Control and in Police Investigations“. In Forensic Face Matching, 15–37. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780198837749.003.0002.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Correspondence image matching"
Nathan, Mitchell, und Michael Magee. „Correspondence, Partial Matching And Image Understanding“. In Cambridge Symposium_Intelligent Robotics Systems, herausgegeben von David P. Casasent. SPIE, 1987. http://dx.doi.org/10.1117/12.937738.
Der volle Inhalt der QuelleLiu, Yang, Jinshan Pan und Zhixun Su. „Deep feature matching for dense correspondence“. In 2017 IEEE International Conference on Image Processing (ICIP). IEEE, 2017. http://dx.doi.org/10.1109/icip.2017.8296390.
Der volle Inhalt der QuelleJoung, Sunghun, Seungryong Kim, Bumsub Ham und Kwanghoon Sohn. „Unsupervised stereo matching using correspondence consistency“. In 2017 IEEE International Conference on Image Processing (ICIP). IEEE, 2017. http://dx.doi.org/10.1109/icip.2017.8296736.
Der volle Inhalt der QuelleQu, Jianqin, Leiguang Gong, Chen Huang und Ruoyu Fang. „Point correspondence by matching scaled invariants“. In 2012 International Conference on Audio, Language and Image Processing (ICALIP). IEEE, 2012. http://dx.doi.org/10.1109/icalip.2012.6376594.
Der volle Inhalt der QuelleBansal, Mayank, und Kostas Daniilidis. „Joint Spectral Correspondence for Disparate Image Matching“. In 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2013. http://dx.doi.org/10.1109/cvpr.2013.361.
Der volle Inhalt der QuelleWang, Fang, und Yi Li. „Spatial matching of sketches without point correspondence“. In 2015 IEEE International Conference on Image Processing (ICIP). IEEE, 2015. http://dx.doi.org/10.1109/icip.2015.7351724.
Der volle Inhalt der QuelleLahdenoja, Olli, und Mika Laiho. „Regional image correspondence matching method for SIMD processing“. In 2009 European Conference on Circuit Theory and Design (ECCTD 2009). IEEE, 2009. http://dx.doi.org/10.1109/ecctd.2009.5275105.
Der volle Inhalt der QuelleGreenspan, Dvir und Rubner. „Region correspondence for image matching via EMD flow“. In Proceedings IEEE Workshop on Content-based Access of Image and Video Libraries. IEEE, 2000. http://dx.doi.org/10.1109/ivl.2000.853835.
Der volle Inhalt der QuelleLaskar, Zakaria, Iaroslav Melekhov, Hamed R. Tavakoli und Juha Ylioinas. „Geometric Image Correspondence Verification by Dense Pixel Matching“. In 2020 IEEE Winter Conference on Applications of Computer Vision (WACV). IEEE, 2020. http://dx.doi.org/10.1109/wacv45572.2020.9093482.
Der volle Inhalt der QuelleYun, Inyong, Seokhoon Boo, Joongkyu Kim und Cheolkon Jung. „Moment-Based Dense Correspondence Matching Robust to Image Variation“. In 2017 IEEE International Symposium on Multimedia (ISM). IEEE, 2017. http://dx.doi.org/10.1109/ism.2017.44.
Der volle Inhalt der Quelle