Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Coreshell structures“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Coreshell structures" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Coreshell structures"
Tsai, Yu Sheng, Xin Dai Lin, Wei Lun Chan, Shang Che Tsai, Wei Jen Liao, Yew Chung Sermon Wu und Hsiang Chen. „Morphological, Material, and Optical Properties of ZnO/ZnS/CNTs Nanocomposites on SiO2 Substrate“. Nanomaterials 10, Nr. 8 (04.08.2020): 1521. http://dx.doi.org/10.3390/nano10081521.
Der volle Inhalt der QuelleMahmed, Norsuria, Oleg Heczko und Simo Pekka Hannula. „Influence of Hydrochloric Acid Concentrations on the Formation of AgCl-Doped Iron Oxide-Silica Coreshell Structures“. Advances in Science and Technology 77 (September 2012): 184–89. http://dx.doi.org/10.4028/www.scientific.net/ast.77.184.
Der volle Inhalt der QuelleHusni, Hazreen Nadihah, Norsuria Mahmed, Yanling Ge, Mohd Natashah Norizan, Dewi Suriyani Che Halin, Kamrosni Ab Razak und Ili Salwani Mohamad. „Magnetic-Based Coreshell Nanoparticles as Potential Adsorbents for the Removal of Cu2+ Under Ultraviolet (UV) Light“. Journal of Physics: Conference Series 2080, Nr. 1 (01.11.2021): 012032. http://dx.doi.org/10.1088/1742-6596/2080/1/012032.
Der volle Inhalt der QuelleHu, Shukai. „Mxenes applications in different metal ion batteries“. Applied and Computational Engineering 3, Nr. 1 (25.05.2023): 336–40. http://dx.doi.org/10.54254/2755-2721/3/20230537.
Der volle Inhalt der QuelleWu, Zhao Yang, Guang Qiang Li, Xi'an Fan, Yu Meng Xu, Zhan Zhang und Xiang Liang Wan. „Microstructure and Properties of Fe-6.5wt%Si Alloys Cores with Core-Shell Structures Prepared by Mechanical Alloying and Spark Plasma Sintering Methods“. Advanced Materials Research 881-883 (Januar 2014): 980–85. http://dx.doi.org/10.4028/www.scientific.net/amr.881-883.980.
Der volle Inhalt der QuelleSaleh, Hoda H., Rehab Sokary und Zakaria I. Ali. „Radiation – induced preparation of polyaniline/poly vinyl alcohol nanocomposites and their properties“. Radiochimica Acta 107, Nr. 8 (26.07.2019): 725–35. http://dx.doi.org/10.1515/ract-2018-3003.
Der volle Inhalt der QuelleJiang, Hai Hui, Yan Zhou, Xiao Yun Han, Xin Cheng Chen, Yun Hua Hou und Li Gang Gai. „Core-Shell Structured Fe3O4/PPy Microspheres with High Magnetization for Purification of Plasmid DNA“. Advanced Materials Research 716 (Juli 2013): 314–19. http://dx.doi.org/10.4028/www.scientific.net/amr.716.314.
Der volle Inhalt der QuelleVichitchote, Koravee, Poonsub Threepopnatkul, Supakij Suttiruengwong und Chanin Kulsetthanchalee. „In Vitro Drug Release Activity from Core/Shell Electrospun MATS of sPLA-cPEG/GS and sPLA/CA-cPEG/GS“. Materials Science Forum 714 (März 2012): 263–70. http://dx.doi.org/10.4028/www.scientific.net/msf.714.263.
Der volle Inhalt der QuelleHaurat, Margaux, und Michel Dumon. „Amorphous Polymers’ Foaming and Blends with Organic Foaming-Aid Structured Additives in Supercritical CO2, a Way to Fabricate Porous Polymers from Macro to Nano Porosities in Batch or Continuous Processes“. Molecules 25, Nr. 22 (14.11.2020): 5320. http://dx.doi.org/10.3390/molecules25225320.
Der volle Inhalt der QuelleBao, Yuping, Hector Calderon und Kannan M. Krishnan. „Controlled Synthesis and Characterization of Co-Au Core-shell Nanoparticles“. MRS Proceedings 877 (2005). http://dx.doi.org/10.1557/proc-877-s3.4.
Der volle Inhalt der QuelleDissertationen zum Thema "Coreshell structures"
Pishchagin, Anton. „Diameter engineering in III-V nanowire heterostructures - Experiments and modelling“. Electronic Thesis or Diss., Sorbonne université, 2021. http://www.theses.fr/2021SORUS516.
Der volle Inhalt der QuelleIII-V semiconductor nanowires are highly promising building blocks for various applications. However, the full potential of nanowire-based devices will only be realized if the nanowire physical properties can be precisely tailored. This study concentrates on self-catalyzed GaAs and GaP nanowires grown on a Si substrate by molecular beam epitaxy, in the Vapor-Liquid-Solid mode. We address experimental and theoretical issues related to the precise control of the diameter of a nanowire, in particular its deterministic modification during growth. We first study the dynamics of the consumption of a Ga apical catalyst droplet under exposure to a phosphorous flux. Combining experiments and modelling, we establish the mechanisms that contribute to the decrease of the droplet volume and calculate analytically the corresponding material currents. Implementing this model allows us to modulate locally the nanowire diameter in a controllable fashion. We thus manage to form a thinner or a thicker nanowire segment with a stable diameter on top of a stem of the same material. The second part of our work is devoted to core-shell nanowires involving lattice-mismatched materials. We compute the geometrical limits for core radius and shell thickness, above which the formation of a first interfacial dislocation is energetically favorable We then grow GaAs/GaP core/shell nanowires in a wide range of core radii and shell thicknesses and determine for each geometry if dislocations form or not. The comparison of our theoretical and experimental determinations of the critical dimensions for plastic relaxation shows the possibility to grow much thicker defect-free shells than predicted by theory
Konferenzberichte zum Thema "Coreshell structures"
Pu, Ye, Rachel Grange, Chia-Lung Hsieh und Demetri Psaltis. „Ultrasensitive second harmonic generation nanoprobes via plasmonic coreshell structures“. In 11th European Quantum Electronics Conference (CLEO/EQEC). IEEE, 2009. http://dx.doi.org/10.1109/cleoe-eqec.2009.5191508.
Der volle Inhalt der QuellePark, Y. H., und I. Hijazi. „Properties of Bimetallic Core-Shell Nanoclusters“. In ASME 2012 Pressure Vessels and Piping Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/pvp2012-78242.
Der volle Inhalt der QuellePsuja, P., L. Marciniak, D. Hreniak und W. Strek. „Fabrication and optical properties of selected coreshell structures with nanocrystalline rare-earth doped phosphors coated with SiO2 submicron particles“. In 2007 International Students and Young Scientists Workshop on "Photonics and Microsystems". IEEE, 2007. http://dx.doi.org/10.1109/stysw.2007.4559122.
Der volle Inhalt der QuellePetrov, Alexander Yu, Guoliang Shang, Lukas Maiwald und Manfred Eich. „High-contrast structural color based on photonic glass from coreshell particles“. In CLEO: Applications and Technology. Washington, D.C.: OSA, 2020. http://dx.doi.org/10.1364/cleo_at.2020.jw2d.27.
Der volle Inhalt der Quelle