Zeitschriftenartikel zum Thema „Coordination chemitry“

Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Coordination chemitry.

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Coordination chemitry" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Salzer, A. „Nomenclature of Organometallic Compounds of the Transition Elements (IUPAC Recommendations 1999)“. Pure and Applied Chemistry 71, Nr. 8 (30.08.1999): 1557–85. http://dx.doi.org/10.1351/pac199971081557.

Der volle Inhalt der Quelle
Annotation:
Organometallic compounds are defined as containing at least one metal-carbon bond between an organic molecule, ion, or radical and a metal. Organometallic nomenclature therefore usually combines the nomenclature of organic chemisty and that of coordination chemistry. Provisional rules outlining nomenclature for such compounds are found both in Nomenclature of Organic Chemistry, 1979 and in Nomenclature of Inorganic Chemistry, 1990This document describes the nomenclature for organometallic compounds of the transition elements, that is compounds with metal-carbon single bonds, metal-carbon multiple bonds as well as complexes with unsaturated molecules (metal-p-complexes).Organometallic compounds are considered to be produced by addition reactions and so they are named on an addition principle. The name therefore is built around the central metal atom name. Organic ligand names are derived according to the rules of organic chemistry with appropriate endings to indicate the different bonding modes. To designate the points of attachment of ligands in more complicated structures, the h, k, and m-notations are used. The final section deals with the abbreviated nomenclature for metallocenes and their derivatives.ContentsIntroduction Systems of Nomenclature2.1 Binary type nomenclature 2.2 Substitutive nomenlcature 2.3 Coordination nomenclature Coordination Nomenclature3.1 General definitions of coordination chemistry 3.2 Oxidation numbers and net charges 3.3 Formulae and names for coordination compounds Nomenclature for Organometallic Compounds of Transition Metals 4.1 Valence-electron-numbers and the 18-valence-electron-rule 4.2 Ligand names 4.2.1 Ligands coordinating by one metal-carbon single bond 4.2.2 Ligands coordinating by several metal-carbon single bonds 4.2.3 Ligands coordinating by metal-carbon multiple bonds 4.2.4 Complexes with unsaturated molecules or groups 4.3 Metallocene nomenclature
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Wenger, Marc, und Thomas Armbruster. „Crystal chemistry of lithium: oxygen coordination and bonding“. European Journal of Mineralogy 3, Nr. 2 (18.04.1991): 387–400. http://dx.doi.org/10.1127/ejm/3/2/0387.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Porras Gutiérrez, Ana Gabriela, Joceline Zeitouny, Antoine Gomila, Bénédicte Douziech, Nathalie Cosquer, Françoise Conan, Olivia Reinaud et al. „Insights into water coordination associated with the CuII/CuI electron transfer at a biomimetic Cu centre“. Dalton Trans. 43, Nr. 17 (2014): 6436–45. http://dx.doi.org/10.1039/c3dt53548g.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Hindson, Karen. „Coordination Chemistry“. European Journal of Inorganic Chemistry 2012, Nr. 29 (Oktober 2012): 4519. http://dx.doi.org/10.1002/ejic.201290090.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Delanoue, Renald, und Nuria M. Romero. „Growth and Maturation in Development: A Fly’s Perspective“. International Journal of Molecular Sciences 21, Nr. 4 (13.02.2020): 1260. http://dx.doi.org/10.3390/ijms21041260.

Der volle Inhalt der Quelle
Annotation:
In mammals like humans, adult fitness is improved due to resource allocation, investing energy in the developmental growth process during the juvenile period, and in reproduction at the adult stage. Therefore, the attainment of their target body height/size co-occurs with the acquisition of maturation, implying a need for coordination between mechanisms that regulate organismal growth and maturation timing. Insects like Drosophila melanogaster also define their adult body size by the end of the juvenile larval period. Recent studies in the fly have shown evolutionary conservation of the regulatory pathways controlling growth and maturation, suggesting the existence of common coordinator mechanisms between them. In this review, we will present an overview of the significant advancements in the coordination mechanisms ensuring developmental robustness in Drosophila. We will include (i) the characterization of feedback mechanisms between maturation and growth hormones, (ii) the recognition of a relaxin-like peptide Dilp8 as a central processor coordinating juvenile regeneration and time of maturation, and (iii) the identification of a novel coordinator mechanism involving the AstA/KISS system.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Krezel, A., und W. Bal. „Coordination chemistry of glutathione.“ Acta Biochimica Polonica 46, Nr. 3 (30.09.1999): 567–80. http://dx.doi.org/10.18388/abp.1999_4129.

Der volle Inhalt der Quelle
Annotation:
The metal ion coordination abilities of reduced and oxidized glutathione are reviewed. Reduced glutathione (GSH) is a very versatile ligand, forming stable complexes with both hard and soft metal ions. Several general binding modes of GSH are described. Soft metal ions coordinate exclusively or primarily through thiol sulfur. Hard ones prefer the amino acid-like moiety of the glutamic acid residue. Several transition metal ions can additionally coordinate to the peptide nitrogen of the gamma-Glu-Cys bond. Oxidized glutathione lacks the thiol function. Nevertheless, it proves to be a surprisingly efficient ligand for a range of metal ions, coordinating them primarily through the donors of the glutamic acid residue.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Herberhold, Max, und Anthony F. Hill. „The coordination chemistry of iminooxosulphuranes VII. Coordinative activation of tolyliminooxosulphurane towards electrophiles“. Journal of Organometallic Chemistry 395, Nr. 2 (September 1990): 207–18. http://dx.doi.org/10.1016/0022-328x(90)85278-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Zheng, Heping, Mahendra Chordia, David Cooper, Ivan Shabalin, Maksymilian Chruszcz, Peter Müller, George Sheldrick und Wladek Minor. „Check your metal - not every density blob is a water molecule“. Acta Crystallographica Section A Foundations and Advances 70, a1 (05.08.2014): C1483. http://dx.doi.org/10.1107/s2053273314085167.

Der volle Inhalt der Quelle
Annotation:
Metals play vital roles in both the mechanism and architecture of biological macromolecules, and are the most frequently encountered ligands (i.e. non-solvent heterogeneous chemical atoms) in the determination of macromolecular crystal structures. However, metal coordinating environments in protein structures are not always easy to check in routine validation procedures, resulting in an abundance of misidentified and/or suboptimally modeled metal ions in the Protein Data Bank (PDB). We present a solution to identify these problems in three distinct yet related aspects: (1) coordination chemistry; (2) agreement of experimental B-factors and occupancy; and (3) the composition and motif of the metal binding environment. Due to additional strain introduced by macromolecular backbones, the patterns of coordination of metal binding sites in metal-containing macromolecules are more complex and diverse than those found in inorganic or organometallic chemistry. These complications make a comprehensive library of "permitted" coordination chemistry in protein structures less feasible, and the usage of global parameters such as the bond valence method more practical, in the determination and validation of metal binding environments. Although they are relatively infrequent, there are also cases where the experimental B-factor or occupancy of a metal ion suggests careful examination. We have developed a web-based tool called CheckMyMetal [1](http://csgid.org/csgid/metal_sites/) for the quick validation of metal binding sites. Moreover, the acquired knowledge of the composition and spatial arrangement (motif) of the coordinating atoms around the metal ion may also help in the modeling of metal binding sites in macromolecular structures. All of the studies described herein were performed using the NEIGHBORHOOD SQL database [2], which connects information about all modeled non-solvent heterogeneous chemical motifs in PDB structure by vectors describing all contacts to neighboring residues and atoms. NEIGHBORHOOD has broad applications for the validation and data mining of ligand binding environments in the PDB.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Taakili, Rachid, und Yves Canac. „NHC Core Pincer Ligands Exhibiting Two Anionic Coordinating Extremities“. Molecules 25, Nr. 9 (09.05.2020): 2231. http://dx.doi.org/10.3390/molecules25092231.

Der volle Inhalt der Quelle
Annotation:
The chemistry of NHC core pincer ligands of LX2 type bearing two pending arms, identical or not, whose coordinating center is anionic in nature, is here reviewed. In this family, the negative charge of the coordinating atoms can be brought either by a carbon atom via a phosphonium ylide (R3P+–CR2−) or by a heteroatom through amide (R2N−), oxide (RO−), or thio(seleno)oxide (RS−, RSe−) donor functionalities. Through selected examples, the synthetic methods, coordination properties, and applications of such tridentate systems are described. Particular emphasis is placed on the role of the donor ends in the chemical behavior of these species.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Lusby, Paul J. „Supramolecular coordination chemistry“. Annual Reports Section "A" (Inorganic Chemistry) 108 (2012): 292. http://dx.doi.org/10.1039/c2ic90030k.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Archibald, Stephen J. „Macrocyclic coordination chemistry“. Annual Reports Section "A" (Inorganic Chemistry) 108 (2012): 271. http://dx.doi.org/10.1039/c2ic90035a.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Lusby, Paul J. „Supramolecular coordination chemistry“. Annual Reports Section "A" (Inorganic Chemistry) 105 (2009): 323. http://dx.doi.org/10.1039/b818282p.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Archibald, Stephen J. „Macrocyclic coordination chemistry“. Annual Reports Section "A" (Inorganic Chemistry) 102 (2006): 332. http://dx.doi.org/10.1039/b514842c.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Cronin, Leroy. „Supramolecular coordination chemistry“. Annual Reports Section "A" (Inorganic Chemistry) 102 (2006): 353. http://dx.doi.org/10.1039/b514843j.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Kostakis, George E., und Sally Brooker. „Modern coordination chemistry“. Dalton Transactions 48, Nr. 41 (2019): 15318–20. http://dx.doi.org/10.1039/c9dt90209k.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Archibald, Stephen J. „Macrocyclic coordination chemistry“. Annual Reports Section "A" (Inorganic Chemistry) 106 (2010): 295. http://dx.doi.org/10.1039/b918391b.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Lusby, Paul J. „Supramolecular coordination chemistry“. Annual Reports Section "A" (Inorganic Chemistry) 106 (2010): 319. http://dx.doi.org/10.1039/b918392m.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Archibald, Stephen J. „Macrocyclic coordination chemistry“. Annual Reports Section "A" (Inorganic Chemistry) 103 (2007): 264. http://dx.doi.org/10.1039/b612865n.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Pradeep, Chullikkattil P., und Leroy Cronin. „Supramolecular coordination chemistry“. Annual Reports Section "A" (Inorganic Chemistry) 103 (2007): 287. http://dx.doi.org/10.1039/b612867j.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Archibald, Stephen J. „Macrocyclic coordination chemistry“. Annual Reports Section "A" (Inorganic Chemistry) 104 (2008): 272. http://dx.doi.org/10.1039/b716584f.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Lusby, Paul J. „Supramolecular coordination chemistry“. Annual Reports Section "A" (Inorganic Chemistry) 104 (2008): 297. http://dx.doi.org/10.1039/b716586m.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Lusby, Paul J. „Supramolecular coordination chemistry“. Annual Reports Section "A" (Inorganic Chemistry) 109 (2013): 254. http://dx.doi.org/10.1039/c3ic90025h.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Burke, Benjamin P., und Stephen J. Archibald. „Macrocyclic coordination chemistry“. Annual Reports Section "A" (Inorganic Chemistry) 109 (2013): 232. http://dx.doi.org/10.1039/c3ic90032k.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Lusby, Paul J. „Supramolecular coordination chemistry“. Annual Reports Section "A" (Inorganic Chemistry) 107 (2011): 297. http://dx.doi.org/10.1039/c1ic90026a.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Archibald, Stephen J. „Macrocyclic coordination chemistry“. Annual Reports Section "A" (Inorganic Chemistry) 107 (2011): 274. http://dx.doi.org/10.1039/c1ic90033a.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Seddon, K. R. „Coordination Chemistry reviews“. Coordination Chemistry Reviews 89 (September 1988): vii. http://dx.doi.org/10.1016/0010-8545(88)80035-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Wong, Chih Y., und J. D. Woollins. „Beryllium coordination chemistry“. Coordination Chemistry Reviews 130, Nr. 1-2 (Februar 1994): 243–73. http://dx.doi.org/10.1016/0010-8545(94)80006-5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Eaborn, Colin. „Comprehensive Coordination Chemistry“. Journal of Organometallic Chemistry 356, Nr. 2 (November 1988): C65. http://dx.doi.org/10.1016/0022-328x(88)83103-6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Keep, Ann K. „Expanded Coordination Chemistry“. Platinum Metals Review 48, Nr. 2 (01.04.2004): 64–65. http://dx.doi.org/10.1595/003214004x4826465.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Meyer, Michel, Claude P. Gros und Laurent Plasseraud. „Equilibrium solution coordination chemistry“. New Journal of Chemistry 42, Nr. 10 (2018): 7514–15. http://dx.doi.org/10.1039/c8nj90042f.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Kanaoujiya, Rahul, und Shekhar Srivastava. „Coordination Chemistry of Ruthenium“. Research Journal of Chemistry and Environment 25, Nr. 9 (25.08.2021): 103–6. http://dx.doi.org/10.25303/259rjce103106.

Der volle Inhalt der Quelle
Annotation:
Ruthenium is one of the rare elements that belongs to the platinum group metals. Ruthenium is very effective hardener for platinum and palladium. Well studied coordination and organometallic chemistry of ruthenium results in a various varieties of compounds. There are various features of ruthenium such as oxidation states, coordination numbers and geometries. Ruthenium compounds have various applications and also have low toxicity and they are ideal for the catalytic synthesis of drugs. The field of ruthenium chemistry is very broad and is extremely diverse in the field of catalysis and medicinal chemistry. This review article shows a classical general chemistry of ruthenium compounds.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Irby, Stefan M., Andy L. Phu, Emily J. Borda, Todd R. Haskell, Nicole Steed und Zachary Meyer. „Use of a card sort task to assess students' ability to coordinate three levels of representation in chemistry“. Chemistry Education Research and Practice 17, Nr. 2 (2016): 337–52. http://dx.doi.org/10.1039/c5rp00150a.

Der volle Inhalt der Quelle
Annotation:
There is much agreement among chemical education researchers that expertise in chemistry depends in part on the ability to coordinate understanding of phenomena on three levels: macroscopic (observable), sub-microscopic (atoms, molecules, and ions) and symbolic (chemical equations, graphs, etc.). We hypothesize this “level-coordination ability” is related to the formation and use of principle-based, vs. context-bound, internal representations or schemas. Here we describe the development, initial validation, and use of a card sort task to measure the level-coordinating ability of individuals with varying degrees of preparation in chemistry. We have also developed a novel method for generating two-dimensional sorting coordinates which were used to arrange participants along a hypothetical progression of level-coordination ability. Our findings suggest the card sort task shows promise as a tool to assess level-coordination ability. With the exception of graduate students, participant groups on average progressed from sorting by level of representation toward sorting by underlying principle. Graduate students unexpectedly sorted primarily by level of representation. We use these data to form initial hypotheses about a typical process for the development of level-coordination ability and schema formation. In doing so, we demonstrate the usefulness of our task paired with sorting coordinate analysis as a tool to explore the space between novice and expert behavior. Finally, we suggest potential uses for the task as a formative assessment tool at the classroom and program levels.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Lipunova, G. N., T. G. Fedorchenko und O. N. Chupakhin. „Verdazyls in Coordination Chemistry“. Russian Journal of Coordination Chemistry 48, Nr. 7 (Juli 2022): 397–411. http://dx.doi.org/10.1134/s1070328422070065.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Ward, M. D. „18 Supramolecular coordination chemistry“. Annual Reports Section "A" (Inorganic Chemistry) 96 (2000): 345–85. http://dx.doi.org/10.1039/b002989k.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Carter, Timothy G., W. Jake Vickaryous, Virginia M. Cangelosi und Darren W. Johnson. „SUPRAMOLECULAR ARSENIC COORDINATION CHEMISTRY“. Comments on Inorganic Chemistry 28, Nr. 3-4 (11.09.2007): 97–122. http://dx.doi.org/10.1080/02603590701560994.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Gubin, S. P., und N. A. Kataeva. „Coordination chemistry of nanoparticles“. Russian Journal of Coordination Chemistry 32, Nr. 12 (Dezember 2006): 849–57. http://dx.doi.org/10.1134/s1070328406120013.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Ward, M. D. „18 Supramolecular coordination chemistry“. Annu. Rep. Prog. Chem., Sect. A: Inorg. Chem. 98 (2002): 285–320. http://dx.doi.org/10.1039/b109632j.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Sachdev, Hermann, Christian Wagner, Cordula Preis, Volker Huch und Michael Veith. „Coordination chemistry of furfurylsilylamides“. Journal of the Chemical Society, Dalton Transactions, Nr. 24 (22.11.2002): 4709–13. http://dx.doi.org/10.1039/b205350k.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Inoue, Shigeyoshi. „Coordination Chemistry of Silicon“. Inorganics 7, Nr. 1 (14.01.2019): 7. http://dx.doi.org/10.3390/inorganics7010007.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

BRESSAN, M., R. ETTORRE, F. MARCHIORI und G. VALLE. „Coordination chemistry of peptides“. International Journal of Peptide and Protein Research 19, Nr. 4 (12.01.2009): 402–7. http://dx.doi.org/10.1111/j.1399-3011.1982.tb02621.x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Arduengo, Anthony J., H. V. Rasika Dias und J. C. Calabrese. „Coordination Chemistry of ADPO“. Phosphorus, Sulfur, and Silicon and the Related Elements 87, Nr. 1-4 (Februar 1994): 1–10. http://dx.doi.org/10.1080/10426509408037435.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Cupertino, Dominico, Robin Keyte, Alexandra Slawin, David Williams und J. Derek Woollins. „Coordination Chemistry of Dithioimidophosphinates“. Phosphorus, Sulfur, and Silicon and the Related Elements 109, Nr. 1 (01.02.1996): 193–96. http://dx.doi.org/10.1080/10426509608046231.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Cupertino, Dominico, Robin W. Keyte, Alexandra M. Z. Slawin, David J. Williams und J. Derek Woollins. „Coordination Chemistry of Dithioimidophosphinates.“ Phosphorus, Sulfur, and Silicon and the Related Elements 109, Nr. 1-4 (Januar 1996): 193–96. http://dx.doi.org/10.1080/10426509608545123.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Vedernikov, Andrei N., John C. Huffman und Kenneth G. Caulton. „Coordination Chemistry of Tripyridinedimethane“. Inorganic Chemistry 41, Nr. 24 (Dezember 2002): 6244–48. http://dx.doi.org/10.1021/ic025708o.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Peng, S. M., und M. C. Liaw. „Trigonal prismatic coordination chemistry“. Acta Crystallographica Section A Foundations of Crystallography 49, s1 (21.08.1993): c228. http://dx.doi.org/10.1107/s0108767378093629.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Abdelhalim Ahmed, Ibrahim, Guido Kastner, Hans Reuter und Dietrich Schultze. „Coordination chemistry of tin“. Journal of Organometallic Chemistry 649, Nr. 2 (April 2002): 147–51. http://dx.doi.org/10.1016/s0022-328x(02)01111-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Shiemke, A. K., J. A. Shelnutt und R. A. Scott. „Coordination Chemistry of F430“. Journal of Biological Chemistry 264, Nr. 19 (Juli 1989): 11236–45. http://dx.doi.org/10.1016/s0021-9258(18)60454-5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Heinekey, D. M., und Warren J. Oldham. „Coordination chemistry of dihydrogen“. Chemical Reviews 93, Nr. 3 (Mai 1993): 913–26. http://dx.doi.org/10.1021/cr00019a004.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Alcarazo, Manuel, Christian W. Lehmann, Anakuthil Anoop, Walter Thiel und Alois Fürstner. „Coordination chemistry at carbon“. Nature Chemistry 1, Nr. 4 (14.06.2009): 295–301. http://dx.doi.org/10.1038/nchem.248.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Xu, Qiang. „Coordination chemistry for energy“. Coordination Chemistry Reviews 373 (Oktober 2018): 1. http://dx.doi.org/10.1016/j.ccr.2018.08.003.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie