Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Cooling Devices“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Cooling Devices" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Cooling Devices"
Ijam, Ali, und R. Saidur. „Nanofluid as a coolant for electronic devices (cooling of electronic devices)“. Applied Thermal Engineering 32 (Januar 2012): 76–82. http://dx.doi.org/10.1016/j.applthermaleng.2011.08.032.
Der volle Inhalt der QuellePosobkiewicz, Krzysztof, und Krzysztof Górecki. „Influence of Selected Factors on Thermal Parameters of the Components of Forced Cooling Systems of Electronic Devices“. Electronics 10, Nr. 3 (01.02.2021): 340. http://dx.doi.org/10.3390/electronics10030340.
Der volle Inhalt der QuelleNAKAYAMA, Wataru. „Cooling of Electronic Devices“. Journal of the Society of Mechanical Engineers 88, Nr. 802 (1985): 1048–53. http://dx.doi.org/10.1299/jsmemag.88.802_1048.
Der volle Inhalt der QuelleJoshi, Yogendra. „Heat Out of Small Packages“. Mechanical Engineering 123, Nr. 12 (01.12.2001): 56–58. http://dx.doi.org/10.1115/1.2001-dec-5.
Der volle Inhalt der QuelleMertens, Robert G., Louis Chow, Kalpathy B. Sundaram, R. Brian Cregger, Daniel P. Rini, Louis Turek und Benjamin A. Saarloos. „Spray Cooling of IGBT Devices“. Journal of Electronic Packaging 129, Nr. 3 (18.05.2007): 316–23. http://dx.doi.org/10.1115/1.2753937.
Der volle Inhalt der QuelleDas, Anupam, Aarti Sarda und Abhishek De. „Cooling devices in laser therapy“. Journal of Cutaneous and Aesthetic Surgery 9, Nr. 4 (2016): 215. http://dx.doi.org/10.4103/0974-2077.197028.
Der volle Inhalt der QuelleLorenz, Susanne, Ulrich Hohenleutner und Michael Landthaler. „Cooling Devices in Laser Therapy“. Medical Laser Application 16, Nr. 4 (Januar 2001): 283–91. http://dx.doi.org/10.1078/1615-1615-00033.
Der volle Inhalt der QuelleZebarjadi, M. „Electronic cooling using thermoelectric devices“. Applied Physics Letters 106, Nr. 20 (18.05.2015): 203506. http://dx.doi.org/10.1063/1.4921457.
Der volle Inhalt der QuelleXu, Shanglong, Weijie Wang, Zongkun Guo, Xinglong Hu und Wei Guo. „A multi-channel cooling system for multiple heat source“. Thermal Science 20, Nr. 6 (2016): 1991–2000. http://dx.doi.org/10.2298/tsci140313123x.
Der volle Inhalt der QuelleSiricharoenpanich, A., S. Wiriyasart, A. Srichat und P. Naphon. „Thermal cooling system with Ag/Fe3O4 nanofluids mixture as coolant for electronic devices cooling“. Case Studies in Thermal Engineering 20 (August 2020): 100641. http://dx.doi.org/10.1016/j.csite.2020.100641.
Der volle Inhalt der QuelleDissertationen zum Thema "Cooling Devices"
Khanniche, M. S. „Phase change cooling of power semiconductor devices“. Thesis, Swansea University, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.669698.
Der volle Inhalt der QuelleLuu, Trang(Trang N. ). „Impact of surface area and porosity on the cooling performance of evaporative cooling devices“. Thesis, Massachusetts Institute of Technology, 2020. https://hdl.handle.net/1721.1/129010.
Der volle Inhalt der QuelleCataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 110-111).
Evaporative cooling devices are low-cost, low-energy solutions for post-harvest storage of fruits and vegetables on farmlands. Surface area and porosity are two design parameters that affect the cooling devices' evaporation rate and cooling performance. Both design parameters lack prior systematic testing that methodically varies levels of surface area and material porosity to understand their effects on these devices' cooling performance (e.g. maximum temperature drop, duration of high internal relative humidity, cooling efficiency and total cooling). For fruits and vegetables, storage environments with low temperature and high humidity are critical to reduce deterioration. In this thesis, ridges were cut into the outer wall of pot-in-pot evaporative cooling devices at four different interridge distances to vary total available surface area. Sawdust was added to clay in different ratios to create devices with varying porosity.
A new performance metric of total cooling is also introduced to account for the maximum temperature drop and the total duration of evaporative cooling. The surface area experiments reveal that adding corrugations on the surface introduces competing effects between increased surface area for water evaporation and decreased vapor concentration gradient inside of the corrugations' troughs; consequently, among the devices with corrugations, the amount of total surface area does not always correlate with cooling performance. Between the devices with some surface corrugation and the device without corrugation, the devices with corrugation do consistently achieve greater temperature drops. However, the devices with corrugation are unable to maintain temperature drops and high levels of internal relative humidity for as long as the device without corrugation. The porosity experiments conclude that the greater the porosity in the device's outer vessel, the greater the maximum temperature drop.
This is due to the reduced transport resistance during water and moisture movement to the device's surface. Higher percentages of porosity lead to faster evaporation rates which deplete the amount of water inside the devices quicker and explain why the temperature drops and internal relative humidity of the more porous devices do not last as long as the temperature drops and internal relative humidity of the less porous devices. This thesis investigates two design parameters of cooling devices and shows that increasing surface area and porosity increases maximum temperature drops but decreases both the duration of temperature drops and high internal relative humidity. Between the two design parameters, increasing porosity is the more practical and less burdensome solution to improve the overall performance of evaporative cooling devices for low-resource communities.
by Trang Luu.
S.M.
S.M. Massachusetts Institute of Technology, Department of Mechanical Engineering
Townsend, Christopher G. „Laser cooling and trapping of atoms“. Thesis, University of Oxford, 1995. http://ora.ox.ac.uk/objects/uuid:6a3d235b-22da-412b-b34b-e064322336d5.
Der volle Inhalt der QuelleGerty, Donavon R. „Fluidic driven cooling of electronic hardware“. Diss., Atlanta, Ga. : Georgia Institute of Technology, 2008. http://hdl.handle.net/1853/31722.
Der volle Inhalt der QuelleCommittee Chair: Glezer, Ari; Committee Member: Alben, Silas; Committee Member: Joshi, Yogendra; Committee Member: Smith, Marc; Committee Member: Webster, Donald. Part of the SMARTech Electronic Thesis and Dissertation Collection.
Wei, Xiaojin. „Stacked Microchannel Heat Sinks for Liquid Cooling of Microelectronics Devices“. Diss., Georgia Institute of Technology, 2004. http://hdl.handle.net/1853/4873.
Der volle Inhalt der QuelleSullivan, Owen A. „Embedded thermoelectric devices for on-chip cooling and power generation“. Thesis, Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/45867.
Der volle Inhalt der QuelleMurphy, K. F. „Investigation of self-cooling devices for beverage and food containers“. Thesis, University of Nottingham, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.407004.
Der volle Inhalt der QuelleParthasarathy, Swarrnna Karthik. „Energy efficient active cooling of integrated circuits using embedded thermoelectric devices“. Thesis, Georgia Institute of Technology, 2014. http://hdl.handle.net/1853/53047.
Der volle Inhalt der QuelleTaylor, Robert A. „Comprehensive optimization for thermoelectric refrigeration devices“. Diss., Columbia, Mo. : University of Missouri-Columbia, 2005. http://hdl.handle.net/10355/4247.
Der volle Inhalt der QuelleThe entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file. Title from title screen of research.pdf file viewed on (December 20, 2006) Includes bibliographical references.
Hopkins, Stephen Antony. „Laser cooling of rubidium atoms in a magneto-optical trap“. n.p, 1995. http://oro.open.ac.uk/19431/.
Der volle Inhalt der QuelleBücher zum Thema "Cooling Devices"
Jones, Alexander Thomas. Cooling Electrons in Nanoelectronic Devices by On-Chip Demagnetisation. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-51233-0.
Der volle Inhalt der QuelleA, Wirtz R., Lehmann G. L und American Society of Mechanical Engineers. Heat Transfer Division., Hrsg. Thermal modeling and design of electronic systems and devices: Presented at the Winter Annual Meeting of the American Society of Mechanical Engineers, Dallas, Texas, November 25-30, 1990. New York, N.Y: American Society of Mechanical Engineers, 1990.
Den vollen Inhalt der Quelle findenKuznecov, Vyacheslav, und Oleg Bryuhanov. Gasified boiler units. ru: INFRA-M Academic Publishing LLC., 2021. http://dx.doi.org/10.12737/1003548.
Der volle Inhalt der Quelle(Firm), IT Watchdogs, Hrsg. Server room climate & power monitoring: How to protect computer equipment against damage & downtime using low-cost, Web-based devices. Austin, TX: IT Watchdogs, Inc., 2006.
Den vollen Inhalt der Quelle findenAbbas, T. Displacement Ventilation and Static Cooling Devices (COP 17/99). BSRIA, 1999.
Den vollen Inhalt der Quelle findenIncropera, Frank P. Liquid Cooling of Electronic Devices by Single-Phase Convection. Wiley-Interscience, 1999.
Den vollen Inhalt der Quelle findenJones, Alexander Thomas. Cooling Electrons in Nanoelectronic Devices by On-Chip Demagnetisation. Springer, 2020.
Den vollen Inhalt der Quelle findenF, Goldman Ralph, und Risk Reduction Engineering Laboratory (U.S.), Hrsg. Evaluation of personal cooling devices for a dioxin clean-up operation. Cincinnati, OH: Risk Reduction Engineering Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, 1988.
Den vollen Inhalt der Quelle findenUnited States. National Aeronautics and Space Administration., Hrsg. Numerical comparison of convective heat transfer augmentation devices used in cooling channels of hypersonic vehicles. [Washington, DC]: National Aeronautics and Space Administration, 1994.
Den vollen Inhalt der Quelle findenUnited States. National Aeronautics and Space Administration., Hrsg. Numerical comparison of convective heat transfer augmentation devices used in cooling channels of hypersonic vehicles. [Washington, DC]: National Aeronautics and Space Administration, 1994.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Cooling Devices"
Kleinstreuer, Clement, und Jie Li. „Microscale Cooling Devices“. In Encyclopedia of Microfluidics and Nanofluidics, 2158–73. New York, NY: Springer New York, 2015. http://dx.doi.org/10.1007/978-1-4614-5491-5_1008.
Der volle Inhalt der QuelleKleinstreuer, Clement, und Jie Li. „Microscale Cooling Devices“. In Encyclopedia of Microfluidics and Nanofluidics, 1–18. Boston, MA: Springer US, 2011. http://dx.doi.org/10.1007/978-3-642-27758-0_1008-1.
Der volle Inhalt der QuelleThadela, Sudheer, und Raja Sekhar Dondapati. „Cryogenic Cooling Strategies“. In High-Temperature Superconducting Devices for Energy Applications, 21–66. First edition. | Boca Raton, FL : CRC Press, 2021.: CRC Press, 2020. http://dx.doi.org/10.1201/9781003045304-2.
Der volle Inhalt der QuelleSuchaneck, Gunnar, und Gerald Gerlach. „Thin Films for Electrocaloric Cooling Devices“. In Recent Advances in Thin Films, 369–88. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-6116-0_12.
Der volle Inhalt der QuelleWilliams, B. W. „Cooling of Power Switching Semiconductor Devices“. In Power Electronics, 90–110. London: Macmillan Education UK, 1987. http://dx.doi.org/10.1007/978-1-349-18525-2_5.
Der volle Inhalt der QuelleTong, Xingcun Colin. „Liquid Cooling Devices and Their Materials Selection“. In Advanced Materials for Thermal Management of Electronic Packaging, 421–75. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-1-4419-7759-5_10.
Der volle Inhalt der QuelleHeumann, Klemens. „Snubber Circuits, Triggering, Cooling, and Protection Devices“. In Basic Principles of Power Electronics, 36–61. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-82674-0_4.
Der volle Inhalt der QuelleKohri, Hitoshi, und Ichiro Shiota. „Development of Thermoelectric Cooling Devices with Graded Structure“. In Functionally Graded Materials VIII, 151–56. Stafa: Trans Tech Publications Ltd., 2005. http://dx.doi.org/10.4028/0-87849-970-9.151.
Der volle Inhalt der QuelleStraub, J., J. Winter, G. Picker und M. Zell. „Cooling of small electronic devices by boiling under microgravity“. In Dynamics of Multiphase Flows Across Interfaces, 134–49. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/bfb0102667.
Der volle Inhalt der QuelleJones, Alexander Thomas. „On-Chip Demagnetisation Cooling of a High Capacitance CBT“. In Cooling Electrons in Nanoelectronic Devices by On-Chip Demagnetisation, 71–89. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-51233-0_5.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Cooling Devices"
LaBounty, Christopher J., Ali Shakouri, Patrick Abraham und John E. Bowers. „Integrated cooling for optoelectronic devices“. In Symposium on Integrated Optoelectronics, herausgegeben von Yoon-Soo Park und Ray T. Chen. SPIE, 2000. http://dx.doi.org/10.1117/12.382148.
Der volle Inhalt der QuelleYang, X. D. „HIRFL-CSR electron cooling devices“. In CYCLOCTRONS AND THEIR APPLICATIONS 2001: Sixteenth International Conference. AIP, 2001. http://dx.doi.org/10.1063/1.1435230.
Der volle Inhalt der QuelleStintz, Andreas, Richard I. Epstein, Mansoor Sheik-Bahae, Kevin J. Malloy, Michael P. Hasselbeck und Stephen T. P. Boyd. „Nanogap experiments for laser cooling“. In Integrated Optoelectronic Devices 2008, herausgegeben von Richard I. Epstein und Mansoor Sheik-Bahae. SPIE, 2008. http://dx.doi.org/10.1117/12.761962.
Der volle Inhalt der QuelleKerwin, Michael, Christopher Bascomb und John Culver. „Infantry Soldier Cooling“. In ASME 2017 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/imece2017-70086.
Der volle Inhalt der QuelleLee, Youngmoon, Eugene Kim und Kang G. Shin. „Efficient thermoelectric cooling for mobile devices“. In 2017 IEEE/ACM International Symposium on Low Power Electronics and Design (ISLPED). IEEE, 2017. http://dx.doi.org/10.1109/islped.2017.8009199.
Der volle Inhalt der QuelleWebb, Ralph L. „Next Generation Devices for Electronic Cooling“. In ASME 2003 International Mechanical Engineering Congress and Exposition. ASMEDC, 2003. http://dx.doi.org/10.1115/imece2003-42179.
Der volle Inhalt der QuelleZebarjadi, Mona. „Thermoelectric devices for electronic cooling applications“. In Proceedings of CHT-15. 6th International Symposium on ADVANCES IN COMPUTATIONAL HEAT TRANSFER , May 25-29, 2015, Rutgers University, New Brunswick, NJ, USA. Connecticut: Begellhouse, 2015. http://dx.doi.org/10.1615/ichmt.2015.intsympadvcomputheattransf.1830.
Der volle Inhalt der QuelleSheik-Bahae, M., B. Imangholi, M. P. Hasselbeck, R. I. Epstein und S. Kurtz. „Advances in laser cooling of semiconductors“. In Integrated Optoelectronic Devices 2006, herausgegeben von Marek Osinski, Fritz Henneberger und Yasuhiko Arakawa. SPIE, 2006. http://dx.doi.org/10.1117/12.644915.
Der volle Inhalt der QuelleQuan, Dongliang, Songling Liu, Jianghai Li und Gaowen Liu. „Investigation on Cooling Performance of Impingement Cooling Devices Combined With Pins“. In ASME Turbo Expo 2005: Power for Land, Sea, and Air. ASMEDC, 2005. http://dx.doi.org/10.1115/gt2005-68930.
Der volle Inhalt der QuelleDogonkin, Eugen B., und Georgy G. Zegrya. „Current-induced cooling of quantum systems“. In Symposium on Integrated Optoelectronic Devices, herausgegeben von Jerry R. Meyer und Claire F. Gmachl. SPIE, 2002. http://dx.doi.org/10.1117/12.467956.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Cooling Devices"
Kenny, Thomas, und Theodore H. Geballe. Thermionic Cooling Devices. Fort Belvoir, VA: Defense Technical Information Center, August 2000. http://dx.doi.org/10.21236/ada380668.
Der volle Inhalt der QuelleLaBounty, Christopher, Ali Shakouri, Patrick Abraham und John E. Bowers. Integrated Cooling for Optoelectronic Devices. Fort Belvoir, VA: Defense Technical Information Center, Januar 2000. http://dx.doi.org/10.21236/ada459476.
Der volle Inhalt der QuelleWiltsee, G. Heat-activated cooling devices: A guidebook for general audiences. Office of Scientific and Technical Information (OSTI), Februar 1994. http://dx.doi.org/10.2172/10190288.
Der volle Inhalt der QuelleTang, Hong, und Chee-Wei Wong. (DARPA) Optical Radiation Cooling and Heating In Integrated Devices: Circuit cavity optomechanics for cooling and amplification on a silicon chip. Fort Belvoir, VA: Defense Technical Information Center, Juli 2015. http://dx.doi.org/10.21236/ada626747.
Der volle Inhalt der QuelleOvermyer, Donald L., Webb, Edmund Blackburn, III (,, ), Michael P. Siegal und William Graham Yelton. Electroforming of Bi(1-x)Sb(x) nanowires for high-efficiency micro-thermoelectric cooling devices on a chip. Office of Scientific and Technical Information (OSTI), November 2006. http://dx.doi.org/10.2172/899368.
Der volle Inhalt der QuelleBalldin, Ulf, Jeff Whitmore, Richard Harrison, Dion Fisher, Joseph Fischer und Roger Stork. The Effects of a Palm Cooling Device and a Cooling Vest During Simulated Pilot Heat Stress. Fort Belvoir, VA: Defense Technical Information Center, Januar 2007. http://dx.doi.org/10.21236/ada470115.
Der volle Inhalt der QuelleAng, Simon S., Paneer Selvam, Ajay Malshe und Fred Barlow. A Micromachined Microjet Array Impingement Cooling Device for High Power Electronics. Fort Belvoir, VA: Defense Technical Information Center, Mai 2004. http://dx.doi.org/10.21236/ada425124.
Der volle Inhalt der QuelleCui, Jun, Duane D. Johnson, Vitalij K. Pecharsky, Ichiro Takeuchi und Qiming Zhang. Advancing Caloric Materials for Efficient Cooling: Key Scientific and Device-Related Materials Challenges for Impact. Ames (Iowa): Iowa State University. Library, Dezember 2015. http://dx.doi.org/10.31274/mse_reports-20191113-1.
Der volle Inhalt der Quelle