Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Cooling“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Cooling" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Cooling"
Che Sidik, Nor Azwadi, und Shahin Salimi. „The Use of Compound Cooling Holes for Film Cooling at the End Wall of Combustor Simulator“. Applied Mechanics and Materials 695 (November 2014): 371–75. http://dx.doi.org/10.4028/www.scientific.net/amm.695.371.
Der volle Inhalt der QuelleWang, Chen, Chunhua Wang und Jingzhou Zhang. „Parametric Studies of Laminated Cooling Configurations: Overall Cooling Effectiveness“. International Journal of Aerospace Engineering 2021 (10.02.2021): 1–15. http://dx.doi.org/10.1155/2021/6656804.
Der volle Inhalt der QuelleShi, Li, Zhiying Sun und Yuanfeng Lu. „The Combined Influences of Film Cooling and Thermal Barrier Coatings on the Cooling Performances of a Film and Internal Cooled Vane“. Coatings 10, Nr. 9 (05.09.2020): 861. http://dx.doi.org/10.3390/coatings10090861.
Der volle Inhalt der QuelleHarrington, Mark K., Marcus A. McWaters, David G. Bogard, Christopher A. Lemmon und Karen A. Thole. „Full-Coverage Film Cooling With Short Normal Injection Holes“. Journal of Turbomachinery 123, Nr. 4 (01.02.2001): 798–805. http://dx.doi.org/10.1115/1.1400111.
Der volle Inhalt der QuelleFriedrichs, S., H. P. Hodson und W. N. Dawes. „The Design of an Improved Endwall Film-Cooling Configuration“. Journal of Turbomachinery 121, Nr. 4 (01.10.1999): 772–80. http://dx.doi.org/10.1115/1.2836731.
Der volle Inhalt der QuelleDing, Yuzhang, Haocheng Ji, Rui Liu, Yuwei Jiang und Minxiang Wei. „Study of the thermal behavior of a battery pack with a serpentine channel“. AIP Advances 12, Nr. 5 (01.05.2022): 055028. http://dx.doi.org/10.1063/5.0089378.
Der volle Inhalt der QuelleZulfikar, Zulfikar. „Penambahan Water Coolant Pada Cooling Tower Tipe Counter Flow“. Jurnal Mesin Nusantara 1, Nr. 2 (27.08.2019): 85–92. http://dx.doi.org/10.29407/jmn.v1i2.13566.
Der volle Inhalt der QuelleWang, J. H., J. Messner und H. Stetter. „An Experimental Investigation on Transpiration Cooling Part II: Comparison of Cooling Methods and Media“. International Journal of Rotating Machinery 10, Nr. 5 (2004): 355–63. http://dx.doi.org/10.1155/s1023621x04000363.
Der volle Inhalt der QuelleSadov, V. V., und N. I. Kapustin. „AUTOMATED INSTALLATION FOR MILK COOLING USING A NATURAL COOLING AGENT“. Vestnik Altajskogo gosudarstvennogo agrarnogo universiteta, Nr. 11 (2021): 116–22. http://dx.doi.org/10.53083/1996-4277-2021-205-11-116-122.
Der volle Inhalt der QuelleSong, Hanlin, Meng Zheng, Zheshu Ma, Yanju Li und Wei Shao. „Numerical simulation of thermal performance of cold plates for high heat flux electronics cooling“. Thermal Science, Nr. 00 (2023): 261. http://dx.doi.org/10.2298/tsci230715261s.
Der volle Inhalt der QuelleDissertationen zum Thema "Cooling"
Katta, Kiran Kumar. „Phase change cooling applications engine cooling /“. To access this resource online via ProQuest Dissertations and Theses @ UTEP, 2008. http://0-proquest.umi.com.lib.utep.edu/login?COPT=REJTPTU0YmImSU5UPTAmVkVSPTI=&clientId=2515.
Der volle Inhalt der QuelleChen, Ruiping. „Laser cooling of atoms for ultracold cooling“. Thesis, Queen's University Belfast, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.479242.
Der volle Inhalt der QuelleSrikanth, Sai Aswin. „Use of Electrical Coolant Pumps in Scania’s Cooling System“. Thesis, KTH, Maskinkonstruktion (Avd.), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-259681.
Der volle Inhalt der QuelleBilindustrin befinner sig mitt i en våg av elektrifiering. Flertalet tillverkare fokuserar på att elektrifiera sitt produktutbud och att minska utsläppen. Inom forskningen kring tunga transporter med dieseldrivna lastbilar, är elektrifiering av kylsystemet ett outforskat område. Ett optimerat kylsystem som är reglerbart med en elektrisk kylvätskepump skulle potentiellt kunna minska energiförluster och utsläpp. Kravet på flödet av kylvätska vid utmanande driftsfall skulle också kunna bli bättre uppfyllda än för dagens system. Trots att det blir allt vanligare att personbilar har elektriska kylvätskepumpar, så har det inte utforskats vad det innebär att ha reglerbara elektriska kylvätskepumpar i dieseldriva lastbilar. Därför är detta ett viktigt område att utforska. Målet med detta projekt är att skapa olika kylsystemskoncept, där den elektriska kylvätskepumpen är en systemkomponent. Prestandan hos dessa principlösningar jämförs sedan med volymflödet i ett standard kylvätskesystem. Koncept som uppfyller kraven för kylvätskesystemet kommer att bli utvalda för vidare verifiering. 1-D simuleringar används för att hitta samband och verifiera mot trenderna som hittas i resultat från en testrigg. Resultaten visar en förbättring i det totala volymflödet för flera av lösningarna, som har en elektrisk kylvätskepump. Men det finns fortfarande flera utmaningar som behöver övervinnas.
Graça, Guilherme Carrilho da 1972. „Ventilative cooling“. Thesis, Massachusetts Institute of Technology, 1999. http://hdl.handle.net/1721.1/66785.
Der volle Inhalt der QuelleIncludes bibliographical references (p. 131-134).
This thesis evaluates the performance of daytime and nighttime passive ventilation cooling strategies for Beijing, Shanghai and Tokyo. A new simulation method for cross-ventilated wind driven airflow is presented . This method decouples the airflow model from the thermal model allowing for fast real weather simulation of the building thermal performance. The simulation is performed on a six-story, isolated, suburban apartment building, considered to be typical of the three cities. The performance of the two natural ventilation strategies on this building is compared . The impact on the performance of different types of construction is assessed for the night cooling ventilation strategy. The results show that night cooling is superior to daytime ventilative cooling in the three cities. Night cooling can successfully replace air conditioning systems for a significant part of the cooling season in Beijing and Tokyo. For Shanghai, neither of the two passive ventilation systems can be considered successful. In both Beijing and Tokyo the application of night cooling may cause condensation in partitions. The use of heavyweight partitions does not show a noticeable improvement over normal construction (using 10cm concrete partitions) . On the other hand, the lightweight case shows a noticeable degradation in system performance. Therefore, the normal structural system is the best option. The use of carpet has a very negative impact on night cooling performance, and is therefore not advised.
by Guilherme Carrilho da Graça.
S.M.
Rizvani, Lejla. „Cooling Oasis“. Thesis, KTH, Arkitektur, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-298809.
Der volle Inhalt der QuelleFletcher, Daniel Alden. „Internal cooling of turbine blades : the matrix cooling method“. Thesis, University of Oxford, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.360259.
Der volle Inhalt der QuelleVILAFRANCA, MANGUÁN ANA. „Convesion of industrial compression cooling to absorption cooling in an integrated district heating and cooling system“. Thesis, University of Gävle, University of Gävle, Department of Technology and Built Environment, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-4145.
Der volle Inhalt der QuelleAstra Zeneca plant in Gärtuna has many compression cooling machines for comfort that consume about 11.7 GWh of electricity per year. Many of the cooling machines are old; due to the increase of production of the plant, cooling capacity was limited and new machines have been built. Now, the cooling capacity is over-sized. Söderenergi is the district heating plant that supplies heating to Astra Zeneca plant. Due to the strict environmental policy in the energy plant, last year, a bio-fuelled CHP plant was built. It is awarded with the electricity certificate system.
The study investigates the possibility for converting some of the compression cooling to absorption cooling and then analyzes the effects of the district heating system through MODEST optimizations. The effects of the analysis are studied in a system composed by the district heating system in Södertälje and cooling system in Astra Zeneca. In the current system the district heating production is from boiler and compression system supplies cooling to Astra Zeneca. The future system includes a CHP plant for the heating production, and compression system is converted to absorption system in Astra Zeneca. Four effects are analyzed in the system: optimal distribution of the district heating production with the plants available, saving fuel, environmental impact and total cost. The environmental impact has been analyzed considering the marginal electricity from coal condensing plants. The total cost is divided in two parts: production cost, in which district heating cost, purchase of electricity and Emissions Trading cost are included, and investment costs. The progressive changes are introduced in the system as four different scenarios.
The introduction of the absorption machines in the system with the current district heating production increases the total cost due to the low electricity price in Sweden. The introduction of the CHP plant in the district heating production supposes a profit of the production cost with compression system due to the high income of the electricity produced that is sold to the grid; it profit increases when compression is replaced by absorption system. The fuel used in the production of the future system decreases and also the emissions. Then, the future system becomes an opportunity from an environmental and economical point of view. At higher purchase electricity prices predicted in the open electricity market for an immediately future, the future system will become more economically advantageous.
Ozmen, Emin Mehmet. „Part Cooling Analysis By Conformal Cooling Channels In Injection Molding“. Master's thesis, METU, 2007. http://etd.lib.metu.edu.tr/upload/2/12609186/index.pdf.
Der volle Inhalt der Quelleelik Company was studied. The process was simulated using actual process parameters and simulation results were compared with production results. Then, the process was simulated using conformal cooling channels and compared with production results. It is seen that the cycle time of the refrigerator shelf was decreased considerably while preserving surface quality appearance.
Omma, Henrik Nilsen. „Jet-powered cooling cores : reversing cooling flows through AGN activity“. Thesis, University of Oxford, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.419330.
Der volle Inhalt der QuelleAghasi, Paul P. „Dependence of Film Cooling Effectiveness on 3D Printed Cooling Holes“. University of Cincinnati / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1458893416.
Der volle Inhalt der QuelleBücher zum Thema "Cooling"
Oxlade, Chris. Cooling. Oxford: Heinemann Library, 2009.
Den vollen Inhalt der Quelle findenOxlade, Chris. Cooling. Oxford: Heinemann Library, 2010.
Den vollen Inhalt der Quelle findenOxlade, Chris. Cooling. Chicago, Ill: Heinemann Library, 2009.
Den vollen Inhalt der Quelle findenOlama, Alaa A., Hrsg. District Cooling. Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742: CRC Press, 2016. http://dx.doi.org/10.1201/9781315371634.
Der volle Inhalt der QuelleOlama, Alaa A. District Cooling. Boca Raton : CRCress, 2017. | Series: Heat transfer : a series: CRC Press, 2016. http://dx.doi.org/10.4324/9781315371634.
Der volle Inhalt der QuelleFrank, Esch, Hrsg. Cooling off. San Diego, CA: Dominie Press, 1992.
Den vollen Inhalt der Quelle findenHill, G. B. Cooling towers. 3. Aufl. London: Butterworths, 1990.
Den vollen Inhalt der Quelle findenManning, Linda. Cooling off. Toronto: Gage Educational Pub., 1986.
Den vollen Inhalt der Quelle findenUnited States. Conservation and Renewable Energy Inquiry and Referral Service., Hrsg. Passive cooling. 3. Aufl. [Silver Spring, MD]: U.S. Dept. of Energy, Conservation and Renewable Energy Inquiry and Referral Service, 1987.
Den vollen Inhalt der Quelle findenUnited States. Conservation and Renewable Energy Inquiry and Referral Service, Hrsg. Passive cooling. 2. Aufl. Silver Spring, MD: U.S. Dept. of Energy, Conservation and Renewable Energy Inquiry and Referral Service, 1986.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Cooling"
Gooch, Jan W. „Cooling“. In Encyclopedic Dictionary of Polymers, 170. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_2895.
Der volle Inhalt der QuelleMinty, Michiko G., und Frank Zimmermann. „Cooling“. In Particle Acceleration and Detection, 263–300. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-662-08581-3_11.
Der volle Inhalt der QuelleTyler, Christopher J. „Cooling“. In Maximising Performance in Hot Environments, 131–58. New York, NY: Routledge, 2019.: Routledge, 2019. http://dx.doi.org/10.4324/9781351111553-7.
Der volle Inhalt der QuelleSchiller, Gary F. „Cooling“. In A Practical Approach to Scientific Molding, 99–109. München: Carl Hanser Verlag GmbH & Co. KG, 2018. http://dx.doi.org/10.3139/9781569906873.010.
Der volle Inhalt der QuelleZhu, Fang, und Baitun Yang. „Cooling“. In Power Transformer Design Practices, 145–65. First edition. | Boca Raton, FL: CRC Press/Taylor & Francis Group, LLC, 2021.: CRC Press, 2021. http://dx.doi.org/10.1201/9780367816865-8.
Der volle Inhalt der Quellevon Zabeltitz, Christian. „Cooling“. In Integrated Greenhouse Systems for Mild Climates, 251–83. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-14582-7_11.
Der volle Inhalt der QuelleF. Schiller, Gary. „Cooling“. In A Practical Approach to Scientific Molding, 99–109. München, Germany: Carl Hanser Verlag GmbH & Co. KG, 2018. http://dx.doi.org/10.1007/978-1-56990-687-3_10.
Der volle Inhalt der QuelleEstévez-Sánchez, Karen Hariantty, Carlos Enrique Ochoa-Velasco, Hector Ruiz-Espinosa und Irving Israel Ruiz-López. „Cooling“. In Smart Food Industry: The Blockchain for Sustainable Engineering, 132–48. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003231059-10.
Der volle Inhalt der QuellePeter, Johannes M. F., und Markus J. Kloker. „Numerical Simulation of Film Cooling in Supersonic Flow“. In Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 79–95. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-53847-7_5.
Der volle Inhalt der Quelle„Cooling“. In How Your House Works, 91–95. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9781118286074.ch4.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Cooling"
Calabrese, R., und L. Tecchio. „Electron Cooling and New Cooling Techniques“. In Workshop on Electron Cooling and New Cooling Techniques. WORLD SCIENTIFIC, 1991. http://dx.doi.org/10.1142/9789814539425.
Der volle Inhalt der QuelleChan, Albert, Don Nguyen, Jean Chen, Chun-Chih Chen und Michael Brooks. „Coolant Considerations for Liquid-Cooling“. In 2023 39th Semiconductor Thermal Measurement, Modeling & Management Symposium (SEMI-THERM). IEEE, 2023. http://dx.doi.org/10.23919/semi-therm59981.2023.10267902.
Der volle Inhalt der QuelleTakeishi, K., Y. Oda, Y. Egawa und T. Kitamura. „Film cooling with swirling coolant flow“. In HEAT TRANSFER 2010. Southampton, UK: WIT Press, 2010. http://dx.doi.org/10.2495/ht100171.
Der volle Inhalt der QuelleAndrews, G. E., und I. M. Khalifa. „Effusion Cooling With Backside Crossflow Cooling and the Backside Coolant Mass Flow Rate Greater Than the Effusion Cooling Mass Flow“. In ASME Turbo Expo 2013: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/gt2013-95355.
Der volle Inhalt der QuelleFuqua, Matthew N., und James L. Rutledge. „Film Cooling Superposition Theory for Multiple Rows of Cooling Holes With Multiple Coolant Temperatures“. In ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/gt2020-15252.
Der volle Inhalt der QuelleClick, Austin, Phillip M. Ligrani, Maggie Hockensmith, Joseph Knox, Chandler Larson, Avery Fairbanks, Federico Liberatore, Rajeshriben Patel und Yin-Hsiang Ho. „Louver Slot Cooling and Full-Coverage Film Cooling With a Combination Internal Coolant Supply“. In ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/gt2020-14520.
Der volle Inhalt der QuelleTakeishi, Kenichiro, Yutaka Oda, Yuta Egawa und Satoshi Hada. „Film Cooling With Swirling Coolant Flow Controlled by Impingement Cooling in a Closed Cavity“. In ASME 2011 Power Conference collocated with JSME ICOPE 2011. ASMEDC, 2011. http://dx.doi.org/10.1115/power2011-55390.
Der volle Inhalt der QuelleDerwent, P. F. „Debuncher Cooling Performance“. In BEAM COOLING AND RELATED TOPICS: International Workshop on Beam Cooling and Related Topics - COOL05. AIP, 2006. http://dx.doi.org/10.1063/1.2190117.
Der volle Inhalt der QuelleKikkawa, Shinzo, Katsuji Sakaguchi und Toyoshi Nakata. „TRANSPIRATION COOLING USING WATER AS A COOLANT“. In International Heat Transfer Conference 9. Connecticut: Begellhouse, 1990. http://dx.doi.org/10.1615/ihtc9.680.
Der volle Inhalt der QuelleGalaso, Ivan, Tonko Curko und Davor Zvizdic. „ROOM COOLING LOAD AND CEILING COOLING“. In Energy and the Environment, 1998. Connecticut: Begellhouse, 2023. http://dx.doi.org/10.1615/1-56700-127-0.1080.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Cooling"
Kurnik, Charles W., Brian Boyd, Kate M. Stoughton und Taylor Lewis. Cooling Tower (Evaporative Cooling System) Measurement and Verification Protocol. Office of Scientific and Technical Information (OSTI), Dezember 2017. http://dx.doi.org/10.2172/1412805.
Der volle Inhalt der QuelleKurnik, Charles W., Brian Boyd, Kate M. Stoughton und Taylor Lewis. Cooling Tower (Evaporative Cooling System) Measurement and Verification Protocol. Office of Scientific and Technical Information (OSTI), Dezember 2017. http://dx.doi.org/10.2172/1412806.
Der volle Inhalt der QuellePidaparti, Sandeep, Charles W. White und Nathan Weiland. Wet Cooling Tower Cooling System Spreadsheet Model for sCO2. Office of Scientific and Technical Information (OSTI), März 2020. http://dx.doi.org/10.2172/1608968.
Der volle Inhalt der QuelleAuthor, Not Given. Phasing Cooling Systems. Office of Scientific and Technical Information (OSTI), Januar 2000. http://dx.doi.org/10.2172/984590.
Der volle Inhalt der QuelleEberhard K Keil. Muon cooling channels. Office of Scientific and Technical Information (OSTI), März 2003. http://dx.doi.org/10.2172/808642.
Der volle Inhalt der QuelleKenny, Thomas, und Theodore H. Geballe. Thermionic Cooling Devices. Fort Belvoir, VA: Defense Technical Information Center, August 2000. http://dx.doi.org/10.21236/ada380668.
Der volle Inhalt der QuelleChandra, S., P. Fairey, III und M. Houston. Cooling with ventilation. Office of Scientific and Technical Information (OSTI), Dezember 1986. http://dx.doi.org/10.2172/7010873.
Der volle Inhalt der QuelleChen, Jingliang, Bo Shen, Lulu Liu, Lin Yao und Yu Gao. Cooling Efficiency Improvement. Asian Development Bank Institute, August 2023. http://dx.doi.org/10.56506/qjjv8928.
Der volle Inhalt der QuelleDamman, Dennis. Cab Heating and Cooling. Office of Scientific and Technical Information (OSTI), Oktober 2005. http://dx.doi.org/10.2172/903061.
Der volle Inhalt der QuelleBlaskiewicz, Michael. Dispersion and electron cooling. Office of Scientific and Technical Information (OSTI), Januar 2019. http://dx.doi.org/10.2172/1494049.
Der volle Inhalt der Quelle