Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Convolutional dictionary“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Convolutional dictionary" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Convolutional dictionary"
Song, Andrew, Bahareh Tolooshams und Demba Ba. „Gaussian Process Convolutional Dictionary Learning“. IEEE Signal Processing Letters 29 (2022): 95–99. http://dx.doi.org/10.1109/lsp.2021.3127471.
Der volle Inhalt der QuelleGao, Fangyuan, Xin Deng, Mai Xu, Jingyi Xu und Pier Luigi Dragotti. „Multi-Modal Convolutional Dictionary Learning“. IEEE Transactions on Image Processing 31 (2022): 1325–39. http://dx.doi.org/10.1109/tip.2022.3141251.
Der volle Inhalt der QuelleYoon, Jongsu, und Yoonsik Choe. „Retinex Based Image Enhancement via General Dictionary Convolutional Sparse Coding“. Applied Sciences 10, Nr. 12 (26.06.2020): 4395. http://dx.doi.org/10.3390/app10124395.
Der volle Inhalt der QuelleChun, Il Yong, und Jeffrey A. Fessler. „Convolutional Dictionary Learning: Acceleration and Convergence“. IEEE Transactions on Image Processing 27, Nr. 4 (April 2018): 1697–712. http://dx.doi.org/10.1109/tip.2017.2761545.
Der volle Inhalt der QuelleSong, Andrew H., Francisco J. Flores und Demba Ba. „Convolutional Dictionary Learning With Grid Refinement“. IEEE Transactions on Signal Processing 68 (2020): 2558–73. http://dx.doi.org/10.1109/tsp.2020.2986897.
Der volle Inhalt der QuelleLi, Jing, Xiao Wei, Fengpin Wang und Jinjia Wang. „IPGM: Inertial Proximal Gradient Method for Convolutional Dictionary Learning“. Electronics 10, Nr. 23 (03.12.2021): 3021. http://dx.doi.org/10.3390/electronics10233021.
Der volle Inhalt der QuelleMolla, Md Rony, und Ma Jian Fen. „Convolutional Sparse Coding Multiple Instance Learning for Whole Slide Image Classification“. International Journal of Advanced Engineering Research and Science 10, Nr. 12 (2023): 096–104. http://dx.doi.org/10.22161/ijaers.1012.10.
Der volle Inhalt der QuelleMartin-del-Campo, Sergio, Fredrik Sandin und Stephan Schnabel. „Algorithmic performance constraints for wind turbine condition monitoring via convolutional sparse coding with dictionary learning“. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability 235, Nr. 4 (05.01.2021): 660–75. http://dx.doi.org/10.1177/1748006x20984260.
Der volle Inhalt der QuelleCheng, Ruihong, Huajun Wang und Ping Luo. „Remote sensing image super-resolution using multi-scale convolutional sparse coding network“. PLOS ONE 17, Nr. 10 (26.10.2022): e0276648. http://dx.doi.org/10.1371/journal.pone.0276648.
Der volle Inhalt der QuelleXu, Yulong, Yingying Zhao, Hao Rong, Fangfang Liu, Yali Lv und Honglei Zhu. „Semantic Analysis of Public Health Medical Issues Based on Convolution Neural Networks“. Mobile Information Systems 2022 (30.08.2022): 1–9. http://dx.doi.org/10.1155/2022/2392207.
Der volle Inhalt der QuelleDissertationen zum Thema "Convolutional dictionary"
Quesada, Pacora Jorge Gerardo. „Separable dictionary learning for convolutional sparse coding via split updates“. Master's thesis, Pontificia Universidad Católica del Perú, 2019. http://hdl.handle.net/20.500.12404/14209.
Der volle Inhalt der QuelleTesis
Silva, Obregón Gustavo Manuel. „Efficient algorithms for convolutional dictionary learning via accelerated proximal gradient“. Master's thesis, Pontificia Universidad Católica del Perú, 2019. http://hdl.handle.net/20.500.12404/13903.
Der volle Inhalt der QuelleTesis
Allain, Cédric. „Temporal point processes and scalable convolutional dictionary learning : a unified framework for m/eeg signal analysis in neuroscience“. Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASG008.
Der volle Inhalt der QuelleIn the field of non-invasive brain imaging, Magnetoencephalography and Electroencephalography (M/EEG) offer invaluable insights into neural activities. The recorded data consist of multivariate time series that provide information about cognitive processes and are often complemented by auxiliary details related to the experimental paradigm, such as timestamps of external stimuli or actions undertaken by the subjects. Additionally, the dataset may include recordings from multiple subjects, facilitating population- level analyses.This doctoral research presents a novel framework for M/EEG signal analysis that synergizes Convolutional Dictionary Learning (CDL) and Temporal Point Processes (TPPs). The work is segmented into two primary components: temporal modeling advancements and computational scalability. For temporal modeling, two novel point process models are introduced with efficient inference methods to capture task-specific neural activities. The proposed Fast Discretized Inference for Hawkes Processes (FaDIn) method also has implications for broader applications. Additionally, this work addresses the computational challenges of large-scale M/EEG data CDL-based analysis, by introducing a novel Stochastic Robust Windowing CDL algorithm. This algorithm allows to process efficiently artifact-ridden signals as well as large population studies. Population CDL was then used on the large open-access dataset Cam-CAN, shedding light on age-related neural activity
Moreau, Thomas. „Représentations Convolutives Parcimonieuses -- application aux signaux physiologiques et interpétabilité de l'apprentissage profond“. Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLN054/document.
Der volle Inhalt der QuelleConvolutional representations extract recurrent patterns which lead to the discovery of local structures in a set of signals. They are well suited to analyze physiological signals which requires interpretable representations in order to understand the relevant information. Moreover, these representations can be linked to deep learning models, as a way to bring interpretability intheir internal representations. In this disserta tion, we describe recent advances on both computational and theoretical aspects of these models.First, we show that the Singular Spectrum Analysis can be used to compute convolutional representations. This representation is dense and we describe an automatized procedure to improve its interpretability. Also, we propose an asynchronous algorithm, called DICOD, based on greedy coordinate descent, to solve convolutional sparse coding for long signals. Our algorithm has super-linear acceleration.In a second part, we focus on the link between representations and neural networks. An extra training step for deep learning, called post-training, is introduced to boost the performances of the trained network by making sure the last layer is optimal. Then, we study the mechanisms which allow to accelerate sparse coding algorithms with neural networks. We show that it is linked to afactorization of the Gram matrix of the dictionary.Finally, we illustrate the relevance of convolutional representations for physiological signals. Convolutional dictionary learning is used to summarize human walk signals and Singular Spectrum Analysis is used to remove the gaze movement in young infant’s oculometric recordings
Bussy, Victor. „Integration of a priori data to optimise industrial X-ray tomographic reconstruction“. Electronic Thesis or Diss., Lyon, INSA, 2024. http://www.theses.fr/2024ISAL0116.
Der volle Inhalt der QuelleThis thesis explores research topics in the field of industrial non-destructive testing (NDT) using X-rays. The application of CT tomography has significantly expanded, and its use has intensified across many industrial sectors. Due to increasing demands and constraints on inspection processes, CT must continually evolve and adapt. Whether in terms of reconstruction quality or inspection time, X-ray tomography is constantly progressing, particularly in the so-called sparse-view strategy. This strategy involves reconstructing an object using the minimum possible number of radiographic projections while maintaining satisfactory reconstruction quality. This approach reduces acquisition times and associated costs. Sparse-view reconstruction poses a significant challenge as the tomographic problem is ill-conditioned, or, as it is often described, ill-posed. Numerous techniques have been developed to overcome this obstacle, many of which rely on leveraging prior information during the reconstruction process. By exploiting data and knowledge available before the experiment, it is possible to improve reconstruction results despite the reduced number of projections. In our industrial context, for example, the computer-aided design (CAD) model of the object is often available, which provides valuable information about the geometry of the object under study. However, it is important to note that the CAD model only offers an approximate representation of the object. In NDT or metrology, it is precisely the differences between an object and its CAD model that are of interest. Therefore, integrating prior information is complex, as this information is often "approximate" and cannot be used as is. Instead, we propose to judiciously use the geometric information available from the CAD model at each step of the process. We do not propose a single method but rather a methodology for integrating prior geometric information during X-ray tomographic reconstruction
Lee, Yen-De, und 李彥德. „Visual Center Preprocessing and Cloud Dictionary Correction Technique Applied to Text Recognition with Convolutional Neural Networks“. Thesis, 2016. http://ndltd.ncl.edu.tw/handle/k9tf7e.
Der volle Inhalt der Quelle國立中正大學
電機工程研究所
105
Text is the evolution of humanity after many centuries and the symbol of communication between people. As the image recognition technology matures, the recognition rate of the text in the natural scene is accurate. In many technologies, the deep learning is the best. Convolutional neural network in deep learning has been widely used in text detection and recognition in recent years. However, convolutional neural networks are computationally complex and time-consuming. Our research goals are reduce time-consuming by image preprocessing and word correction by using cloud dictionary. First, searching text areas and significant text priority are used to search visual centers. Visual centers are used to reduce the time-consuming of character recognition with convolution neural networks. The text detection uses MSERs to avoid time-consuming of the sliding window method. Second, the previous people are usually to obtain correct word by searching their own dictionaries. We use cloud dictionary for more efficient recognition and greater fault tolerance.
Buchteile zum Thema "Convolutional dictionary"
Zheng, Yanze, und Jian Dong. „Convolutional Dictionary Super-Resolution Network for Removing CT Metal Artifacts“. In Signals and Communication Technology, 3–19. Cham: Springer Nature Switzerland, 2025. https://doi.org/10.1007/978-3-031-78131-5_1.
Der volle Inhalt der QuelleSandilya, Mrinmoy, und S. R. Nirmala. „Compressed Sensing MRI Reconstruction Using Convolutional Dictionary Learning and Laplacian Prior“. In IOT with Smart Systems, 661–69. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-3945-6_65.
Der volle Inhalt der QuelleMao, Gui-Han, Jian-Cong Fan und Yi-Ming Zhang. „Convolutional Neural Network Combined with Emotional Dictionary Apply in Chinese Text Emotional Classification“. In Advances in Smart Vehicular Technology, Transportation, Communication and Applications, 85–96. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-1209-1_9.
Der volle Inhalt der QuelleZhang, Chengfang, und Xingchun Yang. „Image Fusion Based on Masked Online Convolutional Dictionary Learning with Surrogate Function Approach“. In Advances in Intelligent Systems and Computing, 70–74. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-5887-0_10.
Der volle Inhalt der QuelleZhang, Chengfang, Ziliang Feng, Chao Zhang und Kai Yi. „An Efficient Medical Image Fusion via Online Convolutional Sparse Coding with Sample-Dependent Dictionary“. In Lecture Notes in Computer Science, 3–13. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-46317-4_1.
Der volle Inhalt der QuelleAyllón-Gavilán, Rafael, David Guijo-Rubio, Pedro Antonio Gutiérrez und César Hervás-Martínez. „O-Hydra: A Hybrid Convolutional and Dictionary-Based Approach to Time Series Ordinal Classification“. In Advances in Artificial Intelligence, 50–60. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-62799-6_6.
Der volle Inhalt der QuelleZhang, Chengfang, und Xingchun Yang. „Visible and Infrared Image Fusion Based on Online Convolutional Dictionary Learning with Sparse Matrix Computation“. In Advances in Wireless Communications and Applications, 123–28. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-5697-5_15.
Der volle Inhalt der QuelleZhang, Chengfang, und Xingchun Yang. „Visible and Infrared Image Fusion Based on Masked Online Convolutional Dictionary Learning with Frequency Domain Computation“. In New Developments of IT, IoT and ICT Applied to Agriculture, 177–82. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-5073-7_18.
Der volle Inhalt der QuelleDong, Qunxi, Jie Zhang, Qingyang Li, Pau M. Thompson, Richard J. Caselli, Jieping Ye und Yalin Wang. „Multi-task Dictionary Learning Based on Convolutional Neural Networks for Longitudinal Clinical Score Predictions in Alzheimer’s Disease“. In Human Brain and Artificial Intelligence, 21–35. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-15-1398-5_2.
Der volle Inhalt der QuelleElbasiony, Reda, Walid Gomaa und Tetsuya Ogata. „Deep 3D Pose Dictionary: 3D Human Pose Estimation from Single RGB Image Using Deep Convolutional Neural Network“. In Artificial Neural Networks and Machine Learning – ICANN 2018, 310–20. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-01424-7_31.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Convolutional dictionary"
Yoshida, Takehiro, Ibuki Muta und Yoshimitsu Kuroki. „Classification with Dictionary Filters in Convolutional Sparse Representation“. In 2024 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS), 1–4. IEEE, 2024. https://doi.org/10.1109/ispacs62486.2024.10869135.
Der volle Inhalt der QuelleKobayashi, Takuma, Kanata Hayashi und Yoshimitsu Kuroki. „Efficient Convolutional Dictionary Learning When The Number Of Classes In The Dataset Increases“. In 2024 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS), 1–4. IEEE, 2024. https://doi.org/10.1109/ispacs62486.2024.10869089.
Der volle Inhalt der QuelleGondo, Yudai, Hiroto Take und Yoshimitsu Kuroki. „Improving sparsity of Convolutional Sparse Representation using a combination of a few dictionary filters“. In 2024 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS), 1–3. IEEE, 2024. https://doi.org/10.1109/ispacs62486.2024.10868219.
Der volle Inhalt der QuelleLiu, Jialin, Cristina Garcia-Cardona, Brendt Wohlberg und Wotao Yin. „Online convolutional dictionary learning“. In 2017 IEEE International Conference on Image Processing (ICIP). IEEE, 2017. http://dx.doi.org/10.1109/icip.2017.8296573.
Der volle Inhalt der QuellePapyan, Vardan, Yaniv Romano, Michael Elad und Jeremias Sulam. „Convolutional Dictionary Learning via Local Processing“. In 2017 IEEE International Conference on Computer Vision (ICCV). IEEE, 2017. http://dx.doi.org/10.1109/iccv.2017.566.
Der volle Inhalt der QuelleVenkatakrishnan, S. V., und Brendt Wohlberg. „Convolutional Dictionary Regularizers for Tomographic Inversion“. In ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2019. http://dx.doi.org/10.1109/icassp.2019.8682637.
Der volle Inhalt der QuelleZazo, Javier, Bahareh Tolooshams, Demba Ba und Harvard John A. Paulson. „Convolutional Dictionary Learning in Hierarchical Networks“. In 2019 IEEE 8th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP). IEEE, 2019. http://dx.doi.org/10.1109/camsap45676.2019.9022440.
Der volle Inhalt der QuelleGarcia-Cardona, Cristina, und Brendt Wohlberg. „Subproblem coupling in convolutional dictionary learning“. In 2017 IEEE International Conference on Image Processing (ICIP). IEEE, 2017. http://dx.doi.org/10.1109/icip.2017.8296571.
Der volle Inhalt der QuelleXu, Lijun, Ying Wang und Yijia Zhou. „Dictionary learning in convolutional sparse representation“. In Second International Conference on Statistics, Applied Mathematics, and Computing Science (CSAMCS 2022), herausgegeben von Shi Jin und Wanyang Dai. SPIE, 2023. http://dx.doi.org/10.1117/12.2672444.
Der volle Inhalt der QuelleGarcia-Cardona, Cristina, und Brendt Wohlberg. „Convolutional Dictionary Learning for Multi-Channel Signals“. In 2018 52nd Asilomar Conference on Signals, Systems, and Computers. IEEE, 2018. http://dx.doi.org/10.1109/acssc.2018.8645108.
Der volle Inhalt der Quelle