Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Convex projective geometry“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Convex projective geometry" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Convex projective geometry"
Wienhard, Anna, und Tengren Zhang. „Deforming convex real projective structures“. Geometriae Dedicata 192, Nr. 1 (05.05.2017): 327–60. http://dx.doi.org/10.1007/s10711-017-0243-z.
Der volle Inhalt der QuelleWeisman, Theodore. „Dynamical properties of convex cocompact actions in projective space“. Journal of Topology 16, Nr. 3 (02.08.2023): 990–1047. http://dx.doi.org/10.1112/topo.12307.
Der volle Inhalt der QuelleKapovich, Michael. „Convex projective structures on Gromov–Thurston manifolds“. Geometry & Topology 11, Nr. 3 (24.09.2007): 1777–830. http://dx.doi.org/10.2140/gt.2007.11.1777.
Der volle Inhalt der QuelleKim, Inkang. „Compactification of Strictly Convex Real Projective Structures“. Geometriae Dedicata 113, Nr. 1 (Juni 2005): 185–95. http://dx.doi.org/10.1007/s10711-005-0550-7.
Der volle Inhalt der QuelleKohn, Kathlén, und Kristian Ranestad. „Projective Geometry of Wachspress Coordinates“. Foundations of Computational Mathematics 20, Nr. 5 (11.11.2019): 1135–73. http://dx.doi.org/10.1007/s10208-019-09441-z.
Der volle Inhalt der QuelleHildebrand, Roland. „Optimal Inequalities Between Distances in Convex Projective Domains“. Journal of Geometric Analysis 31, Nr. 11 (10.05.2021): 11357–85. http://dx.doi.org/10.1007/s12220-021-00684-3.
Der volle Inhalt der QuelleBenoist, Yves, und Dominique Hulin. „Cubic differentials and finite volume convex projective surfaces“. Geometry & Topology 17, Nr. 1 (08.04.2013): 595–620. http://dx.doi.org/10.2140/gt.2013.17.595.
Der volle Inhalt der QuelleSioen, M., und S. Verwulgen. „Locally convex approach spaces“. Applied General Topology 4, Nr. 2 (01.10.2003): 263. http://dx.doi.org/10.4995/agt.2003.2031.
Der volle Inhalt der QuelleBray, Harrison, und David Constantine. „Entropy rigidity for finite volume strictly convex projective manifolds“. Geometriae Dedicata 214, Nr. 1 (17.05.2021): 543–57. http://dx.doi.org/10.1007/s10711-021-00627-w.
Der volle Inhalt der QuelleZimmer, Andrew. „A higher-rank rigidity theorem for convex real projective manifolds“. Geometry & Topology 27, Nr. 7 (19.09.2023): 2899–936. http://dx.doi.org/10.2140/gt.2023.27.2899.
Der volle Inhalt der QuelleDissertationen zum Thema "Convex projective geometry"
Fléchelles, Balthazar. „Geometric finiteness in convex projective geometry“. Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASM029.
Der volle Inhalt der QuelleThis thesis is devoted to the study of geometrically finite convex projective orbifolds, following work of Ballas, Cooper, Crampon, Leitner, Long, Marquis and Tillmann. A convex projective orbifold is the quotient of a bounded, convex and open subset of an affine chart of real projective space (called a properly convex domain) by a discrete group of projective transformations that preserve it. We say that a convex projective orbifold is strictly convex if there are no non-trivial segments in the boundary of the convex subset, and round if in addition there is a unique supporting hyperplane at each boundary point. Following work of Cooper-Long-Tillmann and Crampon-Marquis, we say that a strictly convex orbifold is geometrically finite if its convex core decomposes as the union of a compact subset and of finitely many ends, called cusps, all of whose points have an injectivity radius smaller than a constant depending only on the dimension. Understanding what types of cusps may occur is crucial for the study of geometrically finite orbifolds. In the strictly convex case, the only known restriction on cusp holonomies, imposed by a generalization of the celebrated Margulis lemma proven by Cooper-Long-Tillmann and Crampon-Marquis, is that the holonomy of a cusp has to be virtually nilpotent. We give a complete characterization of the holonomies of cusps of strictly convex orbifolds and of those of round orbifolds. By generalizing a method of Cooper, which gave the only previously known example of a cusp of a strictly convex manifold with non virtually abelian holonomy, we build examples of cusps of strictly convex manifolds and round manifolds whose holonomy can be any finitely generated torsion-free nilpotent group. In joint work with M. Islam and F. Zhu, we also prove that for torsion-free relatively hyperbolic groups, relative P1-Anosov representations (in the sense of Kapovich-Leeb, Zhu and Zhu-Zimmer) that preserve a properly convex domain are exactly the holonomies of geometrically finite round manifolds.In the general case of non strictly convex projective orbifolds, no satisfactory definition of geometric finiteness is known at the moment. However, Cooper-Long-Tillmann, followed by Ballas-Cooper-Leitner, introduced a notion of generalized cusps in this context. Although they only require that the holonomy be virtually nilpotent, all previously known examples had virtually abelian holonomy. We build examples of generalized cusps whose holonomy can be any finitely generated torsion-free nilpotent group. We also allow ourselves to weaken Cooper-Long-Tillmann’s original definition by assuming only that the holonomy be virtually solvable, and this enables us to construct new examples whose holonomy is not virtually nilpotent.When a geometrically finite orbifold has no cusps, i.e. when its convex core is compact, we say that the orbifold is convex cocompact. Danciger-Guéritaud-Kassel provided a good definition of convex cocompactness for convex projective orbifolds that are not necessarily strictly convex. They proved that the holonomy of a convex cocompact convex projective orbifold is Gromov hyperbolic if and only if the associated representation is P1-Anosov. Using these results, Vinberg’s theory and work of Agol and Haglund-Wise about cubulated hyperbolic groups, we construct, in collaboration with S. Douba, T. Weisman and F. Zhu, examples of P1-Anosov representations for any cubulated hyperbolic group. This gives new examples of hyperbolic groups admitting Anosov representations
Ellis, Amanda. „Classification of conics in the tropical projective plane /“. Diss., CLICK HERE for online access, 2005. http://contentdm.lib.byu.edu/ETD/image/etd1104.pdf.
Der volle Inhalt der QuelleEllis, Amanda. „Classifcation of Conics in the Tropical Projective Plane“. BYU ScholarsArchive, 2005. https://scholarsarchive.byu.edu/etd/697.
Der volle Inhalt der QuelleAlessandrini, Daniele. „A tropical compactification for character spaces of convex projective structures“. Doctoral thesis, Scuola Normale Superiore, 2007. http://hdl.handle.net/11384/85709.
Der volle Inhalt der QuelleBaratov, Rishat. „Efficient conic decomposition and projection onto a cone in a Banach ordered space“. Thesis, University of Ballarat, 2005. http://researchonline.federation.edu.au/vital/access/HandleResolver/1959.17/61401.
Der volle Inhalt der QuelleSim, Kristy Karen Wan Yen. „Multiple view geometry and convex optimization“. Phd thesis, 2007. http://hdl.handle.net/1885/149870.
Der volle Inhalt der QuelleBallas, Samuel Aaron. „Flexibility and rigidity of three-dimensional convex projective structures“. 2013. http://hdl.handle.net/2152/21681.
Der volle Inhalt der Quelletext
Bücher zum Thema "Convex projective geometry"
Choi, Suhyoung. The Convex and concave decomposition of manifolds with real projective structures. [Paris, France]: Société mathématique de France, 1999.
Den vollen Inhalt der Quelle findenHuybrechts, D. Spherical and Exceptional Objects. Oxford University Press, 2007. http://dx.doi.org/10.1093/acprof:oso/9780199296866.003.0008.
Der volle Inhalt der QuelleBuchteile zum Thema "Convex projective geometry"
Oda, Tadao. „Integral Convex Polytopes and Toric Projective Varieties“. In Convex Bodies and Algebraic Geometry, 66–114. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-72547-0_2.
Der volle Inhalt der QuelleHibi, Takayuki. „Ehrhart polynomials of convex polytopes, ℎ-vectors of simplicial complexes, and nonsingular projective toric varieties“. In Discrete and Computational Geometry: Papers from the DIMACS Special Year, 165–78. Providence, Rhode Island: American Mathematical Society, 1991. http://dx.doi.org/10.1090/dimacs/006/09.
Der volle Inhalt der QuelleLi, Hongbo. „Projective geometric theorem proving with Grassmann–Cayley algebra“. In From Past to Future: Graßmann's Work in Context, 275–85. Basel: Springer Basel, 2010. http://dx.doi.org/10.1007/978-3-0346-0405-5_24.
Der volle Inhalt der QuelleFeferman, Solomon, John W. Dawson, Stephen C. Kleene, Gregory H. Moore, Robert M. Solovay und Jean van Heijenoort. „Introductory note to 1999b, c, d, g and h“. In Kurt GöDel Collected Works Volume I, 272–75. Oxford University PressNew York, NY, 2001. http://dx.doi.org/10.1093/oso/9780195147209.003.0055.
Der volle Inhalt der Quelle„Curves with Locally Convex Projection“. In Differential Geometry and Topology of Curves, 91–95. CRC Press, 2001. http://dx.doi.org/10.1201/9781420022605.ch20.
Der volle Inhalt der QuelleGoebel, Kazimierz, und Stanisław Prus. „Projections on balls and convex sets“. In Elements of Geometry of Balls in Banach Spaces, 70–84. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198827351.003.0006.
Der volle Inhalt der Quelle„On the road between polar projection bodies and intersection bodies“. In The Interface between Convex Geometry and Harmonic Analysis, 75–85. Providence, Rhode Island: American Mathematical Society, 2007. http://dx.doi.org/10.1090/cbms/108/07.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Convex projective geometry"
Akhter, Muhammad Awais, Rob Heylen und Paul Scheunders. „Hyperspectral unmixing with projection onto convex sets using distance geometry“. In IGARSS 2015 - 2015 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2015. http://dx.doi.org/10.1109/igarss.2015.7326970.
Der volle Inhalt der QuelleStark, Henry, und Peyma Oskoui-Fard. „Geometry-Free X-Ray Reconstruction Using the Theory of Convex Projections“. In Machine Vision. Washington, D.C.: Optica Publishing Group, 1987. http://dx.doi.org/10.1364/mv.1987.tha5.
Der volle Inhalt der QuelleStark, Henry, und Peyma Oskoui-Fard. „Image reconstruction in tomography using convex projections“. In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1986. http://dx.doi.org/10.1364/oam.1986.mr4.
Der volle Inhalt der Quellevan Holland, Winfried, und Willem F. Bronsvoort. „Assembly Features and Visibility Maps“. In ASME 1995 15th International Computers in Engineering Conference and the ASME 1995 9th Annual Engineering Database Symposium collocated with the ASME 1995 Design Engineering Technical Conferences. American Society of Mechanical Engineers, 1995. http://dx.doi.org/10.1115/cie1995-0799.
Der volle Inhalt der QuelleReyes, L., und E. Bayro-Corrochano. „Geometric approach for simultaneous projective reconstruction of points, lines, planes, quadrics, plane conies and degenerate quadrics“. In Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004. IEEE, 2004. http://dx.doi.org/10.1109/icpr.2004.1333705.
Der volle Inhalt der QuelleSmith, Hollis, und Julian Norato. „A Topology Optimization Method for the Design of Orthotropic Plate Structures“. In ASME 2020 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/detc2020-22400.
Der volle Inhalt der QuelleDumitrescu, Adrian, Scott J. I. Walker und Atul Bhaskar. „Modelling of the Hypervelocity Impact Performance of a Corrugated Shield with an Integrated Honeycomb Geometry“. In 2022 16th Hypervelocity Impact Symposium. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/hvis2022-13.
Der volle Inhalt der QuelleSharpe, Conner, Carolyn Conner Seepersad, Seth Watts und Dan Tortorelli. „Design of Mechanical Metamaterials via Constrained Bayesian Optimization“. In ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/detc2018-85270.
Der volle Inhalt der QuelleMaywald, Thomas, Thomas Backhaus, Sven Schrape und Arnold Kühhorn. „Geometric Model Update of Blisks and its Experimental Validation for a Wide Frequency Range“. In ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/gt2017-63446.
Der volle Inhalt der QuelleGuo, Yuxiao, und Xin Tong. „View-Volume Network for Semantic Scene Completion from a Single Depth Image“. In Twenty-Seventh International Joint Conference on Artificial Intelligence {IJCAI-18}. California: International Joint Conferences on Artificial Intelligence Organization, 2018. http://dx.doi.org/10.24963/ijcai.2018/101.
Der volle Inhalt der Quelle