Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Converter-Driven stability“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Converter-Driven stability" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Converter-Driven stability"
Luo, Jianqiang, Yiqing Zou, Siqi Bu und Ulas Karaagac. „Converter-Driven Stability Analysis of Power Systems Integrated with Hybrid Renewable Energy Sources“. Energies 14, Nr. 14 (16.07.2021): 4290. http://dx.doi.org/10.3390/en14144290.
Der volle Inhalt der QuelleQuester, Matthias, Fisnik Loku, Otmane El Azzati, Leonel Noris, Yongtao Yang und Albert Moser. „Investigating the Converter-Driven Stability of an Offshore HVDC System“. Energies 14, Nr. 8 (20.04.2021): 2341. http://dx.doi.org/10.3390/en14082341.
Der volle Inhalt der QuelleYellisetti, Viswaja, und Albert Moser. „Complexity Reduction for Converter-Driven Stability Analysis in Transmission Systems“. Electronics 14, Nr. 1 (26.12.2024): 55. https://doi.org/10.3390/electronics14010055.
Der volle Inhalt der QuelleKong, Le, Yaosuo Xue, Liang Qiao und Fei Wang. „Review of Small-Signal Converter-Driven Stability Issues in Power Systems“. IEEE Open Access Journal of Power and Energy 9 (2022): 29–41. http://dx.doi.org/10.1109/oajpe.2021.3137468.
Der volle Inhalt der QuelleLuo, Jianqiang, Fei Teng, Siqi Bu, Zhongda Chu, Ning Tong, Anbo Meng, Ling Yang und Xiaolin Wang. „Converter-driven stability constrained unit commitment considering dynamic interactions of wind generation“. International Journal of Electrical Power & Energy Systems 144 (Januar 2023): 108614. http://dx.doi.org/10.1016/j.ijepes.2022.108614.
Der volle Inhalt der QuelleYao, Yao, Fidegnon Fassinou und Tingshu Hu. „Stability and Robust Regulation of Battery-Driven Boost Converter With Simple Feedback“. IEEE Transactions on Power Electronics 26, Nr. 9 (September 2011): 2614–26. http://dx.doi.org/10.1109/tpel.2011.2112781.
Der volle Inhalt der QuelleSaridaki, Georgia, Alexandros G. Paspatis, Panos Kotsampopoulos und Nikos Hatziargyriou. „An investigation of factors affecting Fast-Interaction Converter-driven stability in Microgrids“. Electric Power Systems Research 223 (Oktober 2023): 109610. http://dx.doi.org/10.1016/j.epsr.2023.109610.
Der volle Inhalt der QuelleJeevajothi, R., und D. Devaraj. „Voltage stability enhancement using an adaptive hysteresis controlled variable speed wind turbine driven EESG with MPPT“. Journal of Energy in Southern Africa 25, Nr. 2 (23.06.2014): 48–60. http://dx.doi.org/10.17159/2413-3051/2014/v25i2a2669.
Der volle Inhalt der QuelleQuan, Xuli, Xinchun Lin, Yun Zheng und Yong Kang. „Transient Stability Analysis of Grid-Connected Converter Driven by Imbalance Power under Non-Severe Remote Voltage Sag“. Energies 14, Nr. 6 (21.03.2021): 1737. http://dx.doi.org/10.3390/en14061737.
Der volle Inhalt der QuelleChouya, Ahmed. „Adaptive Sliding Mode Control with Chattering Elimination for Buck Converter Driven DC Motor“. WSEAS TRANSACTIONS ON SYSTEMS 22 (24.02.2023): 19–28. http://dx.doi.org/10.37394/23202.2023.22.3.
Der volle Inhalt der QuelleDissertationen zum Thema "Converter-Driven stability"
Kelada, Fadi Sameh Aziz. „Étude des dynamiques et de la stabilité des réseaux électriques faible inertie avec une forte pénétration de ressources renouvelables“. Electronic Thesis or Diss., Université Grenoble Alpes, 2024. http://www.theses.fr/2024GRALT065.
Der volle Inhalt der QuellePower systems are evolving significantly due to economic, geopolitical, and environmental factors, notably the increasing integration of Renewable Energy Sources (RES) interfaced through power electronic converters, known as Inverter-Based Resources (IBR). This shift from synchronous machine (SM)-dominated systems to IBR-dominated systems introduces challenges such as reduced inertia, intermittency, and stability issues. Traditional stability analysis and modeling techniques, which assume slower dynamics inherent in SMs, are inadequate for the fast dynamics of IBRs. The emerging dominance of IBRs necessitates the development of detailed Electromagnetic Transient (EMT) models, which are computationally intensive but essential for capturing the fast dynamics of modern power systems. Existing stability classification frameworks, historically based on SM-dominated systems, are being revised to incorporate IBR influences, introducing new stability categories like Converter-Driven Stability (CDS). This work investigates novel insights into the interactions between SMs, IBR unit dynamics, and network dynamics that have been overlooked in the literature. It provides a comprehensive framework that is open-source and adaptable for generic power system topologies, allowing for scalable results and analyses. Furthermore, the proposed framework is utilized to determine optimal allocations of virtual inertia and damping in low inertia power systems to enhance frequency stability metrics
Ram, Prakash Ranjithh Raj. „Study of an Isolated and a Non-Isolated Modular DC/DC Converter : In Multi-Terminal HVDC/MVDC grid systems“. Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-278495.
Der volle Inhalt der QuelleFor interconnection of multi-terminal HVDC systems involving point-to-point links, aDC-DC converter is the only possible way to interconnect. Therefore, the issues of voltagematching and DC fault current limiting in high voltage DC systems are undergoing extensiveresearch and are the focus of this thesis. Starting with analyzing the state of the art highvoltage DC-DC converter topologies for interconnection of multi-terminal HVDC systems andbenchmarking each converter topology based on different functionalities. A basic non-isolatedDC-DC converter topology is analyzed in terms of design, cost, sizing, losses and power controlcapability. First, starting with the mathematical modeling and then the numerical analysis isdone for different operating regions. Next, it is compared with the two-phase non-isolated DCconverter based on energy storage, maximum DC power transfer, and total losses. Simulation oftwo-phase and three-phase non-isolated DC converter is done in PSCAD incorporating differenttypes of controllers. Then, an isolated converter topology is taken and analyzed in detail startingfrom mathematical modeling to validation using simulation results. Different types of faultsanalysis for both isolated and non-isolated converter topology is done. Finally, analyzing the DCfault in different possible connection of the converter in the multi-terminal grid, i.e. monopole,bipole in both symmetric and asymmetric configurations.
Buchteile zum Thema "Converter-Driven stability"
A. Rmila, Salahaldein. „Automatic Current Sharing Mechanism in Two-phase Series Capacitor Buck DC-DC Converter (2-pscB)“. In Power Electronics, RF, and Microwave Engineering [Working Title]. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.107975.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Converter-Driven stability"
Wang, Zhaoyuan, und Siqi Bu. „Probabilistic Analysis of Converter-Driven Stability of Power Systems Based on Generalized Polynomial Chaos Expansion“. In 2024 IEEE Power & Energy Society General Meeting (PESGM), 1–5. IEEE, 2024. http://dx.doi.org/10.1109/pesgm51994.2024.10688565.
Der volle Inhalt der QuelleMozuras, Almantas, und Evgueni Podzharov. „Displacement Measurement, Nonlinearity, Noise, and Thermal Stability“. In ASME 2003 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/detc2003/vib-48599.
Der volle Inhalt der QuelleSingh, Arshpreet, Vincent Debusschere und Nouredine Hadjsaid. „Slow-interaction Converter-driven Stability in the Distribution Grid: Small Signal Stability Analysis using RMS Models“. In 2022 IEEE Power & Energy Society General Meeting (PESGM). IEEE, 2022. http://dx.doi.org/10.1109/pesgm48719.2022.9916874.
Der volle Inhalt der QuelleYellisetti, Viswaja, Otmane El Azzati und Albert Moser. „Investigation of Frequency Domain Analysis Methods for Converter-Driven Stability Evaluation of Converter-Dominated Meshed Systems“. In 2023 IEEE Belgrade PowerTech. IEEE, 2023. http://dx.doi.org/10.1109/powertech55446.2023.10202892.
Der volle Inhalt der QuelleYao Yao, Fidegnon Fassinou und Tingshu Hu. „Stability and robust regulation of battery driven boost converter with simple feedback“. In 2011 American Control Conference. IEEE, 2011. http://dx.doi.org/10.1109/acc.2011.5991061.
Der volle Inhalt der QuelleShen, Yang, Quan Zhou, Yang Li und Zhikang Shuai. „Data-driven Predictive Control for Grid-forming Converter Stability Enhancement in Island Microgrids“. In 2022 IEEE/IAS Industrial and Commercial Power System Asia (I&CPS Asia). IEEE, 2022. http://dx.doi.org/10.1109/icpsasia55496.2022.9949635.
Der volle Inhalt der QuelleGyeltshen, Dawa, Viswaja Yellisetti, Albert Moser und Nisai Fuengwarodsakul. „Frequency-dependent impedance of transformer in mesh network for converter-driven stability analysis“. In 2022 International Conference on Power, Energy and Innovations (ICPEI). IEEE, 2022. http://dx.doi.org/10.1109/icpei55293.2022.9986807.
Der volle Inhalt der QuelleWu, Guanglu, Shanshan Wang, Bing Zhao, Hong Hu, Jianhua Li, Lu Cao, Haoyin Ding, Lin Yu und Quan Ma. „Converter-Driven Low-Frequency Stability Analysis and Compensation in Weak-Grid-Tied VSCs“. In 2021 International Conference on Power System Technology (POWERCON). IEEE, 2021. http://dx.doi.org/10.1109/powercon53785.2021.9697855.
Der volle Inhalt der QuelleKrahmer, Sebastian, Stefan Ecklebe, Peter Schegner und Klaus Robenack. „Analysis of the Converter-Driven Stability of Q(V)-Characteristic Control in Distribution Grids“. In 2022 International Conference on Smart Energy Systems and Technologies (SEST). IEEE, 2022. http://dx.doi.org/10.1109/sest53650.2022.9898506.
Der volle Inhalt der QuelleHuynh Minh, P., A. Singh, V. Debusschere, N. Hadjsaid, M. C. Alvarez-Herault, X. Legrand und B. Bouzigon. „Converter-driven stability in a distribution grid with high penetration of inverter-based generation“. In 27th International Conference on Electricity Distribution (CIRED 2023). Institution of Engineering and Technology, 2023. http://dx.doi.org/10.1049/icp.2023.1070.
Der volle Inhalt der Quelle