Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Contrôle à entrées et sorties multiples (MIMO)“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Contrôle à entrées et sorties multiples (MIMO)" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Dissertationen zum Thema "Contrôle à entrées et sorties multiples (MIMO)"
Moniak, Gérald. „Techniques MIMO pour un lien sans fil robuste entre un bus et un poste de contrôle pour une application de surveillance embarquée“. Valenciennes, 2007. https://ged.uphf.fr/nuxeo/site/esupversions/916a3d61-2731-4b0c-9963-6e1e19557266.
Der volle Inhalt der QuelleThis works deals with a wireless link between a bus and a control centre for embedded audio and video monitoring. Our work is split in three part: the MIMO channels and its modelling, the development of the transmission chain in simulation and its evaluation, the development of a real transmission chain. First, a state of the art of the modelling of the MIMO channel is presented. Real channels are measured and its modelling by the Kronecker and Weichselberger models are studied. The transmitter of the considered chained is based on the WiMAX standard. Two receivers are presented and evaluated: a simple receiver and a turbo receiver. Several channel models are used for the evaluation of the performance. The Turbo receiver proved more effective in terms of bits errors rate. It is more resistant to the spatial correlation and to the errors on the channel estimation. The correlation shows more prejudicial than line of sight for the system. Last, a real transmission module has been developed. The real chain corresponds to the RF part. The generation and the treatments of the signals are realized with developed software. First real transmissions show us a degradation of the performance in comparison with simulations. Alternatives solutions are proposed
Lakshminarayana, Subhash. „Cross Layer Design in MIMO Multi-cell Systems“. Thesis, Supélec, 2012. http://www.theses.fr/2012SUPL0020/document.
Der volle Inhalt der QuelleFuture wireless communication systems are expected to see an explosion in the wireless traffic which is mainly fueled by mobile video traffic. Due to the time varying and bursty nature of video traffic, wireless systems will see a widerrange of fluctuations in their traffic patterns. Therefore, traditional physical layer based algorithms which perform resource allocation under the assumption that the transmitters are always saturated with information bits, might no longer be efficient. It is, thus, important to design dynamic resource allocation algorithms which can incorporate higher layer processes and account for the stochastic nature of the wireless traffic.The central idea of this thesis is to develop cross-layer design algorithmsbetween the physical and the network layer in a multiple input multiple output (MIMO) multi-cell setup. Specifically, we consider base stations (BSs) equipped with multiple antennas serving multiple single antenna user terminals (UTs) in their respective cells. In contrast to the previous works, we consider the randomness in the arrival of information bits and hence account for the queuing at the BSs. With this setup, we develop various cross-layer based resource allocation algorithms. We incorporate two important design considerations namely decentralized design and energy efficiency. In particular, we focus on developing decentralized beamforming and traffic flow controller design, energy efficient design under time average QoS constraints and decentralized scheduling strategy in a multi-cell scenario. To this end, we use tools from Lyapunov optimization, random matrix theory and stochastic control theory
Bahri, Nesrine. „Une commande neuronale adaptative basée sur des émulateurs neuronal et multimodèle pour les systèmes non linéaires MIMO et SIMO“. Thesis, Le Havre, 2015. http://www.theses.fr/2015LEHA0024/document.
Der volle Inhalt der QuelleThe porosity of a composite plate in carbon / epoxy of type RTM is known by used of tomography X. A method of determination of this porosity by measure of the mitigation of the longitudinal waves through the thickness of this kind of plate is proposed. These measures are made on surfaces of different sizes (from some cm2 to some mm2) and allow the obtaining of cartographies. A correspondence porosity (tomo X) - Mitigation (US wave) is deducted and analyzed according to the structure of the composite material. In every case, we estimate the quality of the obtained relations and we deduct the limits of validity of the correspondence between porosity and mitigation. First results of acoustic tomography are obtained
Sellami, Noura. „Récepteurs itératifs pour les systèmes MIMO (Multiple-Input Multiple-Input)“. Cergy-Pontoise, 2002. http://www.theses.fr/2002CERG0159.
Der volle Inhalt der QuelleIn this work, we studied coded MIMO (multiple-input multiple-output) systems, in particular equalization and decoding methods. We choose to use at the transmitter a system based on spatial multiplexing using BICM (Bit Interleaved Coded Modulation) structure. Because of the presence of interleavers, the optimal receiver, based on joint equalization and decoding, is too complex. In order to achieve a good complexity/performance trade-off, we propose to use an iterative receiver. When the channel is frequency selective, the equalizer has to perform time equalization in addition to spatial one. The optimal equalizer is too complex in this case. In order to achieve a good complexity/performance trade-off, we consider a List-type MAP equalizer which is a sub optimal version of the MAP equalizer based on state reduction and Per Survivor Processing (PSP). In order to fight against error propagation, we propose to use a Whitened Matched Filter which concentrates the channel energy on its first taps. In the last part, we study channel estimation when the MIMO channel is frequency selective. First, we show that channel estimation errors are equivalent to a loss in signal to noise ratio and we provide an approximation of this loss. Then, in order to improve the first channel estimation performed using training sequences, we propose to integrate the EM (Expectation Maximisation) algorithm in our iterative receiver. This study is then extended to CDMA systems
Troglia, Gamba Micaela. „Algorithms and architectures for the detection of MIMO signals“. Télécom Bretagne, 2011. http://www.telecom-bretagne.eu/publications/publication.php?idpublication=11987.
Der volle Inhalt der QuelleMultiple Input Multiple Output (MIMO) systems are recognized as a key enabling technology in high performance wireless communications. However the complexity of high throughput MIMO detectors poses a serious implementation issue. Among known MIMO detectors, Sphere Decoder Algorithm (SDA) has emerged to reduce the processing complexity, with respect to the original Maximum Likelihood (ML) detection. Moreover, it has been demonstrated that the SDA achieves optimal performance for uncoded systems. However, for coded systems, further simplifications in the detection algorithm can be used without altering the error rate performance if iterative detection and channel decoding is adopted in the receiver. Such an iterative processing with a channel decoder offers significant improvement in error-rate performance for a reduced signal-to-noise ratio. In this context, the SDA can be further simplified and modified in order to provide soft detection: “List Sphere Decoder” (LSD) has been introduced as a soft version of the original SDA. This research thesis focuses on algorithmic, architectural and implementation aspects of the “ Sphere Decoder Algorithm” and the “List Sphere Decoder”. The main objective of the conducted work is to propose area-efficient implementation solutions while considering throughput, flexibility, and error rate performance requirements of advanced digital communication systems. In particular, the first contribution is represented by an improved SDA, which enables significant throughput increase at a very limited additional complexity and with no degradation in terms of Bit Error Rate performance. The proposed detection method, called LASDA (Look–Ahead SDA) is based on formal algorithm transformations, namely look–ahead, retiming and pipelining, besides a modified tree search strategy. An efficient VLSI design of LASDA detector supporting a 4x4 MIMO channel with 16QAM modulation is proposed. Synthesis results for a 130 nm technology are detailed. The second contribution concerns a detailed study on flexibility and convergence of iterative detection and channel decoding. In this regard, two Soft-Input Soft-Output detectors are considered: List Sphere Decoding and a low complexity linear filtering (Linear Minimum-Mean-Square-Error-Interference-Canceller (MMSE-IC)). Extrinsic Information Transfer (EXIT) charts are developed. This analysis is oriented to obtain possible performance-complexity trade-offs for a flexible hardware implementation. The last contribution is related to the proposal and design of an Application-Specific-Instruction set-Processor (ASIP) for SISO List Sphere Decoding. The proposed ASIP supports different MIMO system configurations (2x2, 3x3, 4x4) and modulation orders (QPSK, 16QAM, 64QAM) besides a flexible list size (from 1 to 64 elements). Synthesis results for a 130 nm technology are detailed
Dumont, Julien. „Optimisation conjointe de l'émetteur et du récepteur par utilisation des a priori du canal dans un contexte MIMO“. Marne-la-Vallée, 2006. http://www.theses.fr/2006MARN0310.
Der volle Inhalt der QuelleLetessier, Jonathan. „Performances théoriques de systèmes MIMO pré-égalisés et applications avec un simulateur de propagation 3D“. Brest, 2005. http://www.theses.fr/2005BRES2028.
Der volle Inhalt der QuelleThe MIMO (multiple-input multiple-output) systems are a great interest for the next generation of wireless systems. Indeed, these systems have been developed to increase the theoretical capacity and/or robustness of the traditional systems (mono-antenna) by using space diversity. The framework of this thesis focused around pre-equalized MIMO systems having the channel state information at the transmitter side by information feedback. We expresssed literally the average bit error probabilities (BEP) in the decorrelated Rayleigh channel case for pre-equalized systems WF (WF : capacity maximization), MMSE (minimization of the mean square error), QoS(quality of service between channels), EE (equal error between channels) and max-SNR ( maximization of the signal-to-noise ratio at the receiver side). The resulting BEP curves highlighted that performance improvement is influenced by the total number of antennas, the distribution of the antennas between the transmitter and the receiver, the choice of the parameters of the precoder to be used. A collaboration with the SIC laboratory of Poitiers (France) enabled us of study statistically "realistic" channels produced by their 3-D propagation simulator. We, thus, tested the robustness of the precoders for different indoor configurations in the HIPERLAN/2 frequency band and compared results to those of the Rayleigh case
Vrigneau, Baptiste. „Système MIMO précodés optimisant la distance minimale : Etude des performances et extension du nombre de voies“. Brest, 2006. http://www.theses.fr/2006BRES2033.
Der volle Inhalt der QuelleIn wireless communications, the Multiple-Input Multiple-Ouput (MIMO) systems constitute an efficient way to significantly enhance data transmission according to two main, though antagonistic, parameters: the spectral efficiency and reliability assessed from the average binary error probability (BEP). With such systems the knowledge of the channel state information (CSI) at the transmitter side is paramount to lower reduce the BEP through différent stratégies of power allocation. Indeed, once the CSI has been fully (or perfectly) known, a linear precoder at the transmit side and a linear decoder at the receive side can be designed for subséquent association by optimizing one among the following criteria: minimum mean square error (MMSE) or the capacity. Their respective optimisations have led to a family of diagonal precoders: the MIMO system is équivalent to indépendant SISO subchannels. Recently, a new no-diagonal precoder designed within our laboratory optimizes the minimal Euclidean distance between receive symbols. This thesis work was aimed at estimating the BEP of this precoder for comparison with other methods (Alamouti's code and diagonal precoders). We demonstrated the maximal diversity order of the max¬dmin, and then gave a tight BEP approximation. Moreover, the spatial dimensions and the final cost of a MIMO device were reduced by associating of the precoder max-dmin with polarity diversity. Despite the corrélation induced by this system, the max-dmin performances are still worth being considered. We also proposed an extension of the max-dmin to more than two sub-channels in order to exploit larger MIMO systems
Diallo, Aliou. „Systèmes multi-antennes pour diversité et MIMO“. Nice, 2007. https://tel.archives-ouvertes.fr/tel-00454612.
Der volle Inhalt der QuelleThe high data rates required in modern communication can be achieved by multiplying the radiating element involved in the broadcast and in the reception of the wireless link. This solution is called MIMO (Multiple Input and Multiple Output). Also, to reduce the deep fading caused by the multi-path propagating environment, the diversity technique which consists to place one antenna in the broadcast and several antennas in the reception can be used. However, the integration of several efficient antennas on the printed circuit board (PCB) of a mobile phone is a new challenge for antenna researchers. The main goal remains to keep a high isolation between these radiators, otherwise, the diversity gain and the channel capacity of the system can drastically be reduced. The aim of this thesis is to demonstrate the possibility to integrate two closely spaced quarter-wavelength resonators on a small PCB, with high isolation and high total efficiencies when using a neutralization effect between the radiators. However, these two Planar Inverted-F Antennas (PIFAS) were not operating in the same frequency band (DCS and UMTS). This work has been further extended with the successful implementation of this technique to a multi-antennas system operating in the same UMTS band. Several multi-antenna handsets have been designed. Their performance in diversity and MIMO are measured in a reverberation chamber to Göteborg, and in a indoor and outdoor environments to Helsinki
Papadogiannis, Agisilaos. „Systèmes et techniques pour Multi-Cell MIMO et relayage coopératif dans les réseaux sans fil“. Paris, Télécom ParisTech, 2009. http://pastel.archives-ouvertes.fr/pastel-00598244.
Der volle Inhalt der QuelleThe constantly increasing demand for wireless services, the scarcity of radio spectrum and the characteristics of the global wireless market, necessitate that future wireless systems (Fourth Generation Mobile - 4G) provide higher peak data rates and better QoS, especially for the cell-edge users. Furthermore it is essential that they achieve high spectral efficiencies and they are easily deployed. In order to be able to accomplish these objectives, wireless systems need to incorporate technologies that increase the cell throughput without increasing spectral consumption. A very promising technique that can achieve the aforementioned targets is Multicell Cooperative Processing (MCP) or Multicell-MIMO. MCP has the potential to mitigate Inter-Cell Interference (ICI) and augment data rates without sacrificing additional spectrum but at the cost of some overhead and complexity. According to the concept of clustered MCP proposed in this thesis, Base Stations (BSs) are grouped into cooperation clusters, each of which contains a subset of the network BSs. The BSs of each cluster exchange information and jointly process signals as they form virtual antenna arrays distributed in space. In these systems, each user receives useful signals from several BSs and therefore the notion of a cell transcends the one of the conventional cellular systems. Although Multicell-MIMO is a technique that can help meet a lot of the challenges towards 4G systems, it has some intrinsic drawbacks that need to be addressed in order for it to be brought into practice; this is the main focus of the present thesis. Firstly the problem of how to optimally form BS cooperation clusters of limited size has been investigated. MCP's overheads are proportional to the size of cooperation clusters, therefore this size should be kept limited. The straightforward solution of forcing neighboring BSs to collaborate provides limited gains. In this thesis it is proposed that the BSs which interfere the most with each other should cooperate rather the ones that are in close proximity. This is shown to lead to significant spectral efficiency gains while cluster sizes are kept very small. The typical centralized architectural conception for MCP entails that the BSs of each cooperation cluster should be inter-connected through a control unit and exchange Channel State Information (CSI). This conception impedes the deployment of MCP systems as it implies additional infrastructural costs. In this thesis a new decentralized framework has been proposed that allows the incorporation of MCP by the conventional cellular systems with very few changes upon their architecture. Mobile Stations (MSs) feed back their CSI not only to one BS as in current systems, but they broadcast this information to all collaborating BSs, and the resulting inter-BS CSI information exchange requirement is minimal. In the downlink, a major overhead of MCP that needs to be mitigated is the one of CSI over-the-air feedback (i. E. Mobile to base). Furthermore the collaborating BSs need to exchange the user data to be transmitted through the backhaul (backhaul overhead). For downlink communication under Frequency Division Duplexing (FDD), each user needs to estimate and feed back to the system infrastructure (one or more BSs) a number of channel coefficients, equal at least to the number of collaborating antennas at each subcarrier in Orthogonal Frequency Division Multiplexing (OFDM). This feedback load renders the deployment of MCP prohibitive in large scale deployments. In this thesis we suggest the use of a selective feedback approach. In this setup only the significant coefficients are fed back by the users; the ones whose channel gain exceeds a threshold. This approach can be also exploited in reducing backhaul overhead through scheduling or precoding design. It is shown that this is a good tradeoff between performance and overheads that can facilitate the incorporation of MCP by future systems. Another promising technique that can increase spectral efficiency of wireless systems is cooperative relaying. In this thesis the utilization of dynamic relays (user terminals relay signals) in cellular systems is investigated. Dynamic relays are more cost effective than static ones, as they bring the gains of relaying without the need for costly new infrastructure. However their utilization entails very high overheads and complexities (CSI feedback requirements, relay selection process). In the present dissertation the performance of dynamic relays in different cellular environments is assessed from a system level point of view and some novel techniques that exploit dynamic relays while requiring minimal overhead are presented. The overheads of relaying are proportional to the number of considered relay candidates (relay selection process). It is suggested that for a specific transmission only a small but suitable set of relay nodes are considered as relaying candidates. This is an efficient method to benefit from dynamic relays while circumventing their drawbacks
Bücher zum Thema "Contrôle à entrées et sorties multiples (MIMO)"
Ezio, Biglieri, Hrsg. MIMO wireless communications. Cambridge: Cambridge University Press, 2007.
Den vollen Inhalt der Quelle finden1968-, Tsoulos George V., Hrsg. MIMO system technology for wireless communications. Boca Raton [Fla.]: Taylor & Francis, 2006.
Den vollen Inhalt der Quelle findenAustria) International ITG Workshop on Smart Antennas (23rd 2019 Vienna. WSA 2019: 23rd International ITG Workshop on Smart Antennas. Berlin]: [VDE Verlag GmbH], 2019.
Den vollen Inhalt der Quelle findenGermany) International ITG Workshop on Smart Antennas (20th 2016 Munich. WSA 2016: 20th International ITG Workshop on Smart Antennas, March 9-11, 2016, Munich, Germany. Berlin: VDE Verlag GmbH, 2016.
Den vollen Inhalt der Quelle findenBiglieri, Ezio, Arogyaswami Paulraj, Robert Calderbank, Anthony Constantinides und Andrea Goldsmith. MIMO Wireless Communications. Cambridge University Press, 2009.
Den vollen Inhalt der Quelle findenBiglieri, Ezio, Arogyaswami Paulraj, Robert Calderbank, Anthony Constantinides und Andrea Goldsmith. Mimo Wireless Communications. Cambridge University Press, 2007.
Den vollen Inhalt der Quelle findenBiglieri, Ezio. MIMO Wireless Communications. Cambridge University Press, 2007.
Den vollen Inhalt der Quelle findenKartikeyan, M. V., Leeladhar Malviya und Rajib Kumar Panigrahi. Mimo Antennas for Wireless Communication. Taylor & Francis Group, 2020.
Den vollen Inhalt der Quelle findenMIMO system technology for wireless communications. Boca Raton FL: CRC Press/Taylor & Francis, 2006.
Den vollen Inhalt der Quelle findenPeak Power Control in Multicarrier Communications. Cambridge University Press, 2006.
Den vollen Inhalt der Quelle finden