Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Control of steering systems“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Control of steering systems" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Control of steering systems"
Na, Shaodan, Zhipeng Li, Feng Qiu und Chao Zhang. „Torque Control of Electric Power Steering Systems Based on Improved Active Disturbance Rejection Control“. Mathematical Problems in Engineering 2020 (29.04.2020): 1–13. http://dx.doi.org/10.1155/2020/6509607.
Der volle Inhalt der QuelleRanade, Eeshan. „Electronic Control System for Steer by Wire“. International Journal for Research in Applied Science and Engineering Technology 9, Nr. VI (30.06.2021): 4161–66. http://dx.doi.org/10.22214/ijraset.2021.35968.
Der volle Inhalt der QuelleTuhkanen, Samuel, Jami Pekkanen, Callum Mole, Richard M. Wilkie und Otto Lappi. „Can gaze control steering?“ Journal of Vision 23, Nr. 7 (21.07.2023): 12. http://dx.doi.org/10.1167/jov.23.7.12.
Der volle Inhalt der QuelleZheng, J. Y., und R. E. Reid. „Design Analysis of Ship Steering Gear Control Systems“. Journal of Offshore Mechanics and Arctic Engineering 110, Nr. 3 (01.08.1988): 218–25. http://dx.doi.org/10.1115/1.3257054.
Der volle Inhalt der QuelleLi, Guo, Wen Zheng Zhang und Yan Jie Hou. „The Application of Multi-Model Control on Vehicle Chassis Coordination Control“. Applied Mechanics and Materials 387 (August 2013): 292–95. http://dx.doi.org/10.4028/www.scientific.net/amm.387.292.
Der volle Inhalt der QuelleLee, Jaepoong, Kyongsu Yi, Dongpil Lee, Bongchoon Jang, Minjun Kim und Sangwoo Hwang. „Haptic control of steer-by-wire systems for tracking of target steering feedback torque“. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 234, Nr. 5 (11.10.2019): 1389–401. http://dx.doi.org/10.1177/0954407019879298.
Der volle Inhalt der QuelleWang, Zhaojian, und Hamid Reza Karimi. „Experimental Study on Antivibration Control of Electrical Power Steering Systems“. Journal of Applied Mathematics 2014 (2014): 1–7. http://dx.doi.org/10.1155/2014/450427.
Der volle Inhalt der QuelleLi, Guo, und Yan Sun. „The Fuzzy Decoupling Control of the Electric Vehicle Steering and Speed Systems“. Applied Mechanics and Materials 387 (August 2013): 284–87. http://dx.doi.org/10.4028/www.scientific.net/amm.387.284.
Der volle Inhalt der QuelleReid, R. E., und J. Y. Zheng. „Time Domain Simulation of Ship Steering Gear Control Systems“. Journal of Energy Resources Technology 108, Nr. 1 (01.03.1986): 84–90. http://dx.doi.org/10.1115/1.3231246.
Der volle Inhalt der QuelleSharp, R. S. „Motorcycle Steering Control by Road Preview“. Journal of Dynamic Systems, Measurement, and Control 129, Nr. 4 (14.12.2006): 373–81. http://dx.doi.org/10.1115/1.2745842.
Der volle Inhalt der QuelleDissertationen zum Thema "Control of steering systems"
Dell’Amico, Alessandro. „Pressure Control in Hydraulic Power Steering Systems“. Licentiate thesis, Linköpings universitet, Fluida och mekatroniska system, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-100841.
Der volle Inhalt der QuelleYamamoto, Kazusa. „Control of electromechanical systems, application on electric power steering systems“. Thesis, Université Grenoble Alpes (ComUE), 2017. http://www.theses.fr/2017GREAT069/document.
Der volle Inhalt der QuelleNowadays, modern vehicles are equipped with more and more driving assistance systems, among them Electric Power Steering (EPS) helps the driver to turn the wheels. Indeed, EPS provides through an electric motor, an additional torque according to the driver's behaviour and the vehicle's dynamics to reduce the amount of effort required to the driver. Therefore, a torque control is developed based on the torque sensor signal which measures in practice the torsion bar torque (corresponding to an image of the driver torque). Consequently, this component is essential to the functioning of EPS systems.Indeed, a torque sensor failure usually leads to shut-off the assistance which may increase the risk of accident. Regarding functional safety, a back-up mode is recommended and required by more and more car manufacturers. On the other hand, a major challenge for automotive suppliers is to reduce cost production in order to meet growing markets demands and manage in the competitive sector. This issue considering a reduction of sensors' numbers and analysis of vehicle's dynamics is therefore an extension of applying the safety strategy. This thesis, carried out within JTEKT Europe, addresses these various issues.After introducing an overview of the different EPS systems, some models used for the design of controllers and estimators are presented. Then, two methods to estimate the driver torque subject to road disturbances and noise measurements are proposed: the first is a proportional integral observer (PI) with mixed synthesis $H_infty / H_2 $, whereas the second is an $ H_infty $ filtering approach. Then, several control strategies are proposed according to two different cases, either by using a PI observer which estimates the system states and the driver torque (LQR, LPV feedback control) or by not taking into account the driver torque estimation ($ H_infty $dynamic output feedback control). This latter approach has the advantage to require less measurements than the previous one. These approaches have been validated in simulation and implemented on a prototype vehicle where promising results have been obtained
Asghar, Sajjad. „Exact steering in control of moment gyroscope systems“. Thesis, University of Surrey, 2008. http://epubs.surrey.ac.uk/770151/.
Der volle Inhalt der QuelleYavuzoglu, Emre. „Steering Laws For Control Moment Gyroscope Systems Used In Spacecraft Attitude Control“. Master's thesis, METU, 2003. http://etd.lib.metu.edu.tr/upload/1098441/index.pdf.
Der volle Inhalt der QuelleOuyang, Xiaohong. „Neural network identification and control of electrical power steering systems“. Thesis, University of Wolverhampton, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.323099.
Der volle Inhalt der QuelleBedrossian, Nazareth Sarkis. „Steering law design for redundant single gimbal Control Movement Gyro systems“. Thesis, Massachusetts Institute of Technology, 1987. http://hdl.handle.net/1721.1/14663.
Der volle Inhalt der QuelleDiab, Ali. „Stability analysis and control design for time-delay systems with applications to automotive steering systems“. Electronic Thesis or Diss., université Paris-Saclay, 2023. http://www.theses.fr/2023UPAST057.
Der volle Inhalt der QuelleSteering assistance helps the driver to maneuver the vehicle by reducing the steering effort. In the case of electric power steering and steer-by-wire, the assistance system is composed of electrical drives placed at the rack pinion (allowing the wheels to move) and at the steering wheel (providing the driver a feeling of the forces acting on the wheels). These architectures introduce, however, delays in the feedback loops of the system. To ensure its stability in the presence of delays, one can reduce the assist gain or increase the damping of the steering wheel, but this negatively impacts the system's performance and degrades the force feedback returned to the driver. In order to counter this limitation, we design and analyze control laws for steering systems that increase (compared to current strategies) the delay margin of the system. We use a frequency-domain approach to analyze the constraints imposed by the stability of the feedback system generating the steering wheel torque. Our algorithms rely on classical proportional-derivative control architectures, including torque maps and filters. The simplicity of the proposed methods allows an analytical computation of the delay margin. In addition, to make our results more general (for example, for nonlinear torque maps), we develop time-domain techniques to analyze the stability of linear time-delay systems using Lyapunov-Krasovskii functionals. We formulate a projection-based method allowing general sets of functions to parameterize Lyapunov-Krasovskii functionals. We discuss the main assumptions considered in our formulation and establish connections between the existing approaches for the stability analysis of time-delay systems based on semidefinite programming, namely the method based on the use of integral inequalities and the method based on sum-of-squares programming. Finally, the obtained results are also applied to the test case of steering systems
Bansal, Mayur. „DIGITAL CONTROL BOARD FOR PHASED ARRAY ANTENNA BEAM STEERING IN ADAPTIVE COMMUNICATION APPLICATIONS“. DigitalCommons@CalPoly, 2013. https://digitalcommons.calpoly.edu/theses/1113.
Der volle Inhalt der QuelleAvak, Bjoern. „Modeling and Control of a Superimposed Steering System“. Thesis, Georgia Institute of Technology, 2004. http://hdl.handle.net/1853/5039.
Der volle Inhalt der QuelleBakolas, Efstathios. „Optimal steering for kinematic vehicles with applications to spatially distributed agents“. Diss., Georgia Institute of Technology, 2011. http://hdl.handle.net/1853/42873.
Der volle Inhalt der QuelleBücher zum Thema "Control of steering systems"
Antonelli, Gianluca. Underwater robots: Motion and force control of vehicle-manipulator systems. Berlin: Springer, 2003.
Den vollen Inhalt der Quelle findenFelix, Geyer R., und Zouwen J. van der, Hrsg. Sociocybernetic paradoxes: Observation, control, and evolution of self-steering systems. London: Sage Publications, 1986.
Den vollen Inhalt der Quelle findenOuyang, Xiaohong. Neural network identification and control of electrical power steering systems. Wolverhampton: University of Wolverhampton, 2000.
Den vollen Inhalt der Quelle findenShip Control Systems Symposium (11th 1997 Southampton, England). Identification and adaptive control applied to ship steering Eleventh Ship Control Systems Symposium. Herausgegeben von Wilson P. A, Great Britain. Ministry of Defence. und University of Southampton. Dept. of Ship Science. Southampton: Computational Mechanics Publications, 1997.
Den vollen Inhalt der Quelle findenUnited States. National Aeronautics and Space Administration., Hrsg. Steering law design for redundant single gimbal control moment gyro systems. Cambridge, Mass: The Charles Stark Draper Laboratory, Inc., 1987.
Den vollen Inhalt der Quelle findenCenter, Langley Research, Hrsg. An improved lateral control wheel steering law for the Transport Systems Research Vehicle (TSRV). Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1992.
Den vollen Inhalt der Quelle findenAntonelli, Gianluca. Underwater robots: Motion and force control of vehicle-manipulator systems. Berlin: Springer, 2003.
Den vollen Inhalt der Quelle findenPassenger Car Meeting and Exposition (1990 Dearborn, Mich.). Electronic and non-electronic suspension systems and steering controls. Warrendale, PA: Society of Automotive Engineers, 1990.
Den vollen Inhalt der Quelle findenModern diesel technology: Brakes, suspension, and steering. Clifton Park, NY: Thomson Delmar Learning, 2007.
Den vollen Inhalt der Quelle findenCai, Bo. Neural networks, fuzzy logic, and optimal control for vehicle active systems with four-wheel steering and active suspension. Neubiberg: Universitat der Bundeswehr München, 1993.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Control of steering systems"
Isermann, Rolf. „Steering Control Systems“. In Automotive Control, 387–444. Berlin, Heidelberg: Springer Berlin Heidelberg, 2021. http://dx.doi.org/10.1007/978-3-642-39440-9_14.
Der volle Inhalt der QuelleLeve, Frederick A., Brian J. Hamilton und Mason A. Peck. „Steering Algorithms“. In Spacecraft Momentum Control Systems, 157–85. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-22563-0_7.
Der volle Inhalt der QuelleRovira Más, Francisco, Qin Zhang und Alan C. Hansen. „Electrohydraulic Steering Control“. In Mechatronics and Intelligent Systems for Off-road Vehicles, 209–47. London: Springer London, 2010. http://dx.doi.org/10.1007/978-1-84996-468-5_7.
Der volle Inhalt der QuelleRieger, Wolfgang. „Active steering“. In Brakes, Brake Control and Driver Assistance Systems, 158–61. Wiesbaden: Springer Fachmedien Wiesbaden, 2014. http://dx.doi.org/10.1007/978-3-658-03978-3_13.
Der volle Inhalt der QuelleSoitinaho, Riikka, und Timo Oksanen. „Guidance, Auto-Steering Systems and Control“. In Agriculture Automation and Control, 239–66. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-70400-1_10.
Der volle Inhalt der QuelleMurray, Richard M., und S. Shankar Sastry. „Steering Nonholonomic Control Systems Using Sinusoids“. In Nonholonomic Motion Planning, 23–51. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4615-3176-0_2.
Der volle Inhalt der QuelleWu, Xiaodong. „Vehicle Steering System“. In Advanced Chassis Control Technology for Steer-by-Wire Vehicles, 1–18. New York: CRC Press, 2024. http://dx.doi.org/10.1201/9781003481669-1.
Der volle Inhalt der QuelleLiu, Yifang, Liang Li und Yuegang Tan. „Steering Nonholonomic Systems with Cosine Switch Control“. In Advances in Intelligent Systems and Computing, 167–76. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-54927-4_16.
Der volle Inhalt der QuelleIvanov, Mykola, Oksana Motorna, Oleksiy Pereyaslavskyy, Serhiy Shargorodskyi, Konrad Gromaszek, Mukhtar Junisbekov, Aliya Kalizhanova und Saule Smailova. „Method of experimental research of steering control unit of hydrostatic steering control systems and stands for their realization“. In Mechatronic Systems 1, 101–12. London: Routledge, 2021. http://dx.doi.org/10.1201/9781003224136-9.
Der volle Inhalt der QuelleEl Akchioui, Nabil, Nabil El Fezazi, Youssef El Fezazi, Said Idrissi und Fatima El Haoussi. „Robust Controller Design for Steer-by-Wire Systems in Vehicles“. In Proceeding of 2021 International Conference on Wireless Communications, Networking and Applications, 497–508. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-2456-9_51.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Control of steering systems"
Balachandran, Avinash, Stephen M. Erlien und J. Christian Gerdes. „The Virtual Wheel Concept for Supportive Steering Feedback During Active Steering Interventions“. In ASME 2014 Dynamic Systems and Control Conference. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/dscc2014-6301.
Der volle Inhalt der QuelleLi, Yijun, Taehyun Shim, Dexin Wang und Timothy Offerle. „Investigation of Factors Affecting Steering Feel of Column Assist Electric Power Steering“. In ASME 2016 Dynamic Systems and Control Conference. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/dscc2016-9818.
Der volle Inhalt der QuelleMurray, R. M., und S. S. Sastry. „Steering nonholonomic systems using sinusoids“. In 29th IEEE Conference on Decision and Control. IEEE, 1990. http://dx.doi.org/10.1109/cdc.1990.203994.
Der volle Inhalt der Quelle„Steering committee“. In 2016 2nd International Conference on Communication, Control & Intelligent Systems (CCIS). IEEE, 2016. http://dx.doi.org/10.1109/ccintels.2016.7878185.
Der volle Inhalt der QuelleChen, J. S. „Control of Electric Power Steering Systems“. In International Congress & Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1998. http://dx.doi.org/10.4271/981116.
Der volle Inhalt der QuelleLupu, Ciprian, Catalin Petrescu, Gabriel Florea und Mircea Lupu. „Steering control for multiple propulsion systems“. In 2013 17th International Conference on System Theory, Control and Computing (ICSTCC). IEEE, 2013. http://dx.doi.org/10.1109/icstcc.2013.6688979.
Der volle Inhalt der QuelleMoerman, R. „Design of Advanced Steering Control Systems“. In NAVTEC 91 - Information Technology and Warships. RINA, 1991. http://dx.doi.org/10.3940/rina.navtec.1991.3.1.
Der volle Inhalt der QuelleQiu, Hongchu, Qin Zhang, John F. Reid und Duqiang Wu. „Nonlinear Feedforward-Plus-PID Control for Electrohydraulic Steering Systems“. In ASME 1999 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1999. http://dx.doi.org/10.1115/imece1999-0774.
Der volle Inhalt der QuelleSentouh, Chouki, Boussaad Soualmi, Jean-Christophe Popieul und Serge Debernard. „Cooperative Steering Assist Control System“. In 2013 IEEE International Conference on Systems, Man and Cybernetics (SMC 2013). IEEE, 2013. http://dx.doi.org/10.1109/smc.2013.165.
Der volle Inhalt der QuelleKolli, Kaylan C., und Ernest L. Hall. „Steering control system for a mobile robot“. In Intelligent Systems & Advanced Manufacturing, herausgegeben von David P. Casasent. SPIE, 1997. http://dx.doi.org/10.1117/12.290289.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Control of steering systems"
Fujita, Yoshitaka, Yoshiaki Tsuchiya, Masato Suzumura und Takahiro Kojo. Development of Active Front Steering Control System. Warrendale, PA: SAE International, September 2005. http://dx.doi.org/10.4271/2005-08-0485.
Der volle Inhalt der QuelleNenggen, Ding, und Bo Ying. PD Variable Structure Control of Electric Power Steering System of Cars. Warrendale, PA: SAE International, Mai 2005. http://dx.doi.org/10.4271/2005-08-0183.
Der volle Inhalt der QuelleKaneko, Tetsuya, Hisashi Iizuka und Ichiro Kageyama. Non-Off-Tracking Control for Articulated Bus With All-Wheel-Steering System. Warrendale, PA: SAE International, Mai 2005. http://dx.doi.org/10.4271/2005-08-0358.
Der volle Inhalt der QuelleUlander, Klaus. Two-axis Beam Steering Mirror Control system for Precision Pointing and Tracking Applications. Office of Scientific and Technical Information (OSTI), Januar 2006. http://dx.doi.org/10.2172/893570.
Der volle Inhalt der QuelleTajima, Takamitsu, und Toru Oshima. Study of the Next-Generation Steering System Based on Muscular Cooperative Control Theory (Second Report). Warrendale, PA: SAE International, Mai 2005. http://dx.doi.org/10.4271/2005-08-0294.
Der volle Inhalt der QuelleHynd, David, Caroline Wallbank, Jonathan Kent, Ciaran Ellis, Arun Kalaiyarasan, Robert Hunt und Matthias Seidl. Costs and Benefits of Electronic Stability Control in Selected G20 Countries. TRL, Januar 2020. http://dx.doi.org/10.58446/lsrg3377.
Der volle Inhalt der QuelleSano, Shoichi, Yasuharu Oyama, Akio Nemoto und Atsushi Seki. A New Steering Control Method and Its Evaluation (Second Report)~Evaluation of Azimuth Angle Feedback System. Warrendale, PA: SAE International, Mai 2005. http://dx.doi.org/10.4271/2005-08-0356.
Der volle Inhalt der QuelleQuinn, Brian, Jordan Bates, Michael Parker und Sally Shoop. A detailed approach to autonomous vehicle control through Ros and Pixhawk controllers. Engineer Research and Development Center (U.S.), November 2021. http://dx.doi.org/10.21079/11681/42460.
Der volle Inhalt der QuelleSano, Shoichi, und Yasuharu Oyama. A New Steering Control Method and Its Evaluation (First Report)~Configuration and Characteristics of Azimuth Angle Feedback System. Warrendale, PA: SAE International, Mai 2005. http://dx.doi.org/10.4271/2005-08-0355.
Der volle Inhalt der QuelleKubica, Stefan, Tobias Peuschke-Bischof, Belinda Müller und Robin Avci. Fahrmanöver für Geradeausfahrt. Technische Hochschule Wildau, 2019. http://dx.doi.org/10.15771/1264.
Der volle Inhalt der Quelle