Auswahl der wissenschaftlichen Literatur zum Thema „Continuous–wave cavity ring-down spectroscopy“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Continuous–wave cavity ring-down spectroscopy" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Continuous–wave cavity ring-down spectroscopy":

1

Tan Zhongqi, 谭中奇, 龙兴武 Long Xingwu, 黄云 Huang Yun und 吴素勇 Wu Suyong. „Etaloning Effects in Continuous-Wave Cavity Ring down Spectroscopy“. Chinese Journal of Lasers 35, Nr. 10 (2008): 1563–66. http://dx.doi.org/10.3788/cjl20083510.1563.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Huang, Haifeng, und Kevin K. Lehmann. „Sensitivity Limits of Continuous Wave Cavity Ring-Down Spectroscopy“. Journal of Physical Chemistry A 117, Nr. 50 (23.09.2013): 13399–411. http://dx.doi.org/10.1021/jp406691e.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Dudek, John B., Peter B. Tarsa, Armando Velasquez, Mark Wladyslawski, Paul Rabinowitz und Kevin K. Lehmann. „Trace Moisture Detection Using Continuous-Wave Cavity Ring-Down Spectroscopy“. Analytical Chemistry 75, Nr. 17 (September 2003): 4599–605. http://dx.doi.org/10.1021/ac0343073.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Yan, W. B., Y. Chen, H. Chen, C. Krusen und P. T. Woods. „Development and Applications of Continuous-Wave Cavity Ring-Down Spectroscopy“. International Journal of Thermophysics 29, Nr. 5 (18.06.2008): 1567–77. http://dx.doi.org/10.1007/s10765-008-0460-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Li Zhe, 李哲, 张志荣 Zhang Zhirong, 夏滑 Xia Hua, 孙鹏帅 Sun Pengshuai, 余润罄 Yu Runqing, 王华东 Wang Huadong und 吴边 Wu Bian. „连续波腔衰荡吸收光谱技术中的模式匹配研究“. Chinese Journal of Lasers 49, Nr. 4 (2022): 0411001. http://dx.doi.org/10.3788/cjl202249.0411001.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Santamaria, Luigi, Valentina Di Sarno, Paolo De Natale, Maurizio De Rosa, Massimo Inguscio, Simona Mosca, Iolanda Ricciardi, Davide Calonico, Filippo Levi und Pasquale Maddaloni. „Comb-assisted cavity ring-down spectroscopy of a buffer-gas-cooled molecular beam“. Physical Chemistry Chemical Physics 18, Nr. 25 (2016): 16715–20. http://dx.doi.org/10.1039/c6cp02163h.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Huang, Haifeng, und Kevin K. Lehmann. „Sensitivity Limit of Rapidly Swept Continuous Wave Cavity Ring-Down Spectroscopy“. Journal of Physical Chemistry A 115, Nr. 34 (September 2011): 9411–21. http://dx.doi.org/10.1021/jp111177c.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Humphries, Gordon S., Iain S. Burns und Michael Lengden. „Application of Continuous-Wave Cavity Ring-Down Spectroscopy to Laminar Flames“. IEEE Photonics Journal 8, Nr. 1 (Februar 2016): 1–10. http://dx.doi.org/10.1109/jphot.2016.2517575.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Földes, T., P. Čermák, J. Rakovský, M. Macko, J. Krištof, P. Veis und P. Macko. „Electronic DFB laser switching for continuous wave cavity ring-down spectroscopy“. Electronics Letters 46, Nr. 7 (2010): 523. http://dx.doi.org/10.1049/el.2010.2360.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Tan Zhongqi, 谭中奇, 冯先旺 Feng Xianwang und 龙兴武 Long Xingwu. „Electrocircuit design and application in continuous-wave cavity ring-down spectroscopy system“. High Power Laser and Particle Beams 23, Nr. 6 (2011): 1483–86. http://dx.doi.org/10.3788/hplpb20112306.1483.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Dissertationen zum Thema "Continuous–wave cavity ring-down spectroscopy":

1

Castillo, Genevieve Montero. „Biosensor using evanescent wave cavity ring-down spectroscopy (EWCRDS)“. abstract and full text PDF (free order & download UNR users only), 2007. http://0-gateway.proquest.com.innopac.library.unr.edu/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:1447616.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Assali, Mohamed. „Réactivité des radicaux peroxyles étudiée par photolyse laser couplée aux techniques cw-CRDS et LIF“. Electronic Thesis or Diss., Université de Lille (2018-2021), 2021. http://www.theses.fr/2021LILUR046.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
La dégradation des polluants organiques volatils, tels que les Composés Organiques Volatils (VOCs) dans les conditions troposphériques est généralement initiée par le principal oxydant qui est le radical OH, suivie par la formation des radicaux hydroproxyles HO2 et alkylperoxyles RO2 par réaction des produits de réaction avec l’oxygène. Le devenir de ces radicaux joue un rôle important dans la chimie de la troposphère. Ils sont étroitement liés au cycle qui contrôle la capacité oxydante de l’atmosphère et la formation d’ozone troposphérique. Dans un environnement pollué, la chimie des radicaux peroxyles est bien connue et de nombreux résultats expérimentaux sont disponibles dans la littérature. Dans un environnement propre (où la concentration en oxyde d’azote NOx (x=1,2) est faible) la réactivité entre HOx (x=1,2) et RO2 contrôle la chimie de la troposphère. Cependant, cette chimie n’est pas encore bien connue. Dans le cadre de cette thèse, des études cinétiques expérimentales ont été effectué afin de mieux comprendre les mécanismes d’oxydation de ces espèces. Un dispositif expérimental de photolyse laser couplée à des techniques spectroscopiques de détection résolues dans le temps : Spectroscopie à temps de déclin d’une cavité optique (cw-CRDS : continuous wave Cavity Ring-Down Spectroscopy) permettant la détection des radicaux HO2 et RO2 et Fluorescence induite par Laser (FIL) pour la détection des radicaux OH a été utilisé.Différents systèmes de réaction ont été étudié en utilisant la technique expérimentale mentionnée ci-dessus :1) la réaction de CH3C(O)O2 + CH3C(O)O2, et CH3C(O)O2 + CH3O2, 2) CH3C(O)CH2O2 + CH3C(O)CH2O2 et pour la première fois la réaction Cl + CH3C(O)CH2O2, 3) DO2 + DO2 et pour la première fois la réaction HO2 + DO2. Les constantes de vitesse ont été déterminé pour ces six réactions à température ambiante. Pour les quatre premières réactions différentes voies réactionnelles sont possible, et nous avons également déterminé le rapport de branchement de la voie menant à la formation des radicaux pour ces réactions
Degradation of volatile organic pollutants, such as Volatils Organic Compounds (VOCs), under tropospheric conditions is usually initiated by the main oxidant which is the OH radical, followed by the formation of hydroproxy radicals HO2 and alkylperoxy radicals RO2 by reaction of products with oxygen. The fate of these radicals plays an important role in tropospheric chemistry. They are closely linked to the cycle that controls the oxidative capacity of the atmosphere and the formation of tropospheric ozone. In a polluted environment, the influence of peroxy radicals is well known and many experimental results are available in the literature. In a clean environment (with low nitrogen oxides NOx (x=1,2) concentration) the reactivity between HOx (x=1,2) and RO2 controls tropospheric chemistry. However, this chemistry is not yet well known. In the frame of this thesis, experimental kinetic studies have been carried out to better understand the oxidation mechanisms of these species. An experimental laser photolysis device coupled with time-resolved spectroscopic detection techniques: continuous wave Cavity Ring-Down Spectroscopy (cw-CRDS) allowing the detection of HO2 and RO2 radicals and Laser Induced Fluorescence (LIF) for the detection of OH radicals was used.Different reaction systems were studied using the experimental technique mentioned above:1) the reaction of CH3C(O)O2 + CH3C(O)O2, and CH3C(O)O2 + CH3O2, 2) CH3C(O)CH2O2 + CH3C(O)CH2O2 and for the first time the reaction Cl + CH3C(O)CH2O2, 3) DO2 + DO2 and for the first time the reaction HO2 + DO2. The rate constants were determined for these six reactions at ambient temperature. For the first four different reaction pathways are possible, and we have also determined the branching ratio of the pathway leading to the formation of radicals for these reactions
3

Powell, Hayley Victoria. „Development and application of evanescent wave cavity ring-down spectroscopy as a probe of biologically relevant interfaces“. Thesis, University of Warwick, 2009. http://wrap.warwick.ac.uk/3186/.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
The application of a hybrid instrument combining Evanescent Wave Cavity Ring-Down Spectroscopy (EW-CRDS) with electrochemical and fluidic methods is described. The electrochemical/fluidic methods were used to induce a surface process, the effects of which were subsequently monitored in situ and in real time with exquisite spectral sensitivity and excellent temporal resolution by EW-CRDS. The well-defined manner in which the surface processes were initiated allowed the extraction of kinetic rate constants by fitting the EW-CRDS data to mathematical models of the surface process coupled to convection-diffusion. The investigations described include: the study of the thermodynamics and kinetics of the adsorption of tris(bipyridine)ruthenium(II) ([Ru(bpy)3]2+) to polypeptide films using EW-CRDS with chronoamperometry; the real-time electrochemistry of cytochrome c immobilised on silica by EW-CRDS with chronoamperometry; the kinetics of adsorption and DNA-assisted desorption of 5,10,15,20-tetra(N-methylpyridinium-4-yl)porphyrin at the silica-water interface using EW-CRDS with an impinging jet flow cell; and the monitoring the adsorption of cationic phospholipid vesicles at the silica-aqueous interface and the interaction of 5,10,15,20-Tetraphenyl-21H, 23H-porphine-p,p′,p″,p′′′-tetrasulfonic acid tetrasodium hydrate with the resulting bilayer also using EW-CRDS with an impinging jet flow cell. The work described in this thesis provides a platform on which EW-CRDS can be used to study dynamics at biointerfaces, such as the association of ions, peptides, proteins and drugs with phospholipid bilayers, the electron transfer between redox enzymes in a biomimetic environment, and the lateral diffusion of protons, ions and proteins at biomembranes. Such studies are essential to the understanding of many important cellular processes in addition to the development and optimisation of a number of bio-inspired technologies.
4

Schnippering, Mathias. „Development and application of evanescent wave cavity ring-down spectroscopy for studies of electrochemical and interfacial processes“. Thesis, University of Warwick, 2009. http://wrap.warwick.ac.uk/3787/.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
This thesis is concerned with the application of evanescent wave cavity ring-down spectroscopy (EW-CRDS) and evanescent wave broadband cavity enhanced absorption spectroscopy (EW-BB-CEAS) for studies of electrochemical and interfacial processes. These include nanoparticle adsorption/dissolution, polymer nanoparticle formation and surface-bound electrochemical redox reactions. Different experimental setups have been designed to investigate these systems. EW-CRDS is a surface sensitive technique, which allows absorption measurements at solid/liquid and solid/air interfaces. Surface reactions can easily be monitored in real time. A pulsed or modulated laser beam is coupled into an optical cavity which consists of at least one optical element, in which the beam is total internal reflected. At the position of total internal reflection (TIR), an evanescent field is established with the amplitude decaying exponentially with distance from the boundary. The evanescent field can be exploited to investigate the absorbance properties of the liquid phase in the first few hundred nanometres of the solution above the silica surface. These types of instruments have high temporal resolution (up to 2 kHz repetition rate), coupled with high sensitivity (minimum detectable interfacial absorbance per pass: ~80 ppm) which enables the investigation of a variety of processes relating to fundamental questions in the field of physical chemistry and materials science. The aforementioned sensitivity and resolution make EW-CRDS an ideal tool for those investigations, especially if combined with other techniques such as electrochemistry or microfluidic and hydrodynamic techniques. In this thesis, different instrumentational setups will be discussed. EW-BB-CEAS is another example for a TIR based absorption spectroscopic technique and can give additional spectral information about the investigated surface processes by employing broadband light such as supercontinuum radiation. In this case, the amplified light intensity within the optical cavity is measured rather than the light decay. By employing complementary techniques, such as electrochemistry and atomic force microscopy and by fitting experimental data using finite-element modelling, surface processes can not only be described accurately but also kinetic information such as rate constants for the aforementioned systems can be calculated.
5

Neil, Simon R. T. „Condensed-phase applications of cavity-based spectroscopic techniques“. Thesis, University of Oxford, 2012. http://ora.ox.ac.uk/objects/uuid:4431e46e-1226-4950-aa5d-ce22e0309ba9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
This thesis describes the development and application of condensed-phase cavity-based spectroscopic techniques - namely cavity ring-down spectroscopy (CRDS); cavity enhanced absorption spectroscopy (CEAS); broadband cavity enhanced absorption spectroscopy (BBCEAS) and evanescent wave (EW) variants of all three. The recently-developed cavity technique of EW-broadband cavity enhanced absorption spectroscopy (EW-BBCEAS) has been used—in combination with a supercontinuum source (SC) and a sensitive, fast readout CCD detector—to record of the full visible spectrum (400–700 nm) of a silica-liquid interfacial layer (with an effective thickness ca. 1 µm), at rapid acquisition rates (> 600 Hz) that are sufficient to follow fast kinetics in the condensed phase, in real time. The sensitivity achieved (Amin= 3.9 x 10-5) is comparable with previous EW-CRDS and EW-CEAS studies, but the spectral region accessed in this broadband variant is much larger. The study of liquid|air interfaces using EW cavity-based techniques is also illustrated for the first time. The first application of BBCEAS to the analysis of microfluidic samples, flowing through a microfluidic chip, is illustrated. Proof-of-principle experiments are presented, demonstrating the technique’s ability to provide full visible broadband spectral measurements of flowing microfluidic droplets, with both high detection sensitivity (αmin < 10-2 cm-1) and excellent spatial and temporal resolution: an SC light source and sensitive, fast readout CCD allowed measurement repetition rates of 273 Hz, whilst probing a very small sample volume (ca. 90 nL). A significant portion of this thesis is devoted to demonstrating the powerful capabilities of CEAS, CRDS and BBCEAS in monitoring radical recombination reactions and associated magnetic field effects (MFEs) in solution. The efficacy of CEAS as a high-sensitivity MFE detection method has been established in a proof-of-principle study, using narrow band CEAS in combination with phase-sensitive detection: MFE-induced absorbance changes of ca. 10-6 could be detected using the modulated CEAS technique and the data are shown to be superior to those obtained using conventional transient absorption (TA) methods typically employed for MFE measurements. The powerful capabilities of CRDS in monitoring radical recombination reactions and associated MFEs are also demonstrated. In particular, a pump-probe CRDS variant allows not only high sensitivity (Amin on the order 10-6), but also sub-microsecond time-resolution. Combined, these features represent significant advantages over TA. Finally, SC-BBCEAS is used to measure full visible spectra of photoinduced reactions and their MFEs. The applicability of this approach to in vitro MFE studies of Drosophila cryptochrome is demonstrated—the results mark the first in vitro observation of a magnetic field response in an animal cryptochrome, a key result supporting the hypothesis that cryptochromes are involved in the magnetic sense in animals.
6

Li, Jing. „Applications of optical-cavity-based spectroscopic techniques in the condensed phase“. Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:d6a0c476-e67f-4390-a63a-e3cb9e60bf2c.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Cavity ring-down spectroscopy (CRDS) and cavity enhanced absorption spectroscopy (CEAS) are two well-established absorption spectroscopic techniques originally developed for gas-phase samples. Condensed-phase applications of these techniques still remain rare, complicated as they are by additional background losses induced by condensed-phase samples as well as the intracavity components in which the sample is constrained. This thesis is concerned with the development and application of optical-cavity-based techniques in the condensed phase. Polarization-dependent evanescent wave CRDS (EW-CRDS) has been used to study the molecular orientation at the solid/air and solid/liquid interfaces. An increase in average orientation angle with respect to the surface normal has been observed for both methylene blue and coumarin molecules as a function of coverage at the fused silica/air interface. An orientation-angle-dependent photobleaching of pyridin molecules at the fused silica/methanol interface have also been observed. EW-CRDS has also been used to monitor slow in situ photobleaching of thin dye films deposited on the prism surface. The photobleaching dynamics is interpreted as a combination of first- and second-order processes. A significant fraction of this thesis has been devoted to studying magnetic field effects (MFEs) on the kinetics of the radical pair (RP) reactions in solution, in an effort to understand the ability of animals to sense the geomagnetic field. Two novel optical-cavity-based techniques – broadband CEAS (BBCEAS) and CRDS have been developed for this purpose. BBCEAS uses a supercontinuum (SC) source as the cavity light source and a CCD camera as photodetector, enabling simultaneous acquisition of absorption spectrum across the whole visible region (400 – 800 nm). In CRDS, a tunable optical parametric oscillator has been used as the cavity light source. Combined with the switching of external magnetic field (SEMF) method, this technique allows the decay kinetics of the geminate RPs to be monitored, with nanosecond resolution. Both BBCEAS and CRDS provide sensitivity superior to single-pass transient absorption (TA), a technique traditionally used in the MFE studies. A series of photochemical systems have been studied by BBCEAS and CRDS, respectively, among which, the MFEs of drosophila melanogaster cryptochrome has been observed. Importantly, this is the first time an MFE has been observed in an animal cryptochrome, and provides key supporting evidence for the cryptochrome hypothesis of magnetoreception in animals. Besides the optical-cavity-based techniques, a novel fluorescence detection method of MFEs has also been demonstrated. This technique proved ultrahigh sensitivity when applicable.
7

Yao, Yi-Ju, und 姚奕如. „Study of DNA Interaction by Evanescent Wave Cavity Ring-Down Absorption Spectroscopy via Functionalized Gold Nanoparticles“. Thesis, 2013. http://ndltd.ncl.edu.tw/handle/86581380973834419624.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
碩士
國立臺灣大學
化學研究所
101
Evanescent wave cavity ring-down absorption spectroscopy (EW-CRDS) is employed to study the interaction between deoxyribonucleic acids (DNA) by functionalized gold nanoparticles (Au NPs). EW-CRDS is a surface sensitive technique based on the measurement of the decay rate of a pulsed laser light trapped in an optical cavity. The light undergoes total internal reflection (TIR) at an interface of a prism within the cavity and creates an evanescent field at the surface that is sensitive to small absorption changes and is particularly useful for investigating interfacial processes. EW-CRDS offers a significantly higher sensitivity than conventional absorption spectroscopy with a rather simple and straightforward experimental set-up. The high sensitivity results mainly from its independence of fluctuations of the light source and the extremely long effective path length realized in optical cavities. By applying this ultra-sensitive EW-CRDS to the observation of DNA, we were able to study the binding kinetics of DNA and obtain the association equilibrium constants (Ka) and the free energies (ΔG). Binding conditions such as changes in the salt concentration, buffer pH and temperature are systematically examined. This basic study gives further insight in the design of DNA detection for DNA mutation diseases.
8

Lin, Meng-Chen, und 林孟蓁. „Study of Interaction between Crystal Violet and Sodium Dodecyl Sulfate on Silica/liquid Interface Using Evanescent-wave Cavity-ring Down Absorption Spectroscopy“. Thesis, 2011. http://ndltd.ncl.edu.tw/handle/06122943974013459887.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
碩士
國立臺灣大學
化學研究所
99
Abstract SDS (Sodium dodecyl sulfate, SDS) is an anionic surfactant that commonly used in many cleaners and hygiene products. At low surfactant concentration in aqueous solution, surfactant molecules exist the form of monomers. At surfactant concentrations above the critical micelle concentration(CMC), surfactant molecules in solution will spontaneously come together to form micelles (micelle), the formation of the micelle is usually detected by the changes in the physical properties of the solution, such as surface tension, conductivity or turbidity. Evanescent wave cavity ring-down spectroscopy (EW-CRDS) is based on the measurement of the decay rate of the light which goes back and forth (ring-down) in an optical cavity formed by two mirrors with extremely high reflectivity. There are two types of silanol groups at the silica/water interface with different pKa values, 4.9 and 8.5. With pKa = 4.9, the proton of the silanol group can easily dissociate, thus causing the interface to be negative. In our experiment, we choose crystal violet as molecular probes to determine surface critical micelle concentration (SCMC) of SDS. Similar, by the addition of NaCl electrolytes and changing the length of the chain of a hydrocarbon surfactant, we can obtain different surface CMC from the pure water.

Konferenzberichte zum Thema "Continuous–wave cavity ring-down spectroscopy":

1

Leggett, Graham. „Continuous Wave Cavity Ring-Down Spectroscopy for Environmental Applications“. In Optical Instrumentation for Energy and Environmental Applications. Washington, D.C.: OSA, 2012. http://dx.doi.org/10.1364/e2.2012.em4c.6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Thawoos, Shameemah, Arthur Suits und Nicolas Suas-David. „CONTINUOUS-WAVE CAVITY RING-DOWN SPECTROSCOPY IN A PULSED UNIFORM SUPERSONIC FLOW“. In 72nd International Symposium on Molecular Spectroscopy. Urbana, Illinois: University of Illinois at Urbana-Champaign, 2017. http://dx.doi.org/10.15278/isms.2017.mk05.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Yalin, Azer, Lei Tao, Ryan Sullenberger, Masashi Oya, Naoji Yamamoto, Alec Gallimore, Timothy Smith und Timothy Smith. „High-Sensitivity Boron Nitride Sputter Erosion Measurements by Continuous-Wave Cavity Ring-Down Spectroscopy“. In 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2008. http://dx.doi.org/10.2514/6.2008-5091.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Hahn, Jae, und Jae Wan Kim. „Cavity ring-down spectroscopy with a continuous wave laser and analysis of the uncertainty in concentration measurement“. In Laser Applications to Chemical and Environmental Analysis. Washington, D.C.: OSA, 2001. http://dx.doi.org/10.1364/lacea.2000.fd1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Ray, James M., Berley L. Rister und George M. Brooke. „Measurement of the Oxygen (1-0) band at 690 nm using Continuous-Wave Cavity Ring-down Spectroscopy“. In Conference on Lasers and Electro-Optics. Washington, D.C.: OSA, 2009. http://dx.doi.org/10.1364/cleo.2009.jwa65.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Pipino, A. C. R., I. M. P. Aarts, J. P. M. Hoefnagels, W. M. M. Kessels und M. C. M. van de Sanden. „Recent advances in evanescent-wave cavity ring-down spectroscopy“. In 2005 Conference on Lasers and Electro-Optics (CLEO). IEEE, 2005. http://dx.doi.org/10.1109/cleo.2005.202025.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Földes, Tomáš, K. Végsö, P. Čermák, P. Veis und P. Macko. „Cavity ring-down spectroscopy using telecom diode lasers“. In 16th Polish-Slovak-Czech Optical Conference on Wave and Quantum Aspects of Contemporary Optics. SPIE, 2008. http://dx.doi.org/10.1117/12.822352.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Pipino, Andrew C. R., und Joseph T. Hodges. „Evanescent-wave cavity ring-down spectroscopy for trace water detection“. In Environmental and Industrial Sensing, herausgegeben von Tuan Vo-Dinh und Stephanus Buettgenbach. SPIE, 2001. http://dx.doi.org/10.1117/12.417432.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Pipino, Andrew C. R. „Evanescent wave cavity ring-down spectroscopy for ultrasensitive chemical detection“. In Photonics East (ISAM, VVDC, IEMB), herausgegeben von Wim A. de Groot. SPIE, 1999. http://dx.doi.org/10.1117/12.337483.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Yang, Qiuxia, Zhiquan Li, Jubing Yan und Wei Liu. „New method of gas concentration measurement based on continuous wave cavity ring-down“. In 5th International Symposium on Advanced Optical Manufacturing and Testing Technologies, herausgegeben von Yudong Zhang, José Sasián, Libin Xiang und Sandy To. SPIE, 2010. http://dx.doi.org/10.1117/12.863841.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Berichte der Organisationen zum Thema "Continuous–wave cavity ring-down spectroscopy":

1

Christopher C. Carter. A CAVITY RING-DOWN SPECTROSCOPY MERCURY CONTINUOUS EMISSION MONITOR. Office of Scientific and Technical Information (OSTI), September 2003. http://dx.doi.org/10.2172/823019.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Christopher C. Carter. A CAVITY RING-DOWN SPECTROSCOPY MERCURY CONTINUOUS EMISSION MONITOR. Office of Scientific and Technical Information (OSTI), März 2004. http://dx.doi.org/10.2172/823949.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Christopher C. Carter. A CAVITY RING-DOWN SPECTROSCOPY MERCURY CONTINUOUS EMISSION MONITOR. Office of Scientific and Technical Information (OSTI), Dezember 2002. http://dx.doi.org/10.2172/828654.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Christopher C. Carter. A Cavity Ring-Down Spectroscopy Mercury Continuous Emission Monitor. Office of Scientific and Technical Information (OSTI), Dezember 2004. http://dx.doi.org/10.2172/850501.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Christopher C. Carter, Ph D. A CAVITY RING-DOWN SPECTROSCOPY MERCURY CONTINUOUS EMISSION MONITOR. Office of Scientific and Technical Information (OSTI), April 2003. http://dx.doi.org/10.2172/820567.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Christopher C. Carter, Ph D. A CAVITY RING-DOWN SPECTROSCOPY MERCURY CONTINUOUS EMISSION MONITOR. Office of Scientific and Technical Information (OSTI), Juni 2003. http://dx.doi.org/10.2172/821847.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Williams, Richard M., Warren W. Harper, Pam M. Aker, Jason S. Thompson und Timothy L. Stewart. Chemical Sensing Using Infrared Cavity Enhanced Spectroscopy: Short Wave Infrared Cavity Ring Down Spectroscopy (SWIR CRDS) Sensor. Office of Scientific and Technical Information (OSTI), Oktober 2003. http://dx.doi.org/10.2172/15010546.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Pipino, Andrew C. R. Miniature Chemical Sensor Combining Molecular Recognition with Evanescent Wave Cavity Ring-Down Spectroscopy. Office of Scientific and Technical Information (OSTI), Juni 2001. http://dx.doi.org/10.2172/834660.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Pipino, Andrew C. R., und Curtis W. Meuse. Miniature Chemical Sensor Combining Molecular Recognition with Evanescent Wave Cavity Ring-Down Spectroscopy. Office of Scientific and Technical Information (OSTI), Juni 2002. http://dx.doi.org/10.2172/834661.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Pipino, Andrew C. R., und Curtis W. Meuse. Miniature Chemical Sensor combining Molecular Recognition with Evanescent Wave Cavity Ring-Down Spectroscopy. Office of Scientific and Technical Information (OSTI), Juni 2003. http://dx.doi.org/10.2172/834664.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Zur Bibliographie